Nonperturbative uncertainties in $\alpha_s(m_{\tau})$

Antonio Rodríguez Sánchez

QCD 22, Montpellier 06/07/2022

Based on 2205.07587 In collaboration with Toni Pich

The hadronic decay of the au

 $ho^{(n)}(q^2) \sim \int d\phi_m \langle n|J|0 \rangle \langle 0|J^{\dagger}|n \rangle$ e.g. $ho^{(\pi,0)} \sim f_{\pi}^2 \, \delta^4 \left(q^2 - m_{\pi}^2\right)$

The inclusive hadronic decay of the au

$$rac{d\Gamma^{(n)}}{dq^2}\sim\sumrac{ds}{m_ au^2}\left(1-rac{s}{m_ au^2}
ight)^2\left[\left(1+2rac{s}{m_ au^2}
ight)\,
ho^{(n,1)}(s)\,+\,
ho^{(n,0)}(s)
ight]$$

 $ho^{(n)}(q^2) \sim \int d\phi_m \langle n|J|0 \rangle \langle 0|J^{\dagger}|n
angle$ e.g. $ho^{(\pi,0)} \sim f_{\pi}^2 \, \delta^4 \left(q^2 - m_{\pi}^2\right)$

In general $\rho^{(n)}(q^2)$ poorly known. However $\sum_{n_{V,A}} \rho^{V,A}(q^2) \to \operatorname{Im} \Pi_{V,A}(q^2)$

$$\Pi_{V/A}(q^2) \sim \int d^4x \, e^{-iqx} \langle T(J_{V/A}(x)J_{V/A}(0))
angle$$

ALEPH

Precision physics with inclusive tau decays

Experimental access to $ho_{V,A} \sim {
m Im} \Pi_{V,A}(q^2)$

$$\Pi_{V/A}(q^2) \sim \int d^4x \, e^{-iqx} \langle T(J_{V/A}(x)J_{V/A}(0)) \rangle$$

• Where do we know $\Pi?$ Large-Euclidean momenta \rightarrow OPE. pQCD plus:

$$\Pi_J^{\text{OPE}}(s)\big|_{D>0} = \sum_{D>0} \frac{\mathcal{O}_{D,J}(\mu) + \mathcal{P}_{D,J} \ln\left(-s/\mu^2\right)}{(-s)^{D/2}}, \quad \mathcal{O}_D, \mathcal{P}_D \sim \alpha_s \mathcal{O}_D \text{ svz '79}$$

• What else do we know? Analyticity

The inclusive hadronic decay of the au

$$A^{(n)}(s_{0}) \equiv \pi \int_{s_{\text{th}}}^{s_{0}} \frac{ds}{s_{0}} \left(\frac{s}{s_{0}}\right)^{n} \rho_{J}(s) = \frac{i}{2} \oint_{|s|=s_{0}} \frac{ds}{s_{0}} \left(\frac{s}{s_{0}}\right)^{n} \Pi_{J}(s)$$
$$A^{(n)}(s_{0}) = A^{(n)}_{\text{pert}}(s_{0}) + A^{(n),\text{OPE}}_{\text{D}>0}(s_{0}) + \Delta A^{(n),\text{DV}}(s_{0})$$

Perturbative

$$A_{\rm pert}^{(n)}(s_0) = \frac{1}{8\pi^2(n+1)} \sum_m K_m \int_{-\pi}^{\pi} d\varphi \ \left(1 - (-1)^{n+1} e^{i\varphi(n+1)}\right) a_s^m \left(s_0 e^{i\varphi}\right)$$

Power corrections

$$A^{(n)}(s_0)\Big|_{D>0} = -\pi \sum_{p=2} \frac{d_p^{(n)}}{(-s_0)^p}, \quad d_p^{(n)} = \begin{cases} \mathcal{O}_{2p}(s_0), & \text{if } p = n+1 \\ \frac{\mathcal{P}_{2p}}{n-p+1}, & \text{if } p \neq n+1 \end{cases}$$

$$\Delta A^{\omega}(s_0) \ \equiv \ \frac{i}{2} \ \oint_{|s|=s_0} \frac{ds}{s_0} \ \omega(s) \left\{ \Pi(s) - \Pi^{\rm OPE}(s) \right\} \ = \ -\pi \int_{s_0}^{\infty} \frac{ds}{s_0} \ \omega(s) \ \Delta \rho^{\rm DV}(s)$$

