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Exotic Spectroscopy: "my" overview

a

• 2003: Discovery of X(3872) by Belle  started a new era 
in exotic spectroscopy.

MX = (3871.65 ± 0.06) MeV 
Γ = (1.19 ± 0.21) MeV

QUICK EXPERIMENTAL OVERVIEW 
THE QUEEN: X(3872)

• First observations as a product of B decays 
(BELLE, BES III, BABAR, …)

• Later, also found in prompt pp collisions 
(CDF, D0, LHCb, …)

• The X(3872) has very peculiar properties:

• This is NOT an ordinary charmonium!
• What is its nature?
• Are there any other particles like it?
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Above open charm threshold 
but very narrow
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violation!

Angelo Esposito — 4-Quark Interpretations of the XYZ Resonances Nuclear Physics Mini-Conference —  August 24th 2015 
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⇡

� in the data (black points) for 1.0 < m2

K

+
⇡

� < 1.8 GeV2

(K⇤(892), K⇤
2

(1430) veto region) compared with the fit with two, 0� and 1+ (solid-line red
histogram) and only one 1+ (dashed-line green histogram) Z� resonances. Individual Z� terms
(blue points) are shown for the fit with two Z� resonances.
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M = (4478±16) MeV 
Γ = (181±31) MeV 

JP=1+

• 2007: Observation  of Z+(4430) by Belle: the first 
charged tetraquark state. Not confirmed by BaBar in 
2009. Confirmed by LHCb in 2014

JPC = 1++
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• 2013: Observation of Zc+(3900) by Belle and BESIII 

Y (4260) ! (J/ ⇡+)⇡�

Zc
+(3900)
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S-wave D*D1(2420)            
thresh. effect
PRD76,114002
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Maiani et al. (arXiv:0708.3997) :  four-quark radial excitation of the 
1+  charged state (X(3872) partner)

M�(2S) �M�(1S) ⇥ 590 MeV ⇥MZ+ �MX

Z+(4430)� ⇥(2S)�+ should be seen in J/ψπ 
decay mode

Zc
+(3900)

M = (3887.1±2.6) MeV 
Γ = (28.4±2.6) MeV 

JP=1+
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• 2011: Observation  of Zb
+(10610) by Belle: the first beauty charged 

tetraquark state: JP=1+, M=(10,607±2) MeV, Γ=(18.4±2.4) MeV

MB⇤ +MB = 10, 605 MeV ) Z+
b (10610) $ Z+

c (3900)
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• 2011: Observation  of Zb
+(10610) by Belle: the first beauty charged 

tetraquark state: JP=1+, M=(10,607±2) MeV, Γ=(18.4±2.4) MeV
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Pc+(4450)

Pc+(4380)

• 2015: Observation of the first charmed pentaquark 
states, ccuud, by LHCb



Pc+(4450)

Pc+(4380)

• 2020: Observation of the X(cccc) by LHCb. 

• 2015: Observation of the first charmed pentaquark 
states, ccuud, by LHCb

T4c(6900)



• 2020: Observation of  Zcs-(3985) ➔ Ds-(*) D0(*) by BESIII. 
The first strange charged tetraquark state.

MZcs = (3982.5 ± 2.5) MeV 
Γ =(12.8 ± 4.7) MeV 

JP=1+



• 2020: Observation of  Zcs-(3985) ➔ Ds-(*) D0(*) by BESIII. 
The first strange charged tetraquark state.

• 07/2021: Observation of Tcc: a double charmed 
tetraquark by LHCb 

M = (3874.817±0.061) MeV 
Γ = (0.410±0.170) MeV 
JP=1+

MZcs = (3982.5 ± 2.5) MeV 
Γ =(12.8 ± 4.7) MeV 

JP=1+
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QCD Sum Rule

Fundamental Assumption: Principle of Duality

Π(q) = i

∫
d4x eiq.x ⟨0|T [j(x)j†(0)]|0⟩

Theoretical side Phenomenological side

Πphen = λ2 1

m2
S − q2

+ continuum, λ = ⟨0|j|S⟩

ΠOP E(q2) =

∫ ∞

m2
c

ds
ρ(s)

s − q2
, ρ(s) =

1

π
Im[ΠOP E ]

condensates up to dimension 8

⎧
⎪⎨

⎪⎩

quark condensate
gluon condensate
mixed condensates
four-quark condensate– p.14/35
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�phen
i � �OPE

i



�phen = ��2 1
m2 � q2

+ continuum

⇧OPE(q2) =

Z 1

smin

ds
⇢OPE(s)

s� q2
, ⇢OPE(s) =

1

⇡
Im[⇧OPE ]

λ⇒ coupling current-state
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m2 � q2

+ continuum

⇧OPE(q2) =

Z 1

smin

ds
⇢OPE(s)

s� q2
, ⇢OPE(s) =

1

⇡
Im[⇧OPE ]

λ⇒ coupling current-state

continuum =

∫ ∞

s0

ds
ρOP E(s)

s − q2

Borel Transform

{
eliminates subtraction terms
suppresses higher order condensates
increases importance pole contribution

λ2e−m2
S/M 2

=

∫ s0

m2
c

ds ρOP E(s) e−s/M 2

good Sum Rule ⇒ Borel window such that:

• pole contribution > continuum contribution

• converging OPE

–p.15/34
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the quark level the complex structure of the QCD vac-
uum leads us to employ the Wilson’s operator product
expansion (OPE) (69).

In QCD we only know how to work analitycally in the
perturbative regime. Therefore, the perturbative part of
Π(q) in Eq.(1) can be reliably calculated. However, this
does not yet imply that all important contributions to
the QCD of the sum rule have been taken into account.
The complete calculation has to include the effects due
to the fields of soft gluons and quarks populating the
QCD vacuum. A practical way to calculate the vacuum-
field contributions to the correlation function is through
a generalized Wilson OPE. To apply this method to the
correlation function (1), one has to expand the product
of two currents in a series of local operators:

Π(q) = i

∫

d4x eiq·x⟨0|T [j(x)j†(0)|0⟩ =
∑

n

Cn(Q2)Ôn ,

(2)
where the set {Ôn} includes all local gauge invariant
operators expressible in terms of the gluon fields and
the fields of light quarks. Eq. (2) is a concise form of
the Wilson OPE. The coefficients Cn(Q2) (Q2 = −q2),
by construction, include only the short-distance domain
and can, therefore, be evaluated perturbatively. Non-
perturbative long-distance effects are contained only in
the local operators. In this expasion, the operators are
ordered according to their dimension n. The lowest-
dimension operator with n = 0 is the unit operator as-
sociated with the perturbative contribution: C0(Q2) =
Πper(Q2), Ô0 = 1. The QCD vacuum fields are repre-
sented in (2) in the form of vacuum condensates. The
lowest dimension condensates are the quark condensate
of dimension three: Ô3 = ⟨q̄q⟩, and the gluon conden-
sate of dimension four: Ô4 = ⟨g2G2⟩. The contributions
of higher dimension condensates are suppressed by large
powers of Λ2

QCD/Q2, where 1/ΛQCD is the typical long-
distance scale. Therefore, even at intermediate values of
Q2 (∼ 1 GeV2), the expansion in Eq. (2) can be safely
truncated after a few terms.

The generic correlation function in Eq. (1) has a dis-
persion representation

Π(q2) = −
∫

ds
ρ(s)

q2 − s + iϵ
+ · · · , (3)

through its discontinuity, ρ(s), on the physical cut. The
dots in Eq. (3) represent subtraction terms.

B. The spectral density

The discontinuity can be written as the imaginary part
of the correlation function:

ρ(s) =
1

π
Im[Π(s)] . (4)

The evaluation of the spectral density (ρ(s)) is simpler
than the evaluation of the correlation function itself, and

the knownledge of ρ(s) allows one to recover the whole
function Π(q2) through the integral in Eq. (3).

