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ABSTRACT

Basics of scalar and vector Finite Quantum Field Theories are recalled, stressing the importance of
the quantization of classical physical fields as Operator-Valued- Distributions with specific fast
decreasing test functions of the coordinates. The procedure respects full Lorentz and symmetry
invariances and, due to the presence of test functions, leads to finite Feynman diagrams directly at
the physical dimension D = 2..4. In dimension 2 it is only with such test function that the canonical
quantization of the massless scalar field is found to be fully consistent with the maost successfull
Conformal Field Theoretic approach, pioneered by Belavin, Polyakov and Zamolodchikov in the
early 1980's. The question is then raised how Poliakov's wordline path integral representation of
the relativistic string could possibly lead tofinite Feynmann diagrams. The natural way of
inquiries is through the extension of the string formalism with classical convoluted coordinates
leading then to Operator- Valued-Distributions and thereby to Finite Quantum Field Theories. It is
shown that in the process some age-old certitudes about quantized strings are somewhat jostled.
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. INTRODUCTION

Finite Quantum Field Theories (FQFT) originate from the early causal and finite
approach of Bogolinbov-Epstein-Glaser (BEG—CSFT) [1-7|. The inital steps are based
on the early recognition that, in general, fields are not regular functions in the usual
sense but distributions |8,9]. However the setting up of a Lagrangian formalism in the
QFT context encounters products of fields as distributions at the same space-time point.
which are ill-defined and the later sources of erippling divergences. Past QFT history
essentially deals with the search for counter-terms cancelling these anoving divergences.
On the opposite the BEG — CSFT approach under the forms of Refs. |6, 7] aims from
the start at a Lagrangian formulation in keeping with the basic underlving classical
differentiable structure of the space-time manifold. The taming of these divergencies
involves regularization |Jl'{Jl'{‘(‘|l1I‘I:‘H which ought to preserve, to start with, the svimmetry
principles of the Lagrangian. Using a naive cut-off for instance is known to violate
Lorentz and gauge invariances, whereas Dimensional Regularization (DR) |10] and
that of Ref. |T] -dubbed TLRS here after- do preserve these fundamental symmetries.
The two procedures have in common the distinetive aspect of their implementation
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prior to the construction of the Lagragian density. The use of DR does not however
address directly to the origin of these divergencies but just avoids them in going to an
hypothetical space in D = 4—e dimensions. TLRS was developped in Ref. [11,12]. Since
the early applications of this scheme |13, 14] the caleulation of radiative corrections to the
Higgs mass [15] and the treatment of the axial anomaly [16,17] are relevant illustrations
of the practical use of the TLRS procedure in the D = 4 context, It was shown
recently how TLRS solves the long-standing consistency problem [18] encountered
between EqualTime (EQT) and Light-Front-Time (LFT) quantizations of bosonic two-
dimensional massless fields. Our purpose here is to confront the findings of |18] with
the standard bosonic string theory approach of [19,20] and elaborate on the values of
the critical dimension for the cancelation of the conformal anomaly.

I THE MATHEMATICAL SETTING
21 Classical wave equations

To the original classical field-distribution &(x", 2') is associatted a translation-
convolution product ®(p) built on a rapidly decreasing test functions p(a, 2!,
symmetric under reflexion in the variables x" and 2'. In Fourier-space variables
this linear functional can be written as an integral with the proper bilinear form
€ ¥ 2= P0upt” (Jup = diﬂg{l- —1})

Tpodd, -
(B * p)(a", ") = f 'f%”fil‘ € PG (po. p1) £ (5. P

where o(po.p1) (resp.  f(p2.p?)) is the Fourier-space transform of ¢(2%, ') (resp. of
plx% 21)). Hereafter @ (2", 1) will stand for (@ * p) (2%, 2').

