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The hadronic decay of the τ

τ− → n + ντ , n = π−, π−π0, K−π0, · · ·

τ

ντ

W

d

ū

n

LSM ∼ W µJ l
µ + W µJq

µ, J l ∼ ν̄τ Γτ , Jq ∼ VuDD̄Γu

q2 ≪ M2
W ∼ v2 → Leff

SM ∼ 1
v2 Jq · J l

dΓ(n)

dq2 ∼
∑ ds

m2
τ

(
1 − s

m2
τ

)2
[(

1 + 2 s
m2

τ

)
ρ(n,1)(s) + ρ(n,0)(s)

]
ρ(n)(q2) ∼

∫
dϕm⟨n|J |0⟩⟨0|J†|n⟩ e.g. ρ(π,0) ∼ f 2

π δ4 (q2 − m2
π)
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The inclusive hadronic decay of the τ

dΓ(n)

dq2 ∼
∑ ds

m2
τ

(
1 − s

m2
τ

)2
[(

1 + 2 s
m2

τ

)
ρ(n,1)(s) + ρ(n,0)(s)

]
ρ(n)(q2) ∼

∫
dϕm⟨n|J |0⟩⟨0|J†|n⟩ e.g. ρ(π,0) ∼ f 2

π δ4 (q2 − m2
π)

In general ρ(n)(q2) poorly known. However
∑

nV ,A
ρV ,A(q2) → ImΠV ,A(q2)

ΠV /A(q2) ∼
∫

d4x e−iqx ⟨T (JV /A(x)JV /A(0))⟩
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Precision physics with inclusive tau decays

Experimental access to ρV ,A ∼ ImΠV ,A(q2)

ΠV /A(q2) ∼
∫

d4x e−iqx ⟨T (JV /A(x)JV /A(0))⟩

Where do we know Π? Large-Euclidean momenta → OPE. pQCD plus:

ΠOPE
J (s)

∣∣
D>0 =

∑
D>0

OD,J(µ) + PD,J ln (−s/µ2)
(−s)D/2 , OD , PD ∼ αsOD SVZ ’79

What else do we know? Analyticity

A(n)
J (s0) ≡ π

∫ s0

sth

ds
s0

(
s
s0

)n
ρJ (s)︸ ︷︷ ︸

Experiment

=
i
2

∮
|s|=s0

ds
s0

(
s
s0

)n
ΠJ (s)︸ ︷︷ ︸

∼OPE

∼ BNP’92
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The inclusive hadronic decay of the τ

A(n)(s0) ≡ π

∫ s0

sth

ds

s0

(
s

s0

)n
ρJ (s) =

i

2

∮
|s|=s0

ds

s0

(
s

s0

)n
ΠJ (s)

A(n)(s0) = A(n)
pert(s0) + A(n),OPE

D>0 (s0) + ∆A(n),DV(s0)

Perturbative
A(n)

pert(s0) =
1

8π2(n + 1)

∑
m

Km

∫ π

−π

dφ
(

1 − (−1)n+1eiφ(n+1)
)

am
s

(
s0eiφ

)

Power corrections

A(n)(s0)
∣∣

D>0
= −π

∑
p=2

d (n)
p

(−s0)p , d (n)
p =

{
O2p(s0), if p = n + 1

P2p
n − p + 1 , if p ̸= n + 1

Duality Violations (DV)
∆Aω(s0) ≡ i

2

∮
|s|=s0

ds
s0

ω(s)
{

Π(s) − ΠOPE(s)
}

= −π
∫ ∞

s0
ds
s0

ω(s) ∆ρDV(s)
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Uncertainties in αs . Generalities
A(n)(s0)[αs , Km≥5, βm≥6, O2n+2(µ), PD ̸=2n+2, ∆A(n)(s0)]