The calculation of the phenomenological side proceeds
by inserting intermediate states for the hadron, H , of
interest. The current j (j†) is an operator that anni-
hilates (creates) all hadronic states that have the same
quantum numbers as j. Consequently, Π(q) contains in-
formation about all these hadronic states, including the
low mass hadron of interest. In order for the QCD sum
rule technique to be useful, one must parameterize ρ(s)
with a small number of parameters. The lowest reso-
nance is often fairly narrow, whereas higher-mass states
are broader. Therefore, one can parameterize the spec-
tral density as a single sharp pole representing the lowest
resonance of mass m, plus a smooth continuum repre-
senting higher mass states:

ρ(s) = λ2δ(s − m2) + ρcont(s) , (5)

where λ gives the coupling of the current with the low
mass hadron, H :

⟨0|j|H⟩ = λ. (6)

For simplicity, one often assumes that the continuum
contribution to the spectral density, ρcont(s) in Eq. (5),
vanishes bellow a certain continuum threshold s0. Above
this threshold, it is assumed to be given by the result
obtained with the OPE. Therefore, one uses the ansatz

ρcont(s) = ρOPE(s)Θ(s − s0) . (7)

C. The mass sum rule

Now one might attempt to match the two descriptions
of the correlator:

Πphen(Q2) ↔ ΠOPE(Q2) . (8)

However, such a matching is not yet practical. The OPE
side is only valid a sufficiently large spacelike Q2. On the
other hand, the phenomenological description is signifi-
cantly dominated by the lowest pole only for sufficiently
small Q2, or better yet, timelike q2 near the pole. To im-
prove the overlap between the two sides of the sum rule,
one applies the Borel transformation

BM2 [Π(q2)] = lim
−q2,n→∞
−q2/n=M2

(−q2)n+1

n!

(

d

dq2

)n

Π(q2) . (9)

Two important examples are:

BM2

[

q2n
]

= 0 , (10)

and

BM2

[

1

(m2 − q2)n

]

=
1

(n − 1)!

e−m2/M2

(M2)n−1
, (11)

valid at small Q2 valid at large Q2

 s0: continuum parameter



continuum =
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for n > 0. From these two results, (10) and (11), one can
see that the Borel transformation removes the subtrac-
tion terms in the dispersion relation, and exponentially
suppresses the contribution from excited resonances and
continuum states in the phenomenological side. In the
OPE side the Borel transformation suppresses the contri-
bution from higher dimension condensates by a factorial
term.

After making a Borel transform on both sides of the
sum rule, and transferring the continuum contribution to
the OPE side, the sum rule can be written as

λ2e−m2/M2

=

∫ s0

smin

ds e−s/M2

ρOPE(s) . (12)

If both sides of the sum rule were calculated to arbi-
trary high accuracy, the matching would be independent
of M2. In practice, however, both sides are represented
imperfectly. The hope is that there exists a range of M2,
called Borel window, in which the two sides have a good
overlap and information on the lowest resonance can be
extracted. In general, to determine the allowed Borel
window, one analyses the OPE convergence and the pole
contribution: the minimum value of the Borel mass is
fixed by considering the convergence of the OPE, and
the maximum value of the Borel mass is determined by
imposing the condition that the pole contribution must
be bigger than the continuum contribution.

In order to extract the mass m without worrying about
the value of the coupling λ, it is possible to take the
derivative of Eq. (12) with respect to 1/M2, and divide
the result by Eq. (12). This gives:

m2 =

∫ s0

smin
ds e−s/M2

s ρOPE(s)
∫ s0

smin
ds e−s/M2 ρOPE(s)

. (13)

This quantity has the advantage to be less sensitive to
the perturbative radiative corrections than the individual
sum rules. Therefore, we expect that our results obtained
to leading order in αs will be quite accurate.

D. Choice of currents

Mesonic currents for charmed mesons are given in Ta-
ble I.

TABLE I Currents for the D mesons
state symbol current JP

scalar meson D0 q̄c 0+

pseudoscalar meson D iq̄γ5c 0−

vector meson D∗ q̄γµc 1−

axial-vector meson D1 q̄γµγ5c 1+

From these currents we can construct molecular cur-
rents which can be eingenstates of charge conjugation C
and G-parity. Let us consider, as an example, a current

with JPC = 1++ for the molecular D0D∗0 system. It can
be written as a combination of two currents (70; 71):

j1
µ(x) = [ū(x)γ5c(x)][c̄(x)γµu(x)], (14)

and

j2
µ(x) = [ū(x)γµc(x)][c̄(x)γ5u(x)]. (15)

Since the charge conjugation transformation is defined
as: (q̄)C = −qT C−1 = qT C and (q)C = Cq̄T , we get

(j1
µ)C = −(c̄γ5u)(ūγµc) = −j2

µ, (16)

(j2
µ)C = −(c̄γµu)(ūγ5c) = −j1

µ. (17)

Therefore, the current

jµ(x) =
1√
2

(

j1
µ(x) − j2

µ(x)
)

, (18)

has positive C. However, this current is not a G-parity
eingenstate. The G-parity transformation is an isospin
rotation of the charge conjugated current:

(j1
µ)G = −(c̄γ5d)(d̄γµc), (19)

(j2
µ)G = −(c̄γµd)(d̄γ5c). (20)

In the case of a charged molecular D1D∗ current with
JP = 0−, it can also be written as a combination of two
currents:

j1 = (c̄γµγ5u)(d̄γµc), (21)

j2 = (c̄γµu)(d̄γµγ5c). (22)

The charge conjugation transformation in these currents
leads to

(j1)C = −(ūγµγ5c)(c̄γ
µd), (23)

(j2)C = −(ūγµc)(c̄γµγ5d), (24)

and the isospin rotation gives

(j1)G = (d̄γµγ5c)(c̄γ
µu) = j2, (25)

(j2)G = (d̄γµc)(c̄γµγ5u) = j1. (26)

Therefore, the current

j =
1√
2

(j1 + j2) , (27)

has positive G-parity.
In the case of tetraquark [cq][c̄q̄] currents, they can

be constructed in terms of color anti-symmetric diquark
states: εabc[qT

a CΓcb], where a, b, c are color indices of the
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for n > 0. From these two results, (10) and (11), one can
see that the Borel transformation removes the subtrac-
tion terms in the dispersion relation, and exponentially
suppresses the contribution from excited resonances and
continuum states in the phenomenological side. In the
OPE side the Borel transformation suppresses the contri-
bution from higher dimension condensates by a factorial
term.

After making a Borel transform on both sides of the
sum rule, and transferring the continuum contribution to
the OPE side, the sum rule can be written as

λ2e−m2/M2

=

∫ s0

smin

ds e−s/M2

ρOPE(s) . (12)

If both sides of the sum rule were calculated to arbi-
trary high accuracy, the matching would be independent
of M2. In practice, however, both sides are represented
imperfectly. The hope is that there exists a range of M2,
called Borel window, in which the two sides have a good
overlap and information on the lowest resonance can be
extracted. In general, to determine the allowed Borel
window, one analyses the OPE convergence and the pole
contribution: the minimum value of the Borel mass is
fixed by considering the convergence of the OPE, and
the maximum value of the Borel mass is determined by
imposing the condition that the pole contribution must
be bigger than the continuum contribution.

In order to extract the mass m without worrying about
the value of the coupling λ, it is possible to take the
derivative of Eq. (12) with respect to 1/M2, and divide
the result by Eq. (12). This gives:

m2 =

∫ s0

smin
ds e−s/M2

s ρOPE(s)
∫ s0

smin
ds e−s/M2 ρOPE(s)

. (13)

This quantity has the advantage to be less sensitive to
the perturbative radiative corrections than the individual
sum rules. Therefore, we expect that our results obtained
to leading order in αs will be quite accurate.

D. Choice of currents

Mesonic currents for charmed mesons are given in Ta-
ble I.

TABLE I Currents for the D mesons
state symbol current JP

scalar meson D0 q̄c 0+

pseudoscalar meson D iq̄γ5c 0−

vector meson D∗ q̄γµc 1−

axial-vector meson D1 q̄γµγ5c 1+

From these currents we can construct molecular cur-
rents which can be eingenstates of charge conjugation C
and G-parity. Let us consider, as an example, a current

with JPC = 1++ for the molecular D0D∗0 system. It can
be written as a combination of two currents (70; 71):

j1
µ(x) = [ū(x)γ5c(x)][c̄(x)γµu(x)], (14)

and

j2
µ(x) = [ū(x)γµc(x)][c̄(x)γ5u(x)]. (15)

Since the charge conjugation transformation is defined
as: (q̄)C = −qT C−1 = qT C and (q)C = Cq̄T , we get

(j1
µ)C = −(c̄γ5u)(ūγµc) = −j2

µ, (16)

(j2
µ)C = −(c̄γµu)(ūγ5c) = −j1

µ. (17)

Therefore, the current

jµ(x) =
1√
2

(

j1
µ(x) − j2

µ(x)
)

, (18)

has positive C. However, this current is not a G-parity
eingenstate. The G-parity transformation is an isospin
rotation of the charge conjugated current:

(j1
µ)G = −(c̄γ5d)(d̄γµc), (19)

(j2
µ)G = −(c̄γµd)(d̄γ5c). (20)

In the case of a charged molecular D1D∗ current with
JP = 0−, it can also be written as a combination of two
currents:

j1 = (c̄γµγ5u)(d̄γµc), (21)

j2 = (c̄γµu)(d̄γµγ5c). (22)

The charge conjugation transformation in these currents
leads to

(j1)C = −(ūγµγ5c)(c̄γ
µd), (23)

(j2)C = −(ūγµc)(c̄γµγ5d), (24)

and the isospin rotation gives

(j1)G = (d̄γµγ5c)(c̄γ
µu) = j2, (25)

(j2)G = (d̄γµc)(c̄γµγ5u) = j1. (26)

Therefore, the current

j =
1√
2

(j1 + j2) , (27)

has positive G-parity.
In the case of tetraquark [cq][c̄q̄] currents, they can

be constructed in terms of color anti-symmetric diquark
states: εabc[qT

a CΓcb], where a, b, c are color indices of the
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for n > 0. From these two results, (10) and (11), one can
see that the Borel transformation removes the subtrac-
tion terms in the dispersion relation, and exponentially
suppresses the contribution from excited resonances and
continuum states in the phenomenological side. In the
OPE side the Borel transformation suppresses the contri-
bution from higher dimension condensates by a factorial
term.