Uncertainties in α_s . Generalities

 $\mathcal{A}^{(n)}(s_0)[\alpha_s, \mathcal{K}_{m\geq 5}, \beta_{m\geq 6}, \mathcal{O}_{2n+2}(\mu), \mathcal{P}_{D\neq 2n+2}, \Delta \mathcal{A}^{(n)}(s_0)]$

- Perturbative uncertainties: variation in K_5 and scale
- Power corrections

$$A^{(n)}(s_0)\Big|_{D>0} = -\pi \sum_{p=2} \frac{d_p^{(n)}}{(-s_0)^p}, \quad d_p^{(n)} = \begin{cases} \mathcal{O}_{2p}(s_0), & \text{if } p = n+1 \\ \frac{\mathcal{P}_{2p}}{n-p+1}, & \text{if } p \neq n+1 \end{cases}$$

- ▶ They exist beyond perturbation theory. E.g. $\mathcal{O}_{6,V-A} \sim -(0.003, 0.004) \, \mathrm{GeV}^6$
- Tiny, but poorly known
- Ideally go to high energy
- For fixed energy, ideally suppress lower dimensions and \mathcal{O}_D with respect to \mathcal{P}_D

• Duality violations

$$\Delta A^{\omega}(s_0) = -\pi \int_{s_0}^{\infty} \frac{ds}{s_0} \omega(s) \Delta \rho^{\mathrm{DV}}(s)$$

- They clearly exist (OPE does not fully describe observed spectral function)
- Expected (and at least partially observed) to go to zero very fast
- Also tiny (in integrals) but poorly known
- Ideally go to high energies and reduce the contribution near s_0

Extraction on α_s , ALEPH-like weights

$$\mathcal{A}^{(n)}(s_0)[\alpha_s, \mathcal{K}_{m\geq 5}, \beta_{m\geq 6}, \mathcal{O}_{2n+2}(\mu), \mathcal{P}_{D\neq 2n+2}, \Delta \mathcal{A}^{(n)}(s_0)]$$

- ALEPH set of weights at m_{τ} : $\omega_{kl}(x) = (1-x)^{2+k} x^l (1+2x), \quad (k,l) = \{(0,0), (1,0), (1,1), (1,2), (1,3)\}$
- Fitted parameters: $\alpha_s, \mathcal{O}_4, \mathcal{O}_6, \mathcal{O}_8$

Rationale behind the choice/assumptions:

- Double zero at $s_0 = m_{ au}^2$ should be enough to discriminate poorly known DVs
- \bullet Assume energy is high enough so that $\mathcal{O}_{D>8}$ and $\mathcal{P}_{D>4}$ can be neglected

Good quality fits and consistent results. But yet some potential weaknesses

- Truncation choice somewhat ambiguous
- High-dimensional contributions indirectly enhanced by long prefactors

First estimation attempt: incorporate $\mathcal{O}_{D=10}$ and add the difference More tests: change sets of weights reducing previous weaknesses. Same $\alpha_s(m_\tau)$

More illustrative tests

- Reliability of $\alpha_s(m_{ au})$ requires nonperturbative corrections to be small
- Let us ignore ALL nonperturbative corrections

Weight	$\alpha_s($	m_{τ}^{2})	Weight	$\alpha_s(m_{\tau}^2)$		
(n, m)	FOPT	CIPT	(n, m)	FOPT	CIPT	
(1,0)	$0.315 + 0.012 \\ - 0.007$	$0.327 + 0.012 \\ -0.009$	(2,0)	$0.311 + 0.015 \\ -0.011$	$0.314 {+0.013 \atop -0.009}$	
(1,1)	0.319 + 0.010 - 0.006	$0.340 + 0.011 \\ - 0.009$	(2,1)	$0.311 + 0.011 \\ - 0.006$	$0.333 + 0.009 \\ - 0.007$	
(1,2)	$0.322 + 0.010 \\ -0.008$	$0.343 \substack{+0.012 \\ -0.010}$	(2,2)	$0.316 {+}0.010 {-}0.005$	$0.336 + 0.011 \\ - 0.009$	
(1,3)	0.324 + 0.011 - 0.010	0.345 + 0.013 - 0.011	(2,3)	0.318 + 0.010 - 0.006	0.339 + 0.011 - 0.008	
(1,4)	$0.326 {+}0.011 {-}0.011$	$0.347 {+0.013 \atop -0.012}$	(2,4)	$0.319 {+}0.009 {-}0.007$	$0.340 {+}0.011 {-}0.009$	
(1,5)	$0.327 + 0.015 \\ -0.013$	0.348 + 0.014 - 0.012	(2,5)	$0.320 + 0.010 \\ - 0.008$	$0.341 + 0.011 \\ -0.009$	

