

Doubly-heavy tetraquark bound states and resonances

Jean-Marc Richard

Institut de Physique des 2 Infinis de Lyon Université Claude Bernard (Lyon 1)–IN2P3-CNRS Villeurbanne, France

QCD22, Montpellier, July 2022

JMR

Université Claufe Bernard

Intro	<i>T_{CC}</i>	Т _{bс}	т _{ьь}	Weak	Summary
O	00	00	0000	000000	00000
Table of	of content	ts			

Introduction

2 Brief summary on T_{cc}

3 The bc sector

- 4 The bb sector
- 5 Weak decay of bbud

- T_{cc} discovered last summer by LHCb at CERN
- Predicted years ago (1981), confirmed and refined in several further studies (QCDSR, lattice, ...)
- Also some "rediscoveries" without credit to the earlier papers
- Several extensions already studied such as $cc\bar{u}\bar{s}$, etc.
- Here we concentrate on $QQ\bar{q}\bar{q}$, for which there are already some predictions, in particular Oka et al. (published), and Vijande et al.
- Main predictions:
 - Deeply bound ground state with I = 0 and J^P = 1⁺ dominated by color (3, 3), spin [(cc)₁, (ud/d)₀]₁.

Université Claufe Bernard

- A few near-threshold states with another structure
- Weak decay of *bbūd*

 τ (bb $\overline{u}\overline{d} > \tau$ (B), τ (Λ_b), τ (Ξ_{bb})??

The onset of chromoelectricity in spectroscopy

- Multiquarks in the late 70s: chromomagnetism
- For instance, Jaffe:
 - hierarchy of scalar mesons
 - speculations on the H(uuddss)
- 1981: Ader et al.: another mechanism: chromoelectricity
- $QQ\bar{q}\bar{q}$ becomes stable if M/m is large enough
- Even in absence of spin forces
- Striking analogy with atomic physics: $M^+M^+m^-m^-$ more stable than $\mu^+\mu^+\mu^-\mu^-$
- Favorable symmetry breaking

- Zouzou et al., Heller et al., Semay et al., Rosina et al., Barnea et al., Brink et al. ...
- Chromoelectric effect not sufficient
- Also chromomagnetic in the light sector: $\bar{u}\bar{d}$ in I = S = 0 (col. $\bar{3}$)
- Hence ccūd vs. its threshold DD*
 - benefits of the cc attraction,
 - benefits of the <u>ud</u> attraction
- Such configuration (QQūd
) is rather unique. No proliferation of stable multiquarks in constituent models.

Meng et al., using the AP1 model of Semay et al.

This model AP1 is too attractive. Alternative AL1 also slightly too attractive

state (I, J^P)	AL1	AP1
$ccar{q}ar{q}$ (0, 1+)	-7	-23
$bbar{q}ar{q}$ (0, 1 $^+$)	-144	-173
bb $ar{q}ar{q}$ (1, 2 $^+$)	+1	-3
$bcar{q}ar{q}$ (0, 0 ⁺)	-23	-40
$bcar{q}ar{q}$ (0, 2+)	-3	-5

 $bb\bar{s}\bar{q}$ bound in most models.

QQāā

Université Claufe Bernard

- In constituent models T_{bb} more deeply bound
- Same mechanism as $B + \bar{B} b\bar{b} > D + \bar{D} c\bar{c}$
- Referred to as flavor independence
- Again $J^P = 1^+ (I = 0)$ for the ground state, with a dominant color 33 structure and spin (1,0) in the *bb*, $\bar{u}\bar{d}$ basis
- Due to coherent CE + CM effects
- Typically 180 MeV below $B + B^*$
- Question: excitations?
- Hardly radial excitation:
 - other J^P?
 - other I
 - other inner structure for $J^P = 1^+ (I = 0)$?

Université Claufe Bernard

IntroT_{CC}T_{bC}T_{bb}WeakSummaryReal scaling (stabilization)

• Bound state: compact wf, which can be approximated by a variational approach, i.e., solve $H\Psi = E\Psi$ via

$$\Psi = \lim_{N \to \infty} \Psi^{(N)} = \sum_{n}^{N} \gamma_n \exp\left(-\sum a_{ij}^{(n)} \boldsymbol{x}_i . \boldsymbol{x}_j\right)$$

with suitable optimization of the linear parameters γ_n and non-linear $a_{ij}^{(n)}$, where \mathbf{x}_1, \ldots is a set of Jacobi coordinates.

- For the ground state, one minimizes the energy
- For the first excited, one minimizes the second energy, etc.
- In the continuum, one searches stationary states, by scaling *x_i* → α *x_i* selected Jacobi coordinates
- Alternatives: complex scaling, search for complex poles, etc.