After making a Borel transform on both sides of the
sum rule, and transferring the continuum contribution to
the OPE side, the sum rule can be written as

λ2e−m2/M2

=

∫ s0

smin

ds e−s/M2

ρOPE(s) . (12)

If both sides of the sum rule were calculated to arbi-
trary high accuracy, the matching would be independent
of M2. In practice, however, both sides are represented
imperfectly. The hope is that there exists a range of M2,
called Borel window, in which the two sides have a good
overlap and information on the lowest resonance can be
extracted. In general, to determine the allowed Borel
window, one analyses the OPE convergence and the pole
contribution: the minimum value of the Borel mass is
fixed by considering the convergence of the OPE, and
the maximum value of the Borel mass is determined by
imposing the condition that the pole contribution must
be bigger than the continuum contribution.

In order to extract the mass m without worrying about
the value of the coupling λ, it is possible to take the
derivative of Eq. (12) with respect to 1/M2, and divide
the result by Eq. (12). This gives:

m2 =

∫ s0

smin
ds e−s/M2

s ρOPE(s)
∫ s0

smin
ds e−s/M2 ρOPE(s)

. (13)

This quantity has the advantage to be less sensitive to
the perturbative radiative corrections than the individual
sum rules. Therefore, we expect that our results obtained
to leading order in αs will be quite accurate.

D. Choice of currents

Mesonic currents for charmed mesons are given in Ta-
ble I.

TABLE I Currents for the D mesons
state symbol current JP

scalar meson D0 q̄c 0+

pseudoscalar meson D iq̄γ5c 0−

vector meson D∗ q̄γµc 1−

axial-vector meson D1 q̄γµγ5c 1+

From these currents we can construct molecular cur-
rents which can be eingenstates of charge conjugation C
and G-parity. Let us consider, as an example, a current

with JPC = 1++ for the molecular D0D∗0 system. It can
be written as a combination of two currents (70; 71):

j1
µ(x) = [ū(x)γ5c(x)][c̄(x)γµu(x)], (14)

and

j2
µ(x) = [ū(x)γµc(x)][c̄(x)γ5u(x)]. (15)

Since the charge conjugation transformation is defined
as: (q̄)C = −qT C−1 = qT C and (q)C = Cq̄T , we get

(j1
µ)C = −(c̄γ5u)(ūγµc) = −j2

µ, (16)

(j2
µ)C = −(c̄γµu)(ūγ5c) = −j1

µ. (17)

Therefore, the current

jµ(x) =
1√
2

(

j1
µ(x) − j2

µ(x)
)

, (18)

has positive C. However, this current is not a G-parity
eingenstate. The G-parity transformation is an isospin
rotation of the charge conjugated current:

(j1
µ)G = −(c̄γ5d)(d̄γµc), (19)

(j2
µ)G = −(c̄γµd)(d̄γ5c). (20)

In the case of a charged molecular D1D∗ current with
JP = 0−, it can also be written as a combination of two
currents:

j1 = (c̄γµγ5u)(d̄γµc), (21)

j2 = (c̄γµu)(d̄γµγ5c). (22)

The charge conjugation transformation in these currents
leads to

(j1)C = −(ūγµγ5c)(c̄γ
µd), (23)

(j2)C = −(ūγµc)(c̄γµγ5d), (24)

and the isospin rotation gives

(j1)G = (d̄γµγ5c)(c̄γ
µu) = j2, (25)

(j2)G = (d̄γµc)(c̄γµγ5u) = j1. (26)

Therefore, the current

j =
1√
2

(j1 + j2) , (27)

has positive G-parity.
In the case of tetraquark [cq][c̄q̄] currents, they can

be constructed in terms of color anti-symmetric diquark
states: εabc[qT

a CΓcb], where a, b, c are color indices of the
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for n > 0. From these two results, (10) and (11), one can
see that the Borel transformation removes the subtrac-
tion terms in the dispersion relation, and exponentially
suppresses the contribution from excited resonances and
continuum states in the phenomenological side. In the
OPE side the Borel transformation suppresses the contri-
bution from higher dimension condensates by a factorial
term.

After making a Borel transform on both sides of the
sum rule, and transferring the continuum contribution to
the OPE side, the sum rule can be written as

λ2e−m2/M2

=

∫ s0

smin

ds e−s/M2

ρOPE(s) . (12)

If both sides of the sum rule were calculated to arbi-
trary high accuracy, the matching would be independent
of M2. In practice, however, both sides are represented
imperfectly. The hope is that there exists a range of M2,
called Borel window, in which the two sides have a good
overlap and information on the lowest resonance can be
extracted. In general, to determine the allowed Borel
window, one analyses the OPE convergence and the pole
contribution: the minimum value of the Borel mass is
fixed by considering the convergence of the OPE, and
the maximum value of the Borel mass is determined by
imposing the condition that the pole contribution must
be bigger than the continuum contribution.

In order to extract the mass m without worrying about
the value of the coupling λ, it is possible to take the
derivative of Eq. (12) with respect to 1/M2, and divide
the result by Eq. (12). This gives:

m2 =

∫ s0

smin
ds e−s/M2

s ρOPE(s)
∫ s0

smin
ds e−s/M2 ρOPE(s)

. (13)

This quantity has the advantage to be less sensitive to
the perturbative radiative corrections than the individual
sum rules. Therefore, we expect that our results obtained
to leading order in αs will be quite accurate.

D. Choice of currents

Mesonic currents for charmed mesons are given in Ta-
ble I.

TABLE I Currents for the D mesons
state symbol current JP

scalar meson D0 q̄c 0+

pseudoscalar meson D iq̄γ5c 0−

vector meson D∗ q̄γµc 1−

axial-vector meson D1 q̄γµγ5c 1+

From these currents we can construct molecular cur-
rents which can be eingenstates of charge conjugation C
and G-parity. Let us consider, as an example, a current

with JPC = 1++ for the molecular D0D∗0 system. It can
be written as a combination of two currents (70; 71):

j1
µ(x) = [ū(x)γ5c(x)][c̄(x)γµu(x)], (14)

and

j2
µ(x) = [ū(x)γµc(x)][c̄(x)γ5u(x)]. (15)

Since the charge conjugation transformation is defined
as: (q̄)C = −qT C−1 = qT C and (q)C = Cq̄T , we get

(j1
µ)C = −(c̄γ5u)(ūγµc) = −j2

µ, (16)

(j2
µ)C = −(c̄γµu)(ūγ5c) = −j1

µ. (17)

Therefore, the current

jµ(x) =
1√
2

(

j1
µ(x) − j2

µ(x)
)

, (18)

has positive C. However, this current is not a G-parity
eingenstate. The G-parity transformation is an isospin
rotation of the charge conjugated current:

(j1
µ)G = −(c̄γ5d)(d̄γµc), (19)

(j2
µ)G = −(c̄γµd)(d̄γ5c). (20)

In the case of a charged molecular D1D∗ current with
JP = 0−, it can also be written as a combination of two
currents:

j1 = (c̄γµγ5u)(d̄γµc), (21)

j2 = (c̄γµu)(d̄γµγ5c). (22)

The charge conjugation transformation in these currents
leads to

(j1)C = −(ūγµγ5c)(c̄γ
µd), (23)

(j2)C = −(ūγµc)(c̄γµγ5d), (24)

and the isospin rotation gives

(j1)G = (d̄γµγ5c)(c̄γ
µu) = j2, (25)

(j2)G = (d̄γµc)(c̄γµγ5u) = j1. (26)

Therefore, the current

j =
1√
2

(j1 + j2) , (27)

has positive G-parity.
In the case of tetraquark [cq][c̄q̄] currents, they can

be constructed in terms of color anti-symmetric diquark
states: εabc[qT

a CΓcb], where a, b, c are color indices of the
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for n > 0. From these two results, (10) and (11), one can
see that the Borel transformation removes the subtrac-
tion terms in the dispersion relation, and exponentially
suppresses the contribution from excited resonances and
continuum states in the phenomenological side. In the
OPE side the Borel transformation suppresses the contri-
bution from higher dimension condensates by a factorial
term.