- Similar α_s independently on the weight at $m_{ au}^2$
- Similar α_s at all channels at $m_{ au}^2$
- Most inclusive channel: similar $lpha_s$ at any $s_0 < m_{ au}^2$

Other included approaches

- Fit to the s_0 -dependence of fix weights. For example: $\left(1-\frac{s}{s_0}\right)^2$
 - Advantage: one can include all O_D in the fit
 - Disadvantage: more exposed to unknown DVs
 - Obtained $\alpha_s(m_{\tau}^2)$ stable in V + A channel. Add s₀-fluctuations as DV estimate
- Add $e^{-a\frac{s}{s_0}}$ factors to the weights
 - It reduces high-energy tail (DV) contribution
 - ► a small do not enhance unaccounted power corrections $\left(\frac{a}{(D/2)!}\mathcal{O}_D \text{ vs } \alpha_s \mathcal{O}_D\right)$
 - Dedicated analysis finds stability in all channels for wide intervals of a and s_0

Method	$\alpha_s^{(n_f=3)}(m_{\tau}^2)$				
	CIPT	FOPT	Average		
$\omega_{kl}(\mathbf{x})$ weights	$0.339 + 0.019 \\ - 0.017$	$0.319 + 0.017 \\ - 0.015$	$0.329 + 0.020 \\ - 0.018$		
$\hat{\omega}_{kl}(\mathbf{x})$ weights	$0.338 {}^{+ 0.014}_{- 0.012}$	$0.319 {}^{+ 0.013}_{- 0.010}$	$0.329 + 0.016 \\ - 0.014$		
$\omega^{(2,m)}(x)$ weights	$0.336 {}^{+}_{-} 0.018 \\ - 0.016$	$0.317 {}^{+ 0.015}_{- 0.013}$	$0.326 {}^{+ 0.018}_{- 0.016}$		
s ₀ dependence	0.335 ± 0.014	0.323 ± 0.012	0.329 ± 0.013		
$\omega_a^{(1,m)}(x)$ weights	$0.328 {}^{+ 0.014}_{- 0.013}$	$0.318 {}^{+}_{-} 0.015 \\ -0.012$	$0.323 {}^{+}_{-} 0.015 \\ -0.013$		
Average	0.335 ± 0.013	0.320 ± 0.012	0.328 ± 0.013		

Duality Violation approach

Nonperturbative corrections in $\omega = 1$

• Possibly be good from the point of view of power corrections. Yet

$$A(s_0)|_{\mathcal{P}_D} = \pi \left(-\frac{\mathcal{P}_6}{2s_0^3} + \frac{\mathcal{P}_8}{3s_0^4} - \frac{\mathcal{P}_{10}}{4s_0^5} + \frac{\mathcal{P}_{12}}{5s_0^6} - \frac{\mathcal{P}_{14}}{6s_0^7} + \frac{\mathcal{P}_{16}}{7s_0^8} + \cdots \right)$$

• Not optimal from the point of view of reducing DVs

One possibility. DV fluctuations in V + A for $s_0 \in (\frac{m_{\tau}^2}{2}, m_{\tau}^2)$ have a very subleading role in integral and then α_s

- Assume fluctuations do not increase at $s_0 > m_{ au}^2 o lpha_s(m_{ au}^2)$
- V more unstable. But if one assumes at $s_0 \sim m_\tau^2$ stabilizes, one obtains same strong coupling.

Another possibility: modelling DVs Boito et al.

$$\Delta
ho^{\mathrm{DV}}(s) \;=\; \mathcal{G}(s)\; e^{-(\delta+\gamma s)}\; \sin\left(lpha+eta s
ight) \qquad \qquad s>\hat{s}_{0}$$

 $\mathsf{Fit} \{\alpha_{\mathsf{s}}, \delta, \gamma, \alpha, \beta\} \mathsf{ to } s_0 \mathsf{ dependence of } A(s_0), \mathsf{ i.e. fit } \{A(\hat{s}_0), \rho(\hat{s}_0 < s_0 < m_\tau^2)\}$

Possibility: modelling DVs Boito et al.