The wave-equation for the classical convoluted distribution in space-time variables is
obtained from the hyperbolic partial differential equation (HPDE)

O® (<", 2') = [0% — 4] ®(«",2") = 0. (2.1)

A solution of the Cauchy problem in the sense of convolution of tempered distributions
is nothing else than D'Alembert’s (1717 — 1783) solution. It can be written as

l q -1 i 5
B, ') = 5 f @i (g8 — PX(po, pr)e ™ SP7 £ (48, 1), (2:2)
with x(E|m|.p) = xalp). Canonical quantization of the zero mass scalar

quantum operator valued-distribution (OPVD) field ®(2% #!) proceeds from Eq.(2.2)
via the correspondance, in terms of creation and annihilation operators, {y _(p)
a'(p). x. (p) m~ a(p)}. with commutator algebra [a(p). a™(g)] = 47pd(p—q) and a vacuum
|0 = such that a(p) |0==0 ¥p. That is
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& 2!y = % ﬁm%[a(p}e_‘F[fi_IL] + fﬂ[p}e‘”f'“lj]f{pz:l. (2.3)

Then. one easily evaluates the commutator of two free scalar OPVD to
[b(a). 8(0)] =18 =~ [ P sin(pa®) cos(pa’) £207) (2.4)
: =wlgl=—) 3 P . r). ;

This integral is finite without the test function and the limiting procedure where
P?) = f (;uz} = 1 refers to important mathematical properties of metric spaces
(whether Minskowskian or Euclidean) [18].

22 The ET-LFT consistency problem

Going to light-cone (LC) variables z%+£2' = #* is motivated by Dirac’s early observation
that the LC-stability group is maximal; LC-dynamics has much to share with gallilean
dynamics (e.g.relative motion of LC-interacting particles decouples from global center
of mass motion...). However in the LC-variables the nature of the initial Klein-Gordon
equation in Eq.(2.1) is changed to a characteristic initial value problem (CIVP) relative
to the partial-differential equation

8.8 &zt x7)=0 (2.5)
with initial data on characteristic surfaces
B(xt,a5) = f(at), D(af,x) = gla), (2.6)
and the continuity condition

P(xg. xp) = flag) = 8(ag)- (2.7)

i i \ ' g g o - n §2I _ ,
At first sight the LC-Lagrangian is 1.=.~mgular : W(z,y) = e ) (1, but the
appearence of a primary contrainst is known to be of no physical significance |21].

Nevertheless the consistency of the solutions in the two reference frames cannot be
established without further insight. This is just the content of Ref. [18]. with two main
conclusions:

-On the one hand, full consistency of EQT and LEFT quantizations can only be achieved
when fields are considered as OPVD with partition of unity test-functions f( p*?) such
that, for the light-cone momentum p™ | limy+ g+ ﬂ-:::j =1k

-On the other hand operator series in the Discretized-LC-Quantization (DLCQ) find
their natural handling of divergences in the substraction scheme embedded in the OPVD
formulation. The net effect of the PU-test function is the appearence of its inherent RG-
scale parameter ().

! The Hessian is indentically null
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Then the LF-formulation and CFT analysis of 2d-massless models are in complete
agreement in their representation of the energy-impulsion tensor in term of infinite
dimensional Virasoro Lie-algebras.

. THE QUANTUM BOSONIC STRING l1g, 23_271
31 Equations of motion of the scalar bosonic string in the LC-gauge

The motion under consideration here is taking place on a 2d-worksheet embedded in a
D-dimensionnal space. The initial field variables are then x.(o,7), p.(o, 7) elevated
to OPVD. A well-defined Lagrangian is then obtained in terms these regular field
variables X, (o, 7). F,(o.7). After dealing with the LC-gauge conditions the equation of
motion for X, (o, 7) 15 just that of Eq.(2.1) with appropriate position and time variables.
Acc‘unjijngly the sum of the zero-point energies of the first quantized string is just

Li—)-z_—'%lZn. The well-known conventional evaluation of this sum is given by the Zeta-
"=|.'|
0

function {(s) = Z ’lﬁ with {(—1) = —5. The critical dimension for the absence of the
!

overall t'unfurma:l:r:':mumaiy must then be such as to suppress that one with the cental
charge ¢ = 1 coming from the 2d worksheet analvsis and thus obeys #C =k) =1,
that is D = 26! However, even though at the same time this reasoning based on Zeta-
funetion was already under scruteny [24], this eritical value survived the long haul!