After making a Borel transform on both sides of the
sum rule, and transferring the continuum contribution to
the OPE side, the sum rule can be written as

λ2e−m2/M2

=

∫ s0

smin

ds e−s/M2

ρOPE(s) . (12)

If both sides of the sum rule were calculated to arbi-
trary high accuracy, the matching would be independent
of M2. In practice, however, both sides are represented
imperfectly. The hope is that there exists a range of M2,
called Borel window, in which the two sides have a good
overlap and information on the lowest resonance can be
extracted. In general, to determine the allowed Borel
window, one analyses the OPE convergence and the pole
contribution: the minimum value of the Borel mass is
fixed by considering the convergence of the OPE, and
the maximum value of the Borel mass is determined by
imposing the condition that the pole contribution must
be bigger than the continuum contribution.

In order to extract the mass m without worrying about
the value of the coupling λ, it is possible to take the
derivative of Eq. (12) with respect to 1/M2, and divide
the result by Eq. (12). This gives:

m2 =

∫ s0

smin
ds e−s/M2

s ρOPE(s)
∫ s0

smin
ds e−s/M2 ρOPE(s)

. (13)

This quantity has the advantage to be less sensitive to
the perturbative radiative corrections than the individual
sum rules. Therefore, we expect that our results obtained
to leading order in αs will be quite accurate.

D. Choice of currents

Mesonic currents for charmed mesons are given in Ta-
ble I.

TABLE I Currents for the D mesons
state symbol current JP

scalar meson D0 q̄c 0+

pseudoscalar meson D iq̄γ5c 0−

vector meson D∗ q̄γµc 1−

axial-vector meson D1 q̄γµγ5c 1+

From these currents we can construct molecular cur-
rents which can be eingenstates of charge conjugation C
and G-parity. Let us consider, as an example, a current

with JPC = 1++ for the molecular D0D∗0 system. It can
be written as a combination of two currents (70; 71):

j1
µ(x) = [ū(x)γ5c(x)][c̄(x)γµu(x)], (14)

and

j2
µ(x) = [ū(x)γµc(x)][c̄(x)γ5u(x)]. (15)

Since the charge conjugation transformation is defined
as: (q̄)C = −qT C−1 = qT C and (q)C = Cq̄T , we get

(j1
µ)C = −(c̄γ5u)(ūγµc) = −j2

µ, (16)

(j2
µ)C = −(c̄γµu)(ūγ5c) = −j1

µ. (17)

Therefore, the current

jµ(x) =
1√
2

(

j1
µ(x) − j2

µ(x)
)

, (18)

has positive C. However, this current is not a G-parity
eingenstate. The G-parity transformation is an isospin
rotation of the charge conjugated current:

(j1
µ)G = −(c̄γ5d)(d̄γµc), (19)

(j2
µ)G = −(c̄γµd)(d̄γ5c). (20)

In the case of a charged molecular D1D∗ current with
JP = 0−, it can also be written as a combination of two
currents:

j1 = (c̄γµγ5u)(d̄γµc), (21)

j2 = (c̄γµu)(d̄γµγ5c). (22)

The charge conjugation transformation in these currents
leads to

(j1)C = −(ūγµγ5c)(c̄γ
µd), (23)

(j2)C = −(ūγµc)(c̄γµγ5d), (24)

and the isospin rotation gives

(j1)G = (d̄γµγ5c)(c̄γ
µu) = j2, (25)

(j2)G = (d̄γµc)(c̄γµγ5u) = j1. (26)

Therefore, the current

j =
1√
2

(j1 + j2) , (27)

has positive G-parity.
In the case of tetraquark [cq][c̄q̄] currents, they can

be constructed in terms of color anti-symmetric diquark
states: εabc[qT

a CΓcb], where a, b, c are color indices of the

m2 =

� s0
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for n > 0. From these two results, (10) and (11), one can
see that the Borel transformation removes the subtrac-
tion terms in the dispersion relation, and exponentially
suppresses the contribution from excited resonances and
continuum states in the phenomenological side. In the
OPE side the Borel transformation suppresses the contri-
bution from higher dimension condensates by a factorial
term.

After making a Borel transform on both sides of the
sum rule, and transferring the continuum contribution to
the OPE side, the sum rule can be written as

λ2e−m2/M2

=

∫ s0

smin

ds e−s/M2

ρOPE(s) . (12)

If both sides of the sum rule were calculated to arbi-
trary high accuracy, the matching would be independent
of M2. In practice, however, both sides are represented
imperfectly. The hope is that there exists a range of M2,
called Borel window, in which the two sides have a good
overlap and information on the lowest resonance can be
extracted. In general, to determine the allowed Borel
window, one analyses the OPE convergence and the pole
contribution: the minimum value of the Borel mass is
fixed by considering the convergence of the OPE, and
the maximum value of the Borel mass is determined by
imposing the condition that the pole contribution must
be bigger than the continuum contribution.

In order to extract the mass m without worrying about
the value of the coupling λ, it is possible to take the
derivative of Eq. (12) with respect to 1/M2, and divide
the result by Eq. (12). This gives:

m2 =

∫ s0

smin
ds e−s/M2

s ρOPE(s)
∫ s0

smin
ds e−s/M2 ρOPE(s)

. (13)

This quantity has the advantage to be less sensitive to
the perturbative radiative corrections than the individual
sum rules. Therefore, we expect that our results obtained
to leading order in αs will be quite accurate.

D. Choice of currents

Mesonic currents for charmed mesons are given in Ta-
ble I.

TABLE I Currents for the D mesons
state symbol current JP

scalar meson D0 q̄c 0+

pseudoscalar meson D iq̄γ5c 0−

vector meson D∗ q̄γµc 1−

axial-vector meson D1 q̄γµγ5c 1+

From these currents we can construct molecular cur-
rents which can be eingenstates of charge conjugation C
and G-parity. Let us consider, as an example, a current

with JPC = 1++ for the molecular D0D∗0 system. It can
be written as a combination of two currents (70; 71):

j1
µ(x) = [ū(x)γ5c(x)][c̄(x)γµu(x)], (14)

and

j2
µ(x) = [ū(x)γµc(x)][c̄(x)γ5u(x)]. (15)

Since the charge conjugation transformation is defined
as: (q̄)C = −qT C−1 = qT C and (q)C = Cq̄T , we get

(j1
µ)C = −(c̄γ5u)(ūγµc) = −j2

µ, (16)

(j2
µ)C = −(c̄γµu)(ūγ5c) = −j1

µ. (17)

Therefore, the current

jµ(x) =
1√
2

(

j1
µ(x) − j2

µ(x)
)

, (18)

has positive C. However, this current is not a G-parity
eingenstate. The G-parity transformation is an isospin
rotation of the charge conjugated current:

(j1
µ)G = −(c̄γ5d)(d̄γµc), (19)

(j2
µ)G = −(c̄γµd)(d̄γ5c). (20)

In the case of a charged molecular D1D∗ current with
JP = 0−, it can also be written as a combination of two
currents:

j1 = (c̄γµγ5u)(d̄γµc), (21)

j2 = (c̄γµu)(d̄γµγ5c). (22)

The charge conjugation transformation in these currents
leads to

(j1)C = −(ūγµγ5c)(c̄γ
µd), (23)

(j2)C = −(ūγµc)(c̄γµγ5d), (24)

and the isospin rotation gives

(j1)G = (d̄γµγ5c)(c̄γ
µu) = j2, (25)

(j2)G = (d̄γµc)(c̄γµγ5u) = j1. (26)

