0⁺ XTZ states from QCD spectral sum rules¹

D. Rabetiarivony Institute of High Energy Physics of Madagascar, Univ. Antananarivo-MG

In collaboration with R. M. Albuquerque and S. Narison

1. R. Albuqueruqe, S. Narison and D. Rabetiarivony, Nucl. Phys. A 1023 (2022) 122451; Phys. Rev. D 103 (2021) 074015; Phys. Rev. D 105 (2022) 114035

Two-point function

Evaluation of two point function \rightsquigarrow Hadron parameters

$$\Pi_{\mathcal{H}}^{\mu\nu}(q^2) = i \int d^4x \ e^{-iqx} \langle 0 | \mathcal{TO}_{\mathcal{H}}^{\mu}(x) \left(\mathcal{O}_{\mathcal{H}}^{\nu}(0) \right)^{\dagger} | 0 \rangle$$

Two-point function

Evaluation of two point function ~> Hadron parameters

$$\Pi_{\mathcal{H}}^{\mu\nu}(q^2) = i \int d^4x \ e^{-iqx} \langle 0 | \mathcal{TO}_{\mathcal{H}}^{\mu}(x) \left(\mathcal{O}_{\mathcal{H}}^{\nu}(0) \right)^{\dagger} | 0 \rangle$$

Currents $(q \equiv u, d, s)$

$$J^{P} = 0^{+}$$

$$\mathcal{O}_{S_{c}}^{0^{+}} = \epsilon_{ijk} \epsilon_{mnk} \left[\left(q_{i}^{T} C \gamma_{5} c_{j} \right) \left(\bar{q}_{m} \gamma_{5} C \bar{c}_{n}^{T} \right) + k \left(q_{i}^{T} C c_{j} \right) \left(\bar{q}_{m} C \bar{c}_{n}^{T} \right) \right]$$

$$\mathcal{O}_{Tud}^{0^{+}} = \frac{1}{\sqrt{2}} \epsilon_{ijk} \epsilon_{mnk} \left(c_{i}^{T} C \gamma^{\mu} c_{j} \right) \left[\left(\bar{u}_{m} \gamma_{\mu} C \bar{d}_{n}^{T} \right) + \left(\bar{d}_{m} \gamma_{\mu} C \bar{u}_{n}^{T} \right) \right]$$

$$\mathcal{O}_{Tqs}^{0^{+}} = \epsilon_{ijk} \epsilon_{mnk} \left(c_{i} C \gamma^{\mu} c_{j}^{T} \right) \left(\bar{q}_{m} \gamma_{\mu} C \bar{s}_{n}^{T} \right)$$

X(3872)

$$\mathcal{O}_{X_c}^{1^+} = \epsilon_{ijk} \epsilon_{mnk} \left[\left(q_i^T C \gamma_5 c_j \right) \left(\bar{c}_m \gamma^{\mu} C \bar{q}_n^T \right) + \left(q_i^T C \gamma^{\mu} c_j \right) \left(\bar{c}_m \gamma_5 C \bar{q}_n^T \right) \right]$$

Two-point function

Evaluation of two point function \rightsquigarrow Hadron parameters

$$\Pi_{\mathcal{H}}^{\mu\nu}(q^2) = i \int d^4x \ e^{-iqx} \langle 0 | \mathcal{TO}_{\mathcal{H}}^{\mu}(x) \left(\mathcal{O}_{\mathcal{H}}^{\nu}(0) \right)^{\dagger} | 0 \rangle$$

♣ QCD side : quark and gluon fields, OPE ⇒ Dispertion relation
 ♣ Phenomenological side : Hadron parameters ⇒ Dispertion relation

Quark Hadron duality principle QCD side ~ PHEN side

🐥 Inverse Laplace Transform

Mass Extraction

Finite Energy Inverse Laplace Transform Sum Rule :

$$\mathcal{L}_n^c|_{\mathcal{H}}(\tau,\mu) = \int_{(2M_c+m_q+m_s)^2}^{t_c} dt \; t^n \; e^{-t\tau} \frac{1}{\pi} \mathrm{Im} \; \Pi_{\mathcal{H}}(t,\mu)$$

Ansatz :

$$\frac{1}{\pi} \operatorname{Im} \Pi_{\mathcal{H}}(t) = f_{\mathcal{H}}^2 M_{\mathcal{H}}^8 \,\delta(t - M_{\mathcal{H}}^2) + \frac{1}{\pi} \operatorname{Im} \Pi_{\mathcal{H}}^{\text{QCD}}(t) \,\theta(t - t_c)$$

$$M_{\mathcal{H}}^2 = \mathcal{R}_{\mathcal{H}}^c(\tau_0) = \frac{\mathcal{L}_1^c|_{\mathcal{H}}}{\mathcal{L}_0^c|_{\mathcal{H}}};$$

$$r_{\mathcal{H}'/\mathcal{H}}(\tau_0) \equiv \sqrt{\frac{\mathcal{R}_{\mathcal{H}'}^c}{\mathcal{R}_{\mathcal{H}}^c}} = \frac{M_{\mathcal{H}'}}{M_{\mathcal{H}}}$$

Mass Extraction

Finite Energy Inverse Laplace Transform Sum Rule :

$$\mathcal{L}_n^c|_{\mathcal{H}}(\tau,\mu) = \int_{(2M_c+m_q+m_s)^2}^{t_c} dt \; t^n \; e^{-t\tau} \frac{1}{\pi} \mathrm{Im} \; \Pi_{\mathcal{H}}(t,\mu)$$