3.2 TLRS and the Renormalization Group

In the advocated 2d QFT treatment the key role is in the pseudo-function distribution
extension P f {;lg} of # at the origin. It is defined by the integral

L f d{;F}Pf{ 7o) *E tim | f o)y / “AP) | 9 nge)) = mn ;} (3.1)

where 5 is the dilatation-scale inherent to the construction of the test function f{pgj
|7.14]. The term in In(e) corresponds to the general Hadamard substraction procedure
to generate a Finite part (F.p.).
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The factor £ is arbitrarv? with no physical meaning unless explicit symmetry

violations need enforcement. Consider now the identity

d*(p) f(p*) _ /ﬂﬂ[ﬂ} (p+4q)? £
2m)%) 2 ~ ) @) pip+q)P '

d*(p) (p* + ¢*(1 — x)?)
f % [f@w}f PP+ = o P )

IPf(n) =

(3.2)

This is easy to understand due to the identity in the UV limit of the p-integration where
flp+q)?f(p?) = £2(p?) = £(p?). Moreover the overall O(2) p-invariance implies that
terms linear in p do not contribute to the integral.

Consider then the one loop Feynman diagram in relation to the energv-momentum
tensor of the X-field and in the same UV limit®

1} d®p b (p. gt alp. o
Huh r_d /{2?3;;2 bifziz}_'_ ;gl‘: q} f[Pz]f[f!! + q }-]
D P tap(Psq. 2 )l g(p,gq.x) 2
f / @ [pt+ el —a)f (P (33)
with

tap(poa)  =palp+a),+plp+a), — daplp.(p+4q)).
tap(P.q.x) = (Pp— q(1 — 2))a(p + q2)s + (P + qr)alp — (1 — ) )
~0as[P? — pq(l — 22) — ¢*x(1 - 2)].

The presence of the test-function f [pz] ensures the existence of this phase-space integral,
which otherwise would exibit divergences when p — oc . The common pratice in the
far past was to consider their cancelations by appropriate counter terms. In that case
the only surviving regular contribution to Iy.(q) is®
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1" D 25 25 td 2 2 d*p
nh|rd'{q} = _{Equqﬁ' -4 u.b](z%'fd = ::.d}‘/n T {1 = .i'.'} [JZH_}EE_Pz + QE-T-'{] _ -1'}!2
PqM Qalo e :
199+ '["sq b~ 2 }{ﬁrd — P 1‘2 :] {3'4}

? For Gauge Theories £ is related to the gauge fixing parameter [12].

4 This is the 2-points-funetion, eq.(9.158), of Polinkov's monograph. A coupling vertex factor would
be Iijned‘rbﬂd Iy_c_‘au.d

* Here gy is with "J.mhmsh s signature opposite to Euclid’s one,
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Here, from the embedding of the 2 — d worksheet, D does stand for D — 2. Follwing
sect(3.1) what is at sake is the sum (e.g. Trace) of the eigen-modes of this matrix. It
can be diagonalized by a unitary transformation with a preserved Trace equal to 4. The
result ?is then just the same critical dimension for the absence of the conformal anomaly
obtained in the first quantization framework, that is D, = 26. It is clear then that
the elimination of diverging contributions by counter-terms just leaves the evaluation of
(3.4) in keeping with the findings of |19)].

However our TLRS formalism shows that this is not the end of the story.Indeed from
examples (3.1.3.2) we observe that diverging integrals in p? and p* carry essential
dependencies on the RG-parameter . Then the complete y-dependence governing the
RG-analysis of the eritical equation is concerned with the behaviour of the central charge
under the fHow of the renormalization group (RG). Zamolodchikov realized this as early
as 1986 with his e-theorem [29):

"There is a function C on the space of unitary 2d-field theories that monotonically
decreaes along the RG-flows and which coimneides with the Virasoro central charge ¢ at
fized points.”