Perturbative uncertainties: variation in K5 and scale
Power corrections

A(n)(s0)
∣∣

D>0
= −π

∑
p=2

d (n)
p

(−s0)p , d (n)
p =

{
O2p(s0), if p = n + 1

P2p
n − p + 1 , if p ̸= n + 1

▶ They exist beyond perturbation theory. E.g. O6,V −A ∼ −(0.003, 0.004) GeV6

▶ Tiny, but poorly known
▶ Ideally go to high energy
▶ For fixed energy, ideally suppress lower dimensions and OD with respect to PD

Duality violations
∆Aω(s0) = −π

∫ ∞

s0
ds
s0

ω(s) ∆ρDV(s)

▶ They clearly exist (OPE does not fully describe observed spectral function)
▶ Expected (and at least partially observed) to go to zero very fast
▶ Also tiny (in integrals) but poorly known
▶ Ideally go to high energies and reduce the contribution near s0
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Extraction on αs , ALEPH-like weights

A(n)(s0)[αs , Km≥5, βm≥6, O2n+2(µ), PD ̸=2n+2, ∆A(n)(s0)]

ALEPH set of weights at mτ :
ωkl(x) = (1 − x)2+k x l (1 + 2x) , (k, l) = {(0, 0), (1, 0), (1, 1), (1, 2), (1, 3)}
Fitted parameters: αs , O4, O6, O8

Rationale behind the choice/assumptions:
Double zero at s0 = m2

τ should be enough to discriminate poorly known DVs
Assume energy is high enough so that OD>8 and PD>4 can be neglected

Good quality fits and consistent results. But yet some potential weaknesses
Truncation choice somewhat ambiguous
High-dimensional contributions indirectly enhanced by long prefactors

First estimation attempt: incorporate OD=10 and add the difference
More tests: change sets of weights reducing previous weaknesses. Same αs(mτ )
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More illustrative tests
Reliability of αs(mτ ) requires nonperturbative corrections to be small
Let us ignore ALL nonperturbative corrections
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Weight αs (m2
τ ) Weight αs (m2

τ )
(n, m) FOPT CIPT (n, m) FOPT CIPT
(1,0) 0.315 +0.012

−0.007 0.327 +0.012
−0.009 (2,0) 0.311 +0.015

−0.011 0.314 +0.013
−0.009

(1,1) 0.319 +0.010
−0.006 0.340 +0.011

−0.009 (2,1) 0.311 +0.011
−0.006 0.333 +0.009

−0.007
(1,2) 0.322 +0.010

−0.008 0.343 +0.012
−0.010 (2,2) 0.316 +0.010

−0.005 0.336 +0.011
−0.009

(1,3) 0.324 +0.011
−0.010 0.345 +0.013

−0.011 (2,3) 0.318 +0.010
−0.006 0.339 +0.011

−0.008
(1,4) 0.326 +0.011

−0.011 0.347 +0.013
−0.012 (2,4) 0.319 +0.009

−0.007 0.340 +0.011
−0.009

(1,5) 0.327 +0.015
−0.013 0.348 +0.014

−0.012 (2,5) 0.320 +0.010
−0.008 0.341 +0.011

−0.009

Similar αs independently on the weight at m2
τ

Similar αs at all channels at m2
τ

Most inclusive channel: similar αs at any s0 < m2
τ
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Other included approaches

Fit to the s0-dependence of fix weights. For example:
(

1 − s
s0

)2

▶ Advantage: one can include all OD in the fit
▶ Disadvantage: more exposed to unknown DVs
▶ Obtained αs(m2

τ ) stable in V + A channel. Add s0-fluctuations as DV estimate

Add e−a s
s0 factors to the weights

▶ It reduces high-energy tail (DV) contribution
▶ a small do not enhance unaccounted power corrections ( a

(D/2)! OD vs αsOD)
▶ Dedicated analysis finds stability in all channels for wide intervals of a and s0

Method α
(nf =3)
s (m2

τ )