Ansatz :

$$\frac{1}{\pi} \operatorname{Im} \Pi_{\mathcal{H}}(t) = f_{\mathcal{H}}^2 M_{\mathcal{H}}^8 \,\delta(t - M_{\mathcal{H}}^2) + \frac{1}{\pi} \operatorname{Im} \Pi_{\mathcal{H}}^{\operatorname{QCD}}(t) \,\theta(t - t_c)$$

$$M_{\mathcal{H}}^2 = \mathcal{R}_{\mathcal{H}}^c(\tau_0) = \frac{\mathcal{L}_1^c|_{\mathcal{H}}}{\mathcal{L}_0^c|_{\mathcal{H}}};$$

$$r_{\mathcal{H}'/\mathcal{H}}(\tau_0) \equiv \sqrt{\frac{\mathcal{R}_{\mathcal{H}'}^c}{\mathcal{R}_{\mathcal{H}}^c}} = \frac{M_{\mathcal{H}'}}{M_{\mathcal{H}}}$$

 \circledast OPE convergence obtained for condensates up to $d \leq 6$

To prevent the violation of factorization the inclusion of higher dimension condensates is not suggested

NLO corrections

At LO : ambiguity of quark mass definition (On-shell/MS running mass??)

NLO corrections

At LO : ambiguity of quark mass definition (On-shell/MS running mass??)

 $\Delta f\simeq 80\,{\rm keV}\,\,\&\,\,\Delta M\simeq 25\,{\rm MeV}$

NLO corrections

At LO : ambiguity of quark mass definition (On-shell/MS running mass??)

 $\Delta f \simeq 80 \text{ keV} \& \Delta M \simeq 25 \text{ MeV}$

Inclusion of NLO PT corrections : Solve this ambiguity and justify the use of MS running quark mass.

 \diamond NLO corrections are small \Rightarrow Lucky choice of MS running mass at LO

Stability criteria

♣ (τ, t_c, μ) free external parameters \Rightarrow minimum sensitivity of (M_H, f_H) vs (τ, t_c, μ)

τ stability

- Optimal result extracted at the minimum or inflexion point
- (Harmonic oscillator of QM & J/ψ LSR)[ref test Zc and ref therein]
- More precise than the hand-waving $10\sim 20\%$ Borel window criteria
- Lowest ground state dominance & OPE convergence satisfied at τ extremum

t_c stability

- From the beginning of τ stability > the beginning of t_c stability
- Large range of t_c value (choice of t_c inside this range confirmed by FESR : [PRD 105 (2022) 114035])

$\boldsymbol{\mu}$ stability

- To fix the arbitrary subtraction constant in HO PT evaluation of Wilson coeff. & QCD input renormalized parameters

- Almost universal for $[QQ\overline{q}\overline{q}]$ & $[Qq\overline{Qq}]:\mu_c\simeq 4.65\,{\rm GeV}\parallel\mu_b\simeq 5.20\,{\rm GeV}$
- [IJMPA 31 (2016) 1650196; IJMPA 33 (2018) 1850082 & NPA/PRD in title page]

Laplace Sum Rules Results Summary & Conclusion

μ analysis

Laplace Sum Rules Results Summary & Conclusion

 $0^+ T_{cc\bar{u}\bar{d}}$

🐥 Stability region

▷ Beginning of τ -stability for : $(\tau, t_c) = (0.31, 30)$ (GeV⁻², GeV²) ▷ t_c -stability reached for : $(\tau, t_c) = (0.34, 46)$ (GeV⁻², GeV²)

 $\Rightarrow f_{T_{cc}}(0^+) = 841(83) \text{ keV} ; \quad M_{T_{cc}}(0^+) = 3882(129) \text{ MeV}$

DRSR

♣ Stability region : (τ, t_c) = (1.28, 15) ~ (1.32, 20)
⊙ $r_{T_{cc}^{0^+}/X_c} = 1.0033(10)$ ⇒ $M_{T_{cc}}(0^+) = 3885(4)$ MeV ♣ Stability region : (τ, t_c) = (0.72, 23) ~ (0.74, 32)
⊙ $r_{T_{cc\bar{u}\bar{s}}/T_{cc}(0^+)} = 1.0113(12)$ ⇒ $M_{T_{cc\bar{s}\bar{u}}}(0^+) = 3927(6)$ MeV

Laplace Sum Rules Results Summary & Conclusion

$\circledast \mathsf{Quoted results}:\mathsf{SR}\oplus\mathsf{DRSR}$

- \circledast $T_{cc}\text{-like}$ above threshold
 - $T_{bb}\mbox{-like}$ below threshold
 - ❀ Sources of discrepancies :
 - Different inputs (obsolete and inaccurate values in other literature)
 - Missing diagrams in the QCD expressions of the propagators
 - Different Optimization criteria
 - \circledast Within the errors there are almost good agreement among the \neq predictions

- \circledast Our predictions are grouped around the physical threshold.
- \circledast Mass shifts due to SU3 breaking effect positive but tiny
- \circledast Experimental check of the peculiar feature of $T_{cc\bar{s}\bar{s}}$ and $T_{bb\bar{s}\bar{s}}$ is needed.