It takes the form

opod

H d \ ars .
—C(pA) = E 1) =n=Cn:1) = —86.1)ali. $)8(3.
“ﬂ'“C(H ﬁ} A(IE%]C A 1} HdYIIC{H ]_} i {J il"’l]ﬂ'{]' ..”-' |:j n}

where the Calan-Symanzik S-function at fixed point is independent of i and takes the
primitive value [30] m.

T.. and ©(z) = T, . the C-function and the

With the stress energy-tensors ©(z)
metric write |31, 33|

cC =- o dz A dz < 5{3}9[3) e |fﬁ|ﬁ"£.ﬁ‘5 firmeet) {35}
2t Jreal surface
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and

Gr? e
Geir = & < &(2)9(2) >¢ |trerLgs timit),

5 In the perpective of the analytic continuation of sect.(3.1) it is instructive to note how here this
decomposes as —%%l%;l from the trace it=elfl and ﬁl from the final x-integration ful drz(l—x) = é
¢f Appendix B
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where the subscript ¢ at the bracket indicates connected collerator contributions. g is
an arbitrary inverse distance inherent to the construction of the TLRS test function
as a partition of unity with a dimensionless argument (cf footnote 5). The fields ¢'(x)
originate from local coupling sources A'(x).

Let us consider the correlator of two stress tensors on the plane in the TLRS context [31]

™ 2pf(r?) (GasD® — Paba)Gpol® — Ppbs)
< Tasla)Tyo(0) >= 5 [ ducqn) [ T2 2 explupr) v

We are only left with the unknown scalar function of the mass scale p, the spectral
density [32| C(u). Its properties have to comply to the following requirements:

(i) Reflexion positivity of the euclidean field theory, i.e. unitarity of the Hibert space,
implies C(u) = 0,

(ii) Due to dim(T,,5) = 2 the spectral density is a dimensionless measure of degrees of
freedoom.

(11i)The form of C(p) in a scale invariant field theorv is completely fixed by it
dimensionality. Since duC() is dimensionless one may not exclude C(pu) ~ ﬁ

This IR divergence at g = 0 is fully understood in the TLRS context |7,12| as long as
the sealing limit to 1 of the test fuctions is not taken too early.

Indeed the correlator is®

i 2
<0(@e0)> = T [~ L 2}/“’1””“;}'“’;52?},

M.rl

— E h_]. T.l }f}-is.rliar’E—i_ lu{ ]

1 9 20
7 I“{HA}W

London Journal of Research in Science: Natural and Formal

{iv) Conformity with conformal invariance is exibited through the |71F dependence in
agreement with the results of [18](Eq.(56)) for < 0|T(z)T(w)|0 >. The study of the
central charge C from Eq.(3.5) on a 2d—curved manifold [34] has established the general
validity of Zamolodchikov e-theorem. It is sufficent, for our purpose. to consider only a
flat real surface with coordinate parametrization {z, 2} = pexp(£:@) which leads to7 8

% It is always possible to write the initial PU-test function regulating the pintegral as f2(p?) ~
F2) f(p? + p®) ~ F(p?) f(p?), for, in the UV-limit, f(p?)f(p® +p2) = F(p?) ~ f(p?), whereas in the
[R-limit the remaining f{#?) function just validates the corresponding integral.

" Note that in the initial {2, Z}-integrals the factor is r—‘-l-q so that the p-integral is on the variable
v = psin?(d), I1r nee the independent factorization of the remaining f-integrals with the appearance
the ubiguitous ﬁ factor |18]( eq.56).