Therefore, the current

j =
1√
2

(j1 + j2) , (27)

has positive G-parity.
In the case of tetraquark [cq][c̄q̄] currents, they can

be constructed in terms of color anti-symmetric diquark
states: εabc[qT

a CΓcb], where a, b, c are color indices of the

2

was used to study the light scalar mesons [22, 23, 24, 25] and the D+
sJ(2317) meson [26, 27], considered as

four-quark states and a good agreement with the experimental masses was obtained. However, the tests
were not decisive as the usual quark–antiquark assignments also provide predictions consistent with data
and more importantly with chiral symmetry expectations [19, 23, 28, 29]. In the four-quark scenario,
scalar mesons can be considered as S-wave bound states of diquark-antidiquark pairs, where the diquark
was taken to be a spin zero color anti-triplet. Here we follow ref. [1], and consider the X(3872) as the
JPC = 1++ state with the symmetric spin distribution: [cq]S=1[c̄q̄]S=0 + [cq]S=0[c̄q̄]S=1. Therefore, the
corresponding lowest-dimension interpolating operator for describing Xq is given by:

jµ =
iϵabcϵdec√

2
[(qT

a Cγ5cb)(q̄dγµCc̄T
e ) + (qT

a Cγµcb)(q̄dγ5Cc̄T
e )] , (1)

where a, b, c, ... are color indices, C is the charge conjugation matrix and q denotes a u or d quark.
In general, one should consider all possible combinations of different 1++ four-quark operators, similar

to e.g. done in [31] for the 0++ light mesons and consider their mixing under renormalizations [32]
from which one can form renormalization group invariant (RGI) physical currents. However, we might
expect that, working with a particular choice of current given above will provide a general feature of the
four-quark model predictions for the X(3872), provided that we can work with quantities less affected by
radiative corrections and where the OPE converges quite well 1 As pointed out in [1], isospin forbidden
decays are possible if X is not a pure isospin state. Pure isospin states are:

X(I = 0) =
Xu + Xd√

2
, and X(I = 1) =

Xu − Xd√
2

. (2)

If the physical states are just the mass eigenstates Xu or Xd, maximal isospin violations are possible.
Deviations from these two ideal situations are described by a mixing angle between Xu and Xd [1]:

Xl = Xu cos θ + Xd sin θ,

Xh = −Xu sin θ + Xd cos θ. (3)

In ref. [1], by considering the X decays into two and three pions, a mixing angle θ ∼ 20◦ is deduced
and a mass difference

m(Xh) − m(Xl) = (8 ± 3)MeV. (4)

In this work, we want to test in which conditions the results of the sum rules are compatible with the
above predictions.

II. THE QCD EXPRESSION OF THE TWO-POINT CORRELATOR

The SR are constructed from the two-point correlation function

Πµν(q) = i

∫

d4x eiq.x⟨0|T [jµ(x)j†ν(0)]|0⟩ = −Π1(q
2)(gµν −

qµqν

q2
) + Π0(q

2)
qµqν

q2
. (5)

Since the axial vector current is not conserved, the two functions, Π1 and Π0, appearing in Eq. (5) are
independent and have respectively the quantum numbers of the spin 1 and 0 mesons.

The fundamental assumption of the sum rules approach is the principle of duality. Specifically, we
assume that there is an interval over which the correlation function may be equivalently described at both
the quark and the hadron levels. Therefore, on the one hand, we calculate the correlation function at the
quark level in terms of quark and gluon fields. On the other hand, the correlation function is calculated
at the hadronic level introducing hadron characteristics such as masses and coupling constants. At the

1 In the well-known case of baryon sum rules, a simplest choice of operator [33] and a more general choice [34] have been
given in the literature. Though technically apparently different, mainly for the region of convergence of the OPE, the
two choices of interpolating currents have provided the same predictions for the proton mass and mixed condensate but
only differs for values of higher dimension four-quark condensates.
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where the integration limits are given by αmin = (1 −
√

1 − 4m2
c/s)/2, αmax = (1 +

√

1 − 4m2
c/s)/2 and

(βmin = αm2
c)/(sα − m2

c). We have also included the dominant contributions from the dimension-five
condensates:

ρmix(s) =
mc⟨q̄gσ.Gq⟩

26π4

αmax
∫

αmin

dα

[

−
2

α
(m2

c − α(1 − α)s) +

1−α
∫

βmin

dβ
[

(α + β)m2
c − αβs

]

(

1

α
+

α + β

β2

) ]

,(12)

where the contribution of dimension-six condensates ⟨g3G3⟩ is neglected, since assumed to be suppressed
by the loop factor 1/16π2. The usual estimate ⟨g3G3⟩ ≃ 1GeV2⟨αsG2⟩ [19] would deserve to be checked
in more detail. We have included the contribution of the dimension-six four-quark condensate:

ρ⟨q̄q⟩2(s) =
m2

c⟨q̄q⟩2

12π2

√

s − 4m2
c

s
, (13)

and (for completeness) a part of the dimension-8 condensate contributions 3:

Πmix⟨q̄q⟩
1 (M2) = −

m2
c⟨q̄gσ.Gq⟩⟨q̄q⟩

24π2

∫ 1

0

dα

[

1 +
m2

c

α(1 − α)M2
−

1

2(1 − α)

]

exp

[

−
m2

c

α(1 − α)M2

]

. (14)

III. LSR PREDICTIONS OF MX
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FIG. 1: The OPE convergence in the region 1.6 ≤ M2 ≤ 2.8 GeV2 for s1/2

0 = 4.17 GeV. We start with the
perturbative contribution (plus a very small mq contribution) and each subsequent line represents the addition
of one extra condensate dimension in the expansion.

In order to extract the mass MX without worrying about the value of the decay constant fX , we take
the derivative of Eq. (9) with respect to 1/M2, divide the result by Eq. (9) and obtain:

M2
X =

∫ s0

4m2
c
ds e−s/M2

s ρ(s)
∫ s0

4m2
c
ds e−s/M2 ρ(s)

. (15)

3 We should note that a complete evaluation of these contributions require more involved analysis including a non-trivial
choice of the factorization assumption basis [38]. We wish that we can perform this analysis in the future.
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2
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]
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for n > 0. From these two results, (10) and (11), one can
see that the Borel transformation removes the subtrac-
tion terms in the dispersion relation, and exponentially
suppresses the contribution from excited resonances and
continuum states in the phenomenological side. In the
OPE side the Borel transformation suppresses the contri-
bution from higher dimension condensates by a factorial
term.

After making a Borel transform on both sides of the
sum rule, and transferring the continuum contribution to
the OPE side, the sum rule can be written as

λ2e−m2/M2

=

∫ s0

smin

ds e−s/M2

ρOPE(s) . (12)

If both sides of the sum rule were calculated to arbi-
trary high accuracy, the matching would be independent
of M2. In practice, however, both sides are represented
imperfectly. The hope is that there exists a range of M2,
called Borel window, in which the two sides have a good
overlap and information on the lowest resonance can be
extracted. In general, to determine the allowed Borel
window, one analyses the OPE convergence and the pole
contribution: the minimum value of the Borel mass is
fixed by considering the convergence of the OPE, and
the maximum value of the Borel mass is determined by
imposing the condition that the pole contribution must
be bigger than the continuum contribution.

In order to extract the mass m without worrying about
the value of the coupling λ, it is possible to take the
derivative of Eq. (12) with respect to 1/M2, and divide
the result by Eq. (12). This gives:

m2 =

∫ s0

smin
ds e−s/M2

s ρOPE(s)
∫ s0

smin
ds e−s/M2 ρOPE(s)

. (13)

This quantity has the advantage to be less sensitive to
the perturbative radiative corrections than the individual
sum rules. Therefore, we expect that our results obtained
to leading order in αs will be quite accurate.

D. Choice of currents

Mesonic currents for charmed mesons are given in Ta-
ble I.

TABLE I Currents for the D mesons
state symbol current JP

scalar meson D0 q̄c 0+

pseudoscalar meson D iq̄γ5c 0−

vector meson D∗ q̄γµc 1−

axial-vector meson D1 q̄γµγ5c 1+

From these currents we can construct molecular cur-
rents which can be eingenstates of charge conjugation C
and G-parity. Let us consider, as an example, a current

with JPC = 1++ for the molecular D0D∗0 system. It can
be written as a combination of two currents (70; 71):

j1
µ(x) = [ū(x)γ5c(x)][c̄(x)γµu(x)], (14)

and

j2
µ(x) = [ū(x)γµc(x)][c̄(x)γ5u(x)]. (15)

Since the charge conjugation transformation is defined
as: (q̄)C = −qT C−1 = qT C and (q)C = Cq̄T , we get

(j1
µ)C = −(c̄γ5u)(ūγµc) = −j2

µ, (16)

(j2
µ)C = −(c̄γµu)(ūγ5c) = −j1

µ. (17)

Therefore, the current

jµ(x) =
1√
2

(

j1
µ(x) − j2

µ(x)
)

, (18)

has positive C. However, this current is not a G-parity
eingenstate. The G-parity transformation is an isospin
rotation of the charge conjugated current:

(j1
µ)G = −(c̄γ5d)(d̄γµc), (19)

(j2
µ)G = −(c̄γµd)(d̄γ5c). (20)

In the case of a charged molecular D1D∗ current with
JP = 0−, it can also be written as a combination of two
currents:

j1 = (c̄γµγ5u)(d̄γµc), (21)

j2 = (c̄γµu)(d̄γµγ5c). (22)

The charge conjugation transformation in these currents
leads to

(j1)C = −(ūγµγ5c)(c̄γ
µd), (23)