 $\Delta
ho^{\mathrm{DV}}(s) = \mathcal{G}(s) \ e^{-(\delta + \gamma s)} \ \sin(lpha + eta s) \qquad s > \hat{s}_0$

Fit $\{\alpha_s, \delta, \gamma, \alpha, \beta\}$ to s_0 dependence of $A(s_0)$, i.e. fit $\{A(\hat{s}_0), \rho(\hat{s}_0 < s_0 < m_{\tau}^2)\}$ From ALEPH one finds at $\mathcal{G}(s) = 1, \hat{s}_0 = 1.55 \,\mathrm{GeV}^2$

 $\alpha_s(m_{\tau}) = 0.298 \pm 0.010$.

First weakness

- Argued to be better wrt standard ones because is free from unknown $\mathcal{O}_{D>10}$
- But one yet has all $\mathcal{P}_D \sim 0.2 \mathcal{O}_D$ contributions
- In contrast to standard ones one relies on them to be negligible at $s_0 < \frac{m_{\pi}^2}{2}$
- Impact of neglecting the latter with respect to the former scales as $0.2 \cdot 2^{D/2}$

If power corrections of D>10 are a concern at $m_{ au}^2$, avoid going below it...

Duality Violation approach

Possibility: modelling DVs Boito et al.

$$\Delta
ho^{\mathrm{DV}}(s) \;=\; \mathcal{G}(s)\; e^{-(\delta+\gamma s)}\; \sin\left(lpha+eta s
ight) \qquad s>\hat{s}_0$$

Fit $\{\alpha_s, \delta, \gamma, \alpha, \beta\}$ to s_0 dependence of $A(s_0)$, i.e. fit $\{A(\hat{s}_0), \rho(\hat{s}_0 < s_0 < m_{\tau}^2)\}$ From ALEPH one finds at $\mathcal{G}(s) = 1, \hat{s}_0 = 1.55 \text{ GeV}^2$

 $\alpha_s(m_{\tau}) = 0.298 \pm 0.010$.

Second weakness. Not real motivation for $\mathcal{G}(s) = 1, \hat{s}_0 = 1.55 \, \mathrm{GeV}^2$

 $\mathcal{G}_{V}(s) = s^{8}, \quad \hat{s}_{0} = 1.55.$ $\mathcal{G}_{V}(s) = 1 - \frac{1.35}{s}, \quad \hat{s}_{0} = 1.55.$ $\mathcal{G}_{V}(s) = 1 - \frac{2}{s}, \quad \hat{s}_{0} = 1.55.$ $\mathcal{G}_{V}(s) = 1, \quad \hat{s}_{0} = 2, \quad \alpha_{s} = 0.320.$

Variation	$\alpha_s(m_\tau^2)$	δ_V	γ_V	αV	β_V	p-value (%)
Default	0.298	3.6	0.6	-2.3	4.3	5.3
1	0.314	1.0	4.6	-1.5	3.9	7.7
2	0.319	-0.19	1.8	-0.8	3.5	7.8
3	0.260	0.23	1.2	3.2	2.1	6.4
4	0.320	0.56	1.9	0.15	3.1	6.9

Let us take $\alpha_{\rm s}^{\rm FOPT} \in$ (0.26 - 0.32) suplemented by DV parameters and check V+A

- Convergence of data to models at assumed point \hat{s}_0 much worse than convergence of data to OPE itself
- Agreement of models in fitted regions
- Complete disagreement above fitted regions (fully explains α_s splitting)
- Small α_s models display DVs larger than a_1 resonance at $s_0 > m_{ au}$

Test standard assumptions with DV models: $\omega = 1$

$$A^{(0)}(s_0) = A^{(0)}_{
m pert}(s_0) + \Delta A^{(0),{
m DV}}(s_0)$$

- If one takes as input α_s such that $A^{(0)}_{pert}(s_0) \neq A^{(0)}(s_0)$, one needs to compensate with $\Delta A^{(0),DV}(s_0)$
- But
 - Spectral function is already very close to the partonic prediction
 - ▶ Asymptotic freedom requires $\Delta A^{(0),\mathrm{DV}}(s_0) \rightarrow 0$ quite fast