BThe TLRS analytic evaluation of g(v®) is proportional to the difference of step-functions
[ — 211) — B{v — £12)], with x11 = {r;z]“ﬂ, xl2 = {Eﬂ"!}fi'] |16,32|. The final v-integration is then
trivial, after Hadamard substractions of diverging contributions in In(e), leaving the In(y?) factor.
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_ 1 [de) f{:?} 1‘*‘ d{ﬂ] e 0 —
o= [ o [ a0 =5 [ T (2 )

sin’(6)
1 e de) ™l . 3 2
_Eﬁ TG o —g(v") with g(v }—EI{I )
1 .
iu (n* Jlim{~ [ 2 n2(6) cnsz{ E}l}
I W ’
- lginiﬁr ) (3.6)

It is plain to see that this result is in agreement with the observation about the unicity of
the solution, up to to an arbitrary constant (here In(n?)), of "Cayley’s identity" known
as the "Schwarz derivative" [18].

Recently JF. Mathiot established that, within general arguments valid in the TLRS
framework, the trace of the energy-momentum tensor in 4-dimensions does not show
any anomalous contribution even though quantum corrections are considered [33]. It is
then our concern to turn now to the determination of the eritical dimension D, for the
absence of the overall conformal anomaly with p? and p?* divergences of the Poliakov-
tensor treated in the TLRS formalism(ef Appendix A). As mentioned after Eq.(3.4) the
elimination of diverging contributions by counter-terms just leads to the evaluation in
keeping with the findings of [19], that is D,, = 26 . However with TLRS the situation is
different as shown in Appendix A. The surviving initial Poliakov-term comes with extra
TLRS n-independent components. The immediate issue is then the fate of the D, = 26
value under these additional TLRS terms” Following Poliakov's analysis [19] a direct
calculation of 1'[[_ L__l[q n) shows explicitly the critical value D, = 4, as detailed in
Appendix B, Consider now the diagonalization of the normalized matrix g () with
a Lagrange parameter £ in relation to the stress-energy constraint T, = 0. At the value
D+ =4 £ is completely fixed, indicating that reparametrizations of the world-sheet
and conformal rescaling allow to fully fix g to anything wanted.
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V.  FINAL REMARKS

As a final additional observation it is instructive to consider the string deseription for
the VVA-anomaly [22]| versus its direct caleulation with TLRS |16, 17]. In the string
treatment of the massless case (¢f Eq.(6.44) of [22]) "explicit divergences are made of
a difference of two tadepoles type and hence do not contribute in dimensional regular-
ization, whereas for the remaining terms integrations are elementary, and the result is.
using [-function identities, easily identified to the standard result for the massless QED
vacuum polarization”. In TLRS the caleulation is directly in dimension D = 4 with the
usual +; and all contributions are either null or finite: a simple bookeeping leads then
to the standard VVA-anomaly without further ado. The TLRS procedure does provide

Ygiven by Eq.(A.9) of Appendix A,
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a very clear and coherent picture. All known invariance properties, besides those of
the VVA-anomaly, are preserved [13-15]. It is a direct consequence of the fundamental
properties of TLRS. As an "a-priori" regularization procedure, it provides a well defined
mathematical meaning to the local Lagrangian we start from in terms of products of
OPVD at the same space-time point. It also vields a well defined unambiguous strategy
for the calculation of elementary amplitudes, which are all finite in strictly 4-dimensional
space-time and with no new non-physical degrees of freedom nor any eut-off in momen-

tum space.

In summary the strategy developped here was based on the passage from first-
quantization to second quantization of the bososnic string. It is characterized by the
introduction of the notion of L.Schwartz’s Pseudo-Functions [8|(¢f Eq.(3.1)) with their
dilatation scale dependences. This result is at variance wih the usual dilatation-scale
independant Zeta-fuction evaluation of the discrete sum on inverse quantum n of first-
quantized space-time objeets. Actually it is easy to see that the standard evaluation
of the Zeta-function through normal Eulers’integral in the integration interval (0, o)
should be considered as the limit ¢ — 0 of the same integral in the interval (e, H;}.
thereby collecting first from the logarithmic term the contribution In( 5;-] and not the
value {(—1) = —4.

The main conclusion is then that String Theory in the OPVD picture reduces to Finite
Quantum Field Theory, directly in 4-dimensions with no trace anomaly of the energy-
momentum tensor , and in the limit where the tension along the string becomes infinite,
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