(j2)C = −(ūγµc)(c̄γµγ5d), (24)

and the isospin rotation gives

(j1)G = (d̄γµγ5c)(c̄γ
µu) = j2, (25)

(j2)G = (d̄γµc)(c̄γµγ5u) = j1. (26)

Therefore, the current

j =
1√
2

(j1 + j2) , (27)

has positive G-parity.
In the case of tetraquark [cq][c̄q̄] currents, they can

be constructed in terms of color anti-symmetric diquark
states: εabc[qT

a CΓcb], where a, b, c are color indices of the

2

was used to study the light scalar mesons [22, 23, 24, 25] and the D+
sJ(2317) meson [26, 27], considered as

four-quark states and a good agreement with the experimental masses was obtained. However, the tests
were not decisive as the usual quark–antiquark assignments also provide predictions consistent with data
and more importantly with chiral symmetry expectations [19, 23, 28, 29]. In the four-quark scenario,
scalar mesons can be considered as S-wave bound states of diquark-antidiquark pairs, where the diquark
was taken to be a spin zero color anti-triplet. Here we follow ref. [1], and consider the X(3872) as the
JPC = 1++ state with the symmetric spin distribution: [cq]S=1[c̄q̄]S=0 + [cq]S=0[c̄q̄]S=1. Therefore, the
corresponding lowest-dimension interpolating operator for describing Xq is given by:

jµ =
iϵabcϵdec√

2
[(qT

a Cγ5cb)(q̄dγµCc̄T
e ) + (qT

a Cγµcb)(q̄dγ5Cc̄T
e )] , (1)

where a, b, c, ... are color indices, C is the charge conjugation matrix and q denotes a u or d quark.
In general, one should consider all possible combinations of different 1++ four-quark operators, similar

to e.g. done in [31] for the 0++ light mesons and consider their mixing under renormalizations [32]
from which one can form renormalization group invariant (RGI) physical currents. However, we might
expect that, working with a particular choice of current given above will provide a general feature of the
four-quark model predictions for the X(3872), provided that we can work with quantities less affected by
radiative corrections and where the OPE converges quite well 1 As pointed out in [1], isospin forbidden
decays are possible if X is not a pure isospin state. Pure isospin states are:

X(I = 0) =
Xu + Xd√

2
, and X(I = 1) =

Xu − Xd√
2

. (2)

If the physical states are just the mass eigenstates Xu or Xd, maximal isospin violations are possible.
Deviations from these two ideal situations are described by a mixing angle between Xu and Xd [1]:

Xl = Xu cos θ + Xd sin θ,

Xh = −Xu sin θ + Xd cos θ. (3)

In ref. [1], by considering the X decays into two and three pions, a mixing angle θ ∼ 20◦ is deduced
and a mass difference

m(Xh) − m(Xl) = (8 ± 3)MeV. (4)

In this work, we want to test in which conditions the results of the sum rules are compatible with the
above predictions.

II. THE QCD EXPRESSION OF THE TWO-POINT CORRELATOR

The SR are constructed from the two-point correlation function

Πµν(q) = i

∫

d4x eiq.x⟨0|T [jµ(x)j†ν(0)]|0⟩ = −Π1(q
2)(gµν −

qµqν

q2
) + Π0(q

2)
qµqν

q2
. (5)

Since the axial vector current is not conserved, the two functions, Π1 and Π0, appearing in Eq. (5) are
independent and have respectively the quantum numbers of the spin 1 and 0 mesons.

The fundamental assumption of the sum rules approach is the principle of duality. Specifically, we
assume that there is an interval over which the correlation function may be equivalently described at both
the quark and the hadron levels. Therefore, on the one hand, we calculate the correlation function at the
quark level in terms of quark and gluon fields. On the other hand, the correlation function is calculated
at the hadronic level introducing hadron characteristics such as masses and coupling constants. At the

1 In the well-known case of baryon sum rules, a simplest choice of operator [33] and a more general choice [34] have been
given in the literature. Though technically apparently different, mainly for the region of convergence of the OPE, the
two choices of interpolating currents have provided the same predictions for the proton mass and mixed condensate but
only differs for values of higher dimension four-quark condensates.
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where the integration limits are given by αmin = (1 −
√

1 − 4m2
c/s)/2, αmax = (1 +

√

1 − 4m2
c/s)/2 and

(βmin = αm2
c)/(sα − m2

c). We have also included the dominant contributions from the dimension-five
condensates:

ρmix(s) =
mc⟨q̄gσ.Gq⟩

26π4

αmax
∫

αmin

dα

[

−
2

α
(m2

c − α(1 − α)s) +

1−α
∫

βmin

dβ
[

(α + β)m2
c − αβs

]

(

1

α
+

α + β

β2

) ]

,(12)

where the contribution of dimension-six condensates ⟨g3G3⟩ is neglected, since assumed to be suppressed
by the loop factor 1/16π2. The usual estimate ⟨g3G3⟩ ≃ 1GeV2⟨αsG2⟩ [19] would deserve to be checked
in more detail. We have included the contribution of the dimension-six four-quark condensate:

ρ⟨q̄q⟩2(s) =
m2

c⟨q̄q⟩2

12π2

√

s − 4m2
c

s
, (13)

and (for completeness) a part of the dimension-8 condensate contributions 3:

Πmix⟨q̄q⟩
1 (M2) = −

m2
c⟨q̄gσ.Gq⟩⟨q̄q⟩

24π2

∫ 1

0

dα

[

1 +
m2

c

α(1 − α)M2
−

1

2(1 − α)

]

exp

[

−
m2

c

α(1 − α)M2

]

. (14)
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1.6 1.8 2.0 2.2 2.4 2.6 2.8

1

2

3

4

5
s0

1/2 = 4.17 GeV

 Pert + mq

 + <qq>

 + <g2G2> + mq<qq>

 + m0

2<qq>

 + <qq>2

 + m0

2<qq>2

C
on

de
ns

at
e/

R
H

S

M2 (GeV 2)

FIG. 1: The OPE convergence in the region 1.6 ≤ M2 ≤ 2.8 GeV2 for s1/2

0 = 4.17 GeV. We start with the
perturbative contribution (plus a very small mq contribution) and each subsequent line represents the addition
of one extra condensate dimension in the expansion.

In order to extract the mass MX without worrying about the value of the decay constant fX , we take
the derivative of Eq. (9) with respect to 1/M2, divide the result by Eq. (9) and obtain:

M2
X =

∫ s0

4m2
c
ds e−s/M2

s ρ(s)
∫ s0

4m2
c
ds e−s/M2 ρ(s)

. (15)

3 We should note that a complete evaluation of these contributions require more involved analysis including a non-trivial
choice of the factorization assumption basis [38]. We wish that we can perform this analysis in the future.

QCD sum rules calculation for X(3872)

jX
µ =

iϵabcϵdec√
2

[
(qT

a Cγ5cb)(q̄dγµCc̄T
e )+(qT

a Cγµcb)(q̄dγ5Cc̄T
e )

]
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for n > 0. From these two results, (10) and (11), one can
see that the Borel transformation removes the subtrac-
tion terms in the dispersion relation, and exponentially
suppresses the contribution from excited resonances and
continuum states in the phenomenological side. In the
OPE side the Borel transformation suppresses the contri-
bution from higher dimension condensates by a factorial
term.

After making a Borel transform on both sides of the
sum rule, and transferring the continuum contribution to
the OPE side, the sum rule can be written as

λ2e−m2/M2

=

∫ s0

smin

ds e−s/M2

ρOPE(s) . (12)

If both sides of the sum rule were calculated to arbi-
trary high accuracy, the matching would be independent
of M2. In practice, however, both sides are represented
imperfectly. The hope is that there exists a range of M2,
called Borel window, in which the two sides have a good
overlap and information on the lowest resonance can be
extracted. In general, to determine the allowed Borel
window, one analyses the OPE convergence and the pole
contribution: the minimum value of the Borel mass is
fixed by considering the convergence of the OPE, and
the maximum value of the Borel mass is determined by
imposing the condition that the pole contribution must
be bigger than the continuum contribution.

In order to extract the mass m without worrying about
the value of the coupling λ, it is possible to take the
derivative of Eq. (12) with respect to 1/M2, and divide
the result by Eq. (12). This gives:

m2 =

∫ s0

smin
ds e−s/M2

s ρOPE(s)
∫ s0

smin
ds e−s/M2 ρOPE(s)

. (13)

This quantity has the advantage to be less sensitive to
the perturbative radiative corrections than the individual
sum rules. Therefore, we expect that our results obtained
to leading order in αs will be quite accurate.

D. Choice of currents

Mesonic currents for charmed mesons are given in Ta-
ble I.