Small α_s can only be obtained with artificial Heaviside-like shapes

Test standard assumptions with DV models: pinched

$$A^{\omega}(s_0) = A^{\omega}_{\text{pert}}(s_0) + A^{OPE,D>0}(s_0)$$

- Perturbation theory alone with $\alpha_{\rm s}^{\rm FOPT}\sim$ 0.32 also matches all pinched-moments well
- If one takes as input α_s such that $A_{\text{pert}}^{(0)}(s_0) \neq A^{(0)}(s_0)$, one needs to artificially compensate by tuning arbitrarily large \mathcal{O}_D (add as many parameters as observables)

Weight	variation	Pert	$\mathcal{O}_{2(n+2),V+A}$	$\mathcal{O}_{2(n+3),V+A}$	DV	Exp
	Default	0.0938 (5)	0.0029	-0.0019	-0.0001	0.0954 (3)
(5.4)	1	0.0952 (7)	-0.0001	-0.0004	-0.0000	0.0954 (3)
$A_{V+A}^{\omega^{(2,1)}}(m_{\tau}^2)$	2	0.0957 (8)	-0.0010	0.0000	-0.0000	0.0954 (3)
	3	0.0908 (2)	0.0145	-0.0095	-0.0007	0.0954 (3)
	4	0.0958 (8)	-0.0011	-0.0005	-0.0000	0.0954 (3)
	Default	0.1316 (4)	0.0025	-0.0007	0.0001	0.1344 (8)
(5.1)	1	0.1331 (5)	0.0009	-0.0004	0.0001	0.1344 (8)
$A_{V+A}^{\omega^{(2,4)}}(m_{\tau}^2)$	2	0.1336 (5)	0.0004	-0.0001	0.0000	0.1344 (8)
	3	0.1282 (2)	0.0171	-0.0061	-0.0056	0.1344 (8)
	4	0.1337 (5)	-0.0002	0.0002	0.0001	0.1344 (8)

Test standard assumptions with DV models: pinched

 $A^{\omega}(s_0) = A^{\omega}_{\text{pert}}(s_0) + A^{OPE,D>0}(s_0)$

- Perturbation theory alone with $\alpha_s^{\rm FOPT} \sim$ 0.32 also matches all pinched-moments well
- Their size becomes more than questionable when $\alpha_s < 0.3$ and would imply complete breakdown of the OPE at \hat{s}_0 (unjustified and inconsistent)

Weight	variation	Pert	$\mathcal{O}_{2(n+2),V+A}$	$\mathcal{O}_{2(n+3),V+A}$	DV	E×p
$A_{V+A}^{\omega^{\left(2,1\right)}}(\hat{s}_{0})$	Default	0.1010 (18)	0.0248	-0.0326	0.0062	0.0994 (4)
	1	0.1043 (28)	-0.0006	-0.0071	0.0028	0.0994 (4)
	2	0.1054 (32)	-0.0081	0.0003	0.0018	0.0994 (4)
	3	0.0948 (06)	0.1221	-0.1629	0.0452	0.0994 (4)
	4	0.1010 (18)	0.0042	0.0015	-0.0001	0.0980 (3)
$A_{V+A}^{\omega^{\left(2,4 ight)}}(\hat{s}_{0})$	Default	0.1391 (10)	0.1808	-0.1012	-0.0787	0.1401 (5)
	1	0.1424 (14)	0.0676	-0.0572	-0.0128	0.1401 (5)
	2	0.1434 (16)	0.0281	-0.0203	-0.0112	0.1401 (5)
	3	0.1327 (05)	1.2216	-0.8833	-0.3309	0.1401 (5)
	4	0.1392 (11)	-0.0036	0.0058	-0.0034	0.1378 (4)

In view of the results, further inflation of uncertainties is not justified

- \bullet One of the most precise phenomenological determinations of $\alpha_{\rm s}$ comes from inclusive tau decays
- Nonperturbative effects are tiny, but poorly known
- Current modelling of duality violations is subject to large systematic uncertainties
- Our final estimate gives

$$\alpha_s^{(n_f=3)}(m_\tau^2) = \begin{cases} 0.335 \pm 0.013 & \text{(CIPT)} \\ 0.320 \pm 0.012 & \text{(FOPT)} \end{cases}$$

or

$$lpha_s^{(n_f=5)}(M_Z^2) = 0.1197 \pm 0.0015$$