Université Claufe Bernard 🦛 L

Intro T_{CC} T_{bc} T_{bb} Weak Summary OCOOOO</sub>

- Real scaling often used for electron scattering and other pbs of molecular phys.
- Applied by a Japanese group for pentaquark
- Other groups in China, now

Real scaling applied to pentaquark

Iniversité Claufe Bernard

JMR QQqq

Recent study by Oka et al., with potential by Semay et al.

- Ground state at 173 MeV below BB*.
- Another b.s. 0(1⁺) 4 MeV below BB.
- Resonance 0(1⁺) 5 MeV below B^{*}B^{*}
- Higher resonances

- Unlike charm, beauty decays with an almost constant lifetime
- $au(B^{\pm}) \sim au(B^0) \sim au(B_s) \sim au(\Lambda_b) \sim 1.5\,\mathrm{ps}$
- More delicate $\tau(B_c) \sim 0.5 \, \mathrm{ps}$
- One could naively expect τ(T_{bb}) ~ 1.5 ps
- Faster? Two b quarks
- Longer τ ?
 - Average PS for $T \rightarrow B + c + X$ less than for $B \rightarrow c + X$
 - After W emission, cq not always color singlet
- KR estimated $\tau \sim$ 0.4 ps
- Ali et al. $au \sim$ 0.8 ps
- Hernandez et al. $\tau \sim 7.6 \, \mathrm{ps}$
- See, also, Xing & Zhu: many "gold" channels identified

QQāā

Université Claufe Bernard 🦛 Lyon

0	for a second second	a state a			
0	00	00	0000	00000	00000
Intro	T _{CC}	T _{bc}	T _{bb}	Weak	Summary

Final state	Γ [10 ⁻¹⁵ GeV]
$ar{B^*}^0 e^- ar{ u}_e$	0.0365 ± 0.0004
$ar{B}^0 e^- ar{ u}_e$	0.0394 ± 0.0006
$ar{B^*}^0 \mu^- ar{ u}_\mu$	0.0355 ± 0.0004
$ar{B}{}^0\mu^-ar{ u}_\mu$	0.0396 ± 0.0006
$ar{B^*}^0 au^- ar{ u}_ au$	0.0355 ± 0.0004
$\bar{B}^0 au^- ar{ u}_ au$	0.0396 ± 0.0006

Intro	<i>T_{CC}</i>	<i>T_{bc}</i>	т _{bb}	Weak	Summary
O	00	00	0000	00000	00000

Final state	Γ [10 ⁻¹⁵ GeV]	Final state	Γ [10 ⁻¹⁵ GeV]
$B^{*-}D^{*+}\ell^-ar{ u}_\ell$	9 02 + 0 07	$B^{*-}D^{*+} au^-ar u_ au$	1.55 ± 0.01
$ar{B^{*}}^{0} D^{*0} \ell^{-} ar{ u}_{\ell}$	5.02 ± 0.07	$ar{B^{*}}^{0} D^{*0} au^{-} ar{ u}_{ au}$	1.55 ± 0.01
$B^{*-}D^+\ell^-ar u_\ell$	2.50 ± 0.02	$B^{*-}D^+ au^- ar u_ au$	0 727 - 0 005
$ar{B^*}^0 D^0 \ell^- ar{ u}_\ell$	5.59 ± 0.05	$ar{B^{*}}^{0} D^{0} au^{-} ar{ u}_{ au}$	0.727 ± 0.003
$B^- D^{st +} \ell^- ar u_\ell$	4.62 \ 0.05	$B^- D^{st +} au^- ar u_ au$	
$ar{B}^{0}{D^{*}}^{0}\ell^{-}ar{ u}_{\ell}$	4.03 ± 0.03	$ar{B}^0 {D^*}^0 au^- ar{ u}_ au$	0.00 ± 0.007
$B^- D^+ I^- \overline{\nu}_I$	1 92 + 0 02	$B^- D^+ au^- ar u_ au$	0 409 + 0 003
$B^0 D^0 \ell^- \overline{ u}_\ell$	1.52 ± 0.02	$B^0 D^0 au^- ar u_ au$	0.409 ± 0.000