TABLE I Currents for the D mesons
state symbol current JP

scalar meson D0 q̄c 0+

pseudoscalar meson D iq̄γ5c 0−

vector meson D∗ q̄γµc 1−

axial-vector meson D1 q̄γµγ5c 1+

From these currents we can construct molecular cur-
rents which can be eingenstates of charge conjugation C
and G-parity. Let us consider, as an example, a current

with JPC = 1++ for the molecular D0D∗0 system. It can
be written as a combination of two currents (70; 71):

j1
µ(x) = [ū(x)γ5c(x)][c̄(x)γµu(x)], (14)

and

j2
µ(x) = [ū(x)γµc(x)][c̄(x)γ5u(x)]. (15)

Since the charge conjugation transformation is defined
as: (q̄)C = −qT C−1 = qT C and (q)C = Cq̄T , we get

(j1
µ)C = −(c̄γ5u)(ūγµc) = −j2

µ, (16)

(j2
µ)C = −(c̄γµu)(ūγ5c) = −j1

µ. (17)

Therefore, the current

jµ(x) =
1√
2

(

j1
µ(x) − j2

µ(x)
)

, (18)

has positive C. However, this current is not a G-parity
eingenstate. The G-parity transformation is an isospin
rotation of the charge conjugated current:

(j1
µ)G = −(c̄γ5d)(d̄γµc), (19)

(j2
µ)G = −(c̄γµd)(d̄γ5c). (20)

In the case of a charged molecular D1D∗ current with
JP = 0−, it can also be written as a combination of two
currents:

j1 = (c̄γµγ5u)(d̄γµc), (21)

j2 = (c̄γµu)(d̄γµγ5c). (22)

The charge conjugation transformation in these currents
leads to

(j1)C = −(ūγµγ5c)(c̄γ
µd), (23)

(j2)C = −(ūγµc)(c̄γµγ5d), (24)

and the isospin rotation gives

(j1)G = (d̄γµγ5c)(c̄γ
µu) = j2, (25)

(j2)G = (d̄γµc)(c̄γµγ5u) = j1. (26)

Therefore, the current

j =
1√
2

(j1 + j2) , (27)

has positive G-parity.
In the case of tetraquark [cq][c̄q̄] currents, they can

be constructed in terms of color anti-symmetric diquark
states: εabc[qT

a CΓcb], where a, b, c are color indices of the

2

was used to study the light scalar mesons [22, 23, 24, 25] and the D+
sJ(2317) meson [26, 27], considered as

four-quark states and a good agreement with the experimental masses was obtained. However, the tests
were not decisive as the usual quark–antiquark assignments also provide predictions consistent with data
and more importantly with chiral symmetry expectations [19, 23, 28, 29]. In the four-quark scenario,
scalar mesons can be considered as S-wave bound states of diquark-antidiquark pairs, where the diquark
was taken to be a spin zero color anti-triplet. Here we follow ref. [1], and consider the X(3872) as the
JPC = 1++ state with the symmetric spin distribution: [cq]S=1[c̄q̄]S=0 + [cq]S=0[c̄q̄]S=1. Therefore, the
corresponding lowest-dimension interpolating operator for describing Xq is given by:

jµ =
iϵabcϵdec√

2
[(qT

a Cγ5cb)(q̄dγµCc̄T
e ) + (qT

a Cγµcb)(q̄dγ5Cc̄T
e )] , (1)

where a, b, c, ... are color indices, C is the charge conjugation matrix and q denotes a u or d quark.
In general, one should consider all possible combinations of different 1++ four-quark operators, similar

to e.g. done in [31] for the 0++ light mesons and consider their mixing under renormalizations [32]
from which one can form renormalization group invariant (RGI) physical currents. However, we might
expect that, working with a particular choice of current given above will provide a general feature of the
four-quark model predictions for the X(3872), provided that we can work with quantities less affected by
radiative corrections and where the OPE converges quite well 1 As pointed out in [1], isospin forbidden
decays are possible if X is not a pure isospin state. Pure isospin states are:

X(I = 0) =
Xu + Xd√

2
, and X(I = 1) =

Xu − Xd√
2

. (2)

If the physical states are just the mass eigenstates Xu or Xd, maximal isospin violations are possible.
Deviations from these two ideal situations are described by a mixing angle between Xu and Xd [1]:

Xl = Xu cos θ + Xd sin θ,

Xh = −Xu sin θ + Xd cos θ. (3)

In ref. [1], by considering the X decays into two and three pions, a mixing angle θ ∼ 20◦ is deduced
and a mass difference

m(Xh) − m(Xl) = (8 ± 3)MeV. (4)

In this work, we want to test in which conditions the results of the sum rules are compatible with the
above predictions.

II. THE QCD EXPRESSION OF THE TWO-POINT CORRELATOR

The SR are constructed from the two-point correlation function

Πµν(q) = i

∫

d4x eiq.x⟨0|T [jµ(x)j†ν(0)]|0⟩ = −Π1(q
2)(gµν −

qµqν

q2
) + Π0(q

2)
qµqν

q2
. (5)

Since the axial vector current is not conserved, the two functions, Π1 and Π0, appearing in Eq. (5) are
independent and have respectively the quantum numbers of the spin 1 and 0 mesons.

The fundamental assumption of the sum rules approach is the principle of duality. Specifically, we
assume that there is an interval over which the correlation function may be equivalently described at both
the quark and the hadron levels. Therefore, on the one hand, we calculate the correlation function at the
quark level in terms of quark and gluon fields. On the other hand, the correlation function is calculated
at the hadronic level introducing hadron characteristics such as masses and coupling constants. At the

1 In the well-known case of baryon sum rules, a simplest choice of operator [33] and a more general choice [34] have been
given in the literature. Though technically apparently different, mainly for the region of convergence of the OPE, the
two choices of interpolating currents have provided the same predictions for the proton mass and mixed condensate but
only differs for values of higher dimension four-quark condensates.
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where the integration limits are given by αmin = (1 −
√

1 − 4m2
c/s)/2, αmax = (1 +

√

1 − 4m2
c/s)/2 and

(βmin = αm2
c)/(sα − m2

c). We have also included the dominant contributions from the dimension-five
condensates:

ρmix(s) =
mc⟨q̄gσ.Gq⟩

26π4

αmax
∫

αmin

dα

[

−
2

α
(m2

c − α(1 − α)s) +

1−α
∫

βmin

dβ
[

(α + β)m2
c − αβs

]

(

1

α
+

α + β

β2

) ]

,(12)

where the contribution of dimension-six condensates ⟨g3G3⟩ is neglected, since assumed to be suppressed
by the loop factor 1/16π2. The usual estimate ⟨g3G3⟩ ≃ 1GeV2⟨αsG2⟩ [19] would deserve to be checked
in more detail. We have included the contribution of the dimension-six four-quark condensate:

ρ⟨q̄q⟩2(s) =
m2

c⟨q̄q⟩2

12π2

√

s − 4m2
c

s
, (13)

and (for completeness) a part of the dimension-8 condensate contributions 3:

Πmix⟨q̄q⟩
1 (M2) = −

m2
c⟨q̄gσ.Gq⟩⟨q̄q⟩

24π2

∫ 1

0

dα

[

1 +
m2

c

α(1 − α)M2
−

1

2(1 − α)

]

exp

[

−
m2

c

α(1 − α)M2

]

. (14)
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FIG. 1: The OPE convergence in the region 1.6 ≤ M2 ≤ 2.8 GeV2 for s1/2

0 = 4.17 GeV. We start with the
perturbative contribution (plus a very small mq contribution) and each subsequent line represents the addition
of one extra condensate dimension in the expansion.

In order to extract the mass MX without worrying about the value of the decay constant fX , we take
the derivative of Eq. (9) with respect to 1/M2, divide the result by Eq. (9) and obtain:

M2
X =

∫ s0

4m2
c
ds e−s/M2

s ρ(s)
∫ s0

4m2
c
ds e−s/M2 ρ(s)

. (15)

3 We should note that a complete evaluation of these contributions require more involved analysis including a non-trivial
choice of the factorization assumption basis [38]. We wish that we can perform this analysis in the future.

6

obtained up to dimension-5 are very close to the ones obtained up to dimension-8. For definiteness, the
value of MX obtained by including the dimension-5 mixed condensate will be considered as the final
prediction from the LSR, and the effects of the higher condensates as the error due to the truncation of
the OPE.
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FIG. 3: The dashed line shows the relative pole contribution (the pole contribution divided by the total, pole
plus continuum, contribution) and the solid line shows the relative continuum contribution.