CIPT FOPT Average

ωkl (x) weights 0.339 + 0.019
− 0.017 0.319 + 0.017

− 0.015 0.329 + 0.020
− 0.018

ω̂kl (x) weights 0.338 + 0.014
− 0.012 0.319 + 0.013

− 0.010 0.329 + 0.016
− 0.014

ω(2,m)(x) weights 0.336 + 0.018
− 0.016 0.317 + 0.015

− 0.013 0.326 + 0.018
− 0.016

s0 dependence 0.335 ± 0.014 0.323 ± 0.012 0.329 ± 0.013

ω
(1,m)
a (x) weights 0.328 + 0.014

− 0.013 0.318 + 0.015
− 0.012 0.323 + 0.015

− 0.013
Average 0.335 ± 0.013 0.320 ± 0.012 0.328 ± 0.013
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Duality Violation approach

Nonperturbative corrections in ω = 1
Possibly be good from the point of view of power corrections. Yet

A(s0)|PD
= π

(
− P6

2s3
0

+ P8

3s4
0

− P10

4s5
0

+ P12

5s6
0

− P14

6s7
0

+ P16

7s8
0

+ · · ·
)

Not optimal from the point of view of reducing DVs
One possibility. DV fluctuations in V + A for s0 ∈ ( m2

τ

2 , m2
τ ) have a very

subleading role in integral and then αs

Assume fluctuations do not increase at s0 > m2
τ → αs(m2

τ )
V more unstable. But if one assumes at s0 ∼ m2

τ stabilizes, one obtains same
strong coupling.

Another possibility: modelling DVs Boito et al.

∆ρDV(s) = G(s) e−(δ+γs) sin (α + βs) s > ŝ0

Fit {αs , δ, γ, α, β} to s0 dependence of A(s0), i.e. fit
{

A(ŝ0), ρ(ŝ0 < s0 < m2
τ )

}
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Duality Violation approach

Possibility: modelling DVs Boito et al.

∆ρDV(s) = G(s) e−(δ+γs) sin (α + βs) s > ŝ0

Fit {αs , δ, γ, α, β} to s0 dependence of A(s0), i.e. fit
{

A(ŝ0), ρ(ŝ0 < s0 < m2
τ )

}
From ALEPH one finds at G(s) = 1, ŝ0 = 1.55 GeV2

αs(mτ ) = 0.298 ± 0.010 .

First weakness
Argued to be better wrt standard ones because is free from unknown OD>10

But one yet has all PD ∼ 0.2 OD contributions
In contrast to standard ones one relies on them to be negligible at s0 <

m2
τ

2

Impact of neglecting the latter with respect to the former scales as 0.2 · 2D/2

If power corrections of D > 10 are a concern at m2
τ , avoid going below it...
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Duality Violation approach
Possibility: modelling DVs Boito et al.

∆ρDV(s) = G(s) e−(δ+γs) sin (α + βs) s > ŝ0

Fit {αs , δ, γ, α, β} to s0 dependence of A(s0), i.e. fit
{

A(ŝ0), ρ(ŝ0 < s0 < m2
τ )

}
From ALEPH one finds at G(s) = 1, ŝ0 = 1.55 GeV2

αs(mτ ) = 0.298 ± 0.010 .

Second weakness. Not real motivation for G(s) = 1, ŝ0 = 1.55 GeV2

1 GV (s) = s8, ŝ0 = 1.55.
2 GV (s) = 1 − 1.35

s , ŝ0 = 1.55.

3 GV (s) = 1 − 2
s , ŝ0 = 1.55.

4 GV (s) = 1, ŝ0 = 2, αs = 0.320.

Variation αs (m2
τ ) δV γV αV βV p-value (% )

Default 0.298 3.6 0.6 −2.3 4.3 5.3

1 0.314 1.0 4.6 −1.5 3.9 7.7

2 0.319 −0.19 1.8 −0.8 3.5 7.8

3 0.260 0.23 1.2 3.2 2.1 6.4

4 0.320 0.56 1.9 0.15 3.1 6.9
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Test standard assumptions with DV models

Let us take αFOPT
s ∈ (0.26 − 0.32) suplemented by DV parameters and check

V + A
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Convergence of data to models at assumed
point ŝ0 much worse than convergence of
data to OPE itself
Agreement of models in fitted regions
Complete disagreement above fitted regions
(fully explains αs splitting)
Small αs models display DVs larger than a1
resonance at s0 > mτ
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Test standard assumptions with DV models: ω = 1
A(0)(s0) = A(0)

pert(s0) + ∆A(0),DV(s0)