Intro	<i>T_{CC}</i>	<i>T_{bc}</i>	T _{bb}	Weak	Summary
O	00	00	0000	○○○●○○	00000

Non leptonic decays

Final state $\Gamma [10^{-15} \text{ GeV}]$ Final state $\Gamma [10^{-15} \text{ GeV}]$ $B^{*-} D^{*+} D_s^{-}$ 4.00 ± 0.06 $B^{-} D^{*+} D_s^{-}$ 3.15 ± 0.05 $\bar{B}^{*-} D^{*0} D_s^{-}$ $B^{-} D^{*+} D_s^{*-}$ 3.15 ± 0.05
$\begin{array}{cccc} B^{*-} D^{*+} D^{-}_{s} & 4.00 \pm 0.06 & B^{-} D^{*+} D^{*-}_{s} \\ \bar{B^{*}}^{0} D^{*0} D^{-}_{s} & 4.00 \pm 0.06 & \bar{B^{0}} D^{*0} D^{*-}_{s} \\ \bar{B^{0}} D^{*0} D^{-}_{s} & \bar{B^{0}} D^{*0} D^{*-}_{s} \\ \bar{B^{0}} D^{*0} D^{*-}_{s} & \bar{D^{*}} D^{*-}_{s} \\ \end{array} $
$\bar{B^*}^0 D^{*0} D^{S} \qquad 4.00 \pm 0.08 \qquad \bar{B^0} D^{*0} D^{*-}_{S} \qquad 5.15 \pm 0.05$
$B^* D^* D^*$
$\bar{B_{*}}^{0} D^{*0} D^{*-}$ $\bar{B_{*}}^{0} D^{*0} D^{*-}$ $\bar{B_{*}}^{0} D^{*0} D^{*-}$ $\bar{B_{*}}^{0} D^{*0} D^{*-}$ 1.20 ± 0.02
$B^{*-}D^{+}D^{-}$ $B^{*-}D^{*+}o^{-}$ 3.57 + 0.09
$\bar{\mu_s}^0 D^0 D^-$ 2.57 ± 0.04 $D^{*-} D^{*+} -$ 1.08 ± 0.02
$B^* D^* D_s$ $B^* D^* \pi$ 1.28 ± 0.03
$B^*_{-} D^+ D^*_{s}$ 2.32 ± 0.03 $B^* D^+ \rho^-$ 1.70 ± 0.04
$B^{*0} D^0 D^{*-}_s$ $B^{*-} D^+ \pi^ 0.70 \pm 0.02$
$B^{-} D^{*+} D^{-}_{s}$ 2.78 ± 0.05 $B^{-} D^{*+} \rho^{-}$ 2.01 ± 0.05
$\bar{B^0} D^{*0} D^s$ $B^- D^{*+} \pi^ 0.77 \pm 0.03$

JMR

$T_{bb} \rightarrow T_{bc}$ transitions

For completeness (as sometimes considered as possibly important) Namely $T_{bb}(1^+)$ decaying with $T_{bc}(J^P = 0^+)$ in the final state.

T_{bb}

T_{bc}

Weak

000000

Summary

JMR

Intro T_{CC} T_{bb} OCOO Weak Summary OCOOOO</sub>

- Fist comprehensive study of the decay of the T_{bb}^{-} tetraquark beyond simple guess-by-analogy estimations.
- Total width $\Gamma\approx 87\times 10^{-15}\,\text{GeV},$
- Lifetime $au \approx$ 7.6 ps
- The promising final states are, for SL

•
$$\bar{B}^{*-} D^{*+} I^- \bar{\nu}_{\ell}$$

• $\bar{B}^{*0} D^{*0} \ell^- \bar{\nu}_{\ell}$

and, for NL

•
$$\bar{B}^{*-} D^{*+} D^{*-}_s$$

• $\bar{B}^{*0} D^{*0} D^{*-}$

•
$$B^* - D^{*+} \rho^-$$

- SL mode $T^0_{bc} \ell^- \nu_\ell$ relevant but not dominant
- Hopefully will help for experimental tracking
- Some rare but trigger-friendly modes: J/ψBK or baryon-antibaryon stressed in the literature

JMR

QQāā

Université Claufe Bernard

- At the quark level, triumph of chromoelectricity
- Striking analogy with atomic physics H₂ vs. Ps₂
- Possibility of excited bound states or resonances near B^(*) B^(*)
- New chapter of weak interactions
- $\tau(bb\bar{u}\bar{d}) > \tau(bbq)$ might help identification

Intro	T _{CC}	The	T _{bb}	Weak	Summary
0	00	00	0000	000000	00000

EXTRA SLIDES

Some rare but interesting channels

$T_{bc} \rightarrow D\bar{K}$ via W-exchange?

Intro	T _{CC}	Tbc	T _{bb}	Weak	Summary
0	00	õõ	0000	000000	00000

See, e.g., T. Gershon & A. Poluektov