If one takes as input αs such that A(0)
pert(s0) ̸= A(0)(s0), one needs to

compensate with ∆A(0),DV(s0)
But

▶ Spectral function is already very close to the partonic prediction
▶ Asymptotic freedom requires ∆A(0),DV(s0) → 0 quite fast
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Small αs can only be obtained with artificial Heaviside-like shapes
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Test standard assumptions with DV models: pinched

Aω(s0) = Aω
pert(s0) + AOPE ,D>0(s0)

Perturbation theory alone with αFOPT
s ∼ 0.32 also matches all

pinched-moments well
If one takes as input αs such that A(0)

pert(s0) ̸= A(0)(s0), one needs to
artificially compensate by tuning arbitrarily large OD (add as many
parameters as observables)

Weight variation Pert O2(n+2),V +A O2(n+3),V +A DV Exp

Aω(2,1)
V +A (m2

τ )

Default 0.0938 (5) 0.0029 −0.0019 −0.0001 0.0954 (3)

1 0.0952 (7) −0.0001 −0.0004 −0.0000 0.0954 (3)

2 0.0957 (8) −0.0010 0.0000 −0.0000 0.0954 (3)

3 0.0908 (2) 0.0145 −0.0095 −0.0007 0.0954 (3)

4 0.0958 (8) −0.0011 −0.0005 −0.0000 0.0954 (3)

Aω(2,4)
V +A (m2

τ )

Default 0.1316 (4) 0.0025 −0.0007 0.0001 0.1344 (8)

1 0.1331 (5) 0.0009 −0.0004 0.0001 0.1344 (8)

2 0.1336 (5) 0.0004 −0.0001 0.0000 0.1344 (8)

3 0.1282 (2) 0.0171 −0.0061 −0.0056 0.1344 (8)

4 0.1337 (5) −0.0002 0.0002 0.0001 0.1344 (8)
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Test standard assumptions with DV models: pinched

Aω(s0) = Aω
pert(s0) + AOPE ,D>0(s0)

Perturbation theory alone with αFOPT
s ∼ 0.32 also matches all

pinched-moments well
Their size becomes more than questionable when αs < 0.3 and would imply
complete breakdown of the OPE at ŝ0 (unjustified and inconsistent)

Weight variation Pert O2(n+2),V +A O2(n+3),V +A DV Exp

Aω(2,1)
V +A (ŝ0)

Default 0.1010 (18) 0.0248 −0.0326 0.0062 0.0994 (4)

1 0.1043 (28) −0.0006 −0.0071 0.0028 0.0994 (4)

2 0.1054 (32) −0.0081 0.0003 0.0018 0.0994 (4)

3 0.0948 (06) 0.1221 −0.1629 0.0452 0.0994 (4)

4 0.1010 (18) 0.0042 0.0015 −0.0001 0.0980 (3)

Aω(2,4)
V +A (ŝ0)

Default 0.1391 (10) 0.1808 −0.1012 −0.0787 0.1401 (5)

1 0.1424 (14) 0.0676 −0.0572 −0.0128 0.1401 (5)

2 0.1434 (16) 0.0281 −0.0203 −0.0112 0.1401 (5)

3 0.1327 (05) 1.2216 −0.8833 −0.3309 0.1401 (5)

4 0.1392 (11) −0.0036 0.0058 −0.0034 0.1378 (4)

In view of the results, further inflation of uncertainties is not justified
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Conclusions

One of the most precise phenomenological determinations of αs comes from
inclusive tau decays
Nonperturbative effects are tiny, but poorly known
Current modelling of duality violations is subject to large systematic
uncertainties
Our final estimate gives

α(nf =3)
s (m2

τ ) =

 0.335 ± 0.013 (CIPT)

0.320 ± 0.012 (FOPT)

or
α(nf =5)

s (M2
Z ) = 0.1197 ± 0.0015
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