We get an upper limit constraint for M2 by imposing the rigorous constraint that the QCD continuum
contribution should be smaller than the pole contribution5. The maximum value of M2 for which this
constraint is satisfied depends on the value of s0. The comparison between pole and continuum contri-

butions for s1/2
0 = 4.2 GeV is shown in Fig. 3. The same analysis for the other value of the continuum

threshold gives M2 < 2.2 GeV2 for s1/2
0 = 4.1 GeV.
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5 More restrictive conditions are sometimes imposed in the literature, where, for example, it is required that the continuum
contribution is smaller than 30 % of the total contribution. In this case no sum rule-window is allowed. In our analysis, we
use a less restrictive criterion, having in mind that the role of the continuum is expected to be larger for high-dimensional
current operators than in the usual ρ-meson channel, as indicated by different sum rules analyses in the existing literature.

QCD sum rules calculation for X(3872)

jX
µ =

iϵabcϵdec√
2

[
(qT

a Cγ5cb)(q̄dγµCc̄T
e )+(qT

a Cγµcb)(q̄dγ5Cc̄T
e )

]
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for n > 0. From these two results, (10) and (11), one can
see that the Borel transformation removes the subtrac-
tion terms in the dispersion relation, and exponentially
suppresses the contribution from excited resonances and
continuum states in the phenomenological side. In the
OPE side the Borel transformation suppresses the contri-
bution from higher dimension condensates by a factorial
term.

After making a Borel transform on both sides of the
sum rule, and transferring the continuum contribution to
the OPE side, the sum rule can be written as

λ2e−m2/M2

=

∫ s0

smin

ds e−s/M2

ρOPE(s) . (12)

If both sides of the sum rule were calculated to arbi-
trary high accuracy, the matching would be independent
of M2. In practice, however, both sides are represented
imperfectly. The hope is that there exists a range of M2,
called Borel window, in which the two sides have a good
overlap and information on the lowest resonance can be
extracted. In general, to determine the allowed Borel
window, one analyses the OPE convergence and the pole
contribution: the minimum value of the Borel mass is
fixed by considering the convergence of the OPE, and
the maximum value of the Borel mass is determined by
imposing the condition that the pole contribution must
be bigger than the continuum contribution.

In order to extract the mass m without worrying about
the value of the coupling λ, it is possible to take the
derivative of Eq. (12) with respect to 1/M2, and divide
the result by Eq. (12). This gives:

m2 =

∫ s0

smin
ds e−s/M2

s ρOPE(s)
∫ s0

smin
ds e−s/M2 ρOPE(s)

. (13)

This quantity has the advantage to be less sensitive to
the perturbative radiative corrections than the individual
sum rules. Therefore, we expect that our results obtained
to leading order in αs will be quite accurate.

D. Choice of currents

Mesonic currents for charmed mesons are given in Ta-
ble I.

TABLE I Currents for the D mesons
state symbol current JP

scalar meson D0 q̄c 0+

pseudoscalar meson D iq̄γ5c 0−

vector meson D∗ q̄γµc 1−

axial-vector meson D1 q̄γµγ5c 1+

From these currents we can construct molecular cur-
rents which can be eingenstates of charge conjugation C
and G-parity. Let us consider, as an example, a current

with JPC = 1++ for the molecular D0D∗0 system. It can
be written as a combination of two currents (70; 71):

j1
µ(x) = [ū(x)γ5c(x)][c̄(x)γµu(x)], (14)

and

j2
µ(x) = [ū(x)γµc(x)][c̄(x)γ5u(x)]. (15)

Since the charge conjugation transformation is defined
as: (q̄)C = −qT C−1 = qT C and (q)C = Cq̄T , we get

(j1
µ)C = −(c̄γ5u)(ūγµc) = −j2

µ, (16)

(j2
µ)C = −(c̄γµu)(ūγ5c) = −j1

µ. (17)

Therefore, the current

jµ(x) =
1√
2

(

j1
µ(x) − j2

µ(x)
)

, (18)

has positive C. However, this current is not a G-parity
eingenstate. The G-parity transformation is an isospin
rotation of the charge conjugated current:

(j1
µ)G = −(c̄γ5d)(d̄γµc), (19)

(j2
µ)G = −(c̄γµd)(d̄γ5c). (20)

In the case of a charged molecular D1D∗ current with
JP = 0−, it can also be written as a combination of two
currents:

j1 = (c̄γµγ5u)(d̄γµc), (21)

j2 = (c̄γµu)(d̄γµγ5c). (22)

The charge conjugation transformation in these currents
leads to

(j1)C = −(ūγµγ5c)(c̄γ
µd), (23)

(j2)C = −(ūγµc)(c̄γµγ5d), (24)

and the isospin rotation gives

(j1)G = (d̄γµγ5c)(c̄γ
µu) = j2, (25)

(j2)G = (d̄γµc)(c̄γµγ5u) = j1. (26)

Therefore, the current

j =
1√
2

(j1 + j2) , (27)

has positive G-parity.
In the case of tetraquark [cq][c̄q̄] currents, they can

be constructed in terms of color anti-symmetric diquark
states: εabc[qT

a CΓcb], where a, b, c are color indices of the

2

was used to study the light scalar mesons [22, 23, 24, 25] and the D+
sJ(2317) meson [26, 27], considered as

four-quark states and a good agreement with the experimental masses was obtained. However, the tests
were not decisive as the usual quark–antiquark assignments also provide predictions consistent with data
and more importantly with chiral symmetry expectations [19, 23, 28, 29]. In the four-quark scenario,
scalar mesons can be considered as S-wave bound states of diquark-antidiquark pairs, where the diquark
was taken to be a spin zero color anti-triplet. Here we follow ref. [1], and consider the X(3872) as the
JPC = 1++ state with the symmetric spin distribution: [cq]S=1[c̄q̄]S=0 + [cq]S=0[c̄q̄]S=1. Therefore, the
corresponding lowest-dimension interpolating operator for describing Xq is given by:

jµ =
iϵabcϵdec√

2
[(qT

a Cγ5cb)(q̄dγµCc̄T
e ) + (qT

a Cγµcb)(q̄dγ5Cc̄T
e )] , (1)

where a, b, c, ... are color indices, C is the charge conjugation matrix and q denotes a u or d quark.
In general, one should consider all possible combinations of different 1++ four-quark operators, similar

to e.g. done in [31] for the 0++ light mesons and consider their mixing under renormalizations [32]
from which one can form renormalization group invariant (RGI) physical currents. However, we might
expect that, working with a particular choice of current given above will provide a general feature of the
four-quark model predictions for the X(3872), provided that we can work with quantities less affected by
radiative corrections and where the OPE converges quite well 1 As pointed out in [1], isospin forbidden
decays are possible if X is not a pure isospin state. Pure isospin states are:

X(I = 0) =
Xu + Xd√

2
, and X(I = 1) =

Xu − Xd√
2

. (2)

If the physical states are just the mass eigenstates Xu or Xd, maximal isospin violations are possible.
Deviations from these two ideal situations are described by a mixing angle between Xu and Xd [1]:

Xl = Xu cos θ + Xd sin θ,

Xh = −Xu sin θ + Xd cos θ. (3)

In ref. [1], by considering the X decays into two and three pions, a mixing angle θ ∼ 20◦ is deduced
and a mass difference

m(Xh) − m(Xl) = (8 ± 3)MeV. (4)

In this work, we want to test in which conditions the results of the sum rules are compatible with the
above predictions.

II. THE QCD EXPRESSION OF THE TWO-POINT CORRELATOR

The SR are constructed from the two-point correlation function

Πµν(q) = i

∫

d4x eiq.x⟨0|T [jµ(x)j†ν(0)]|0⟩ = −Π1(q
2)(gµν −

qµqν

q2
) + Π0(q

2)
qµqν

q2
. (5)

Since the axial vector current is not conserved, the two functions, Π1 and Π0, appearing in Eq. (5) are
independent and have respectively the quantum numbers of the spin 1 and 0 mesons.

The fundamental assumption of the sum rules approach is the principle of duality. Specifically, we
assume that there is an interval over which the correlation function may be equivalently described at both
the quark and the hadron levels. Therefore, on the one hand, we calculate the correlation function at the
quark level in terms of quark and gluon fields. On the other hand, the correlation function is calculated
at the hadronic level introducing hadron characteristics such as masses and coupling constants. At the

1 In the well-known case of baryon sum rules, a simplest choice of operator [33] and a more general choice [34] have been
given in the literature. Though technically apparently different, mainly for the region of convergence of the OPE, the
two choices of interpolating currents have provided the same predictions for the proton mass and mixed condensate but
only differs for values of higher dimension four-quark condensates.
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where the integration limits are given by αmin = (1 −
√

1 − 4m2
c/s)/2, αmax = (1 +

√

1 − 4m2
c/s)/2 and

(βmin = αm2
c)/(sα − m2

c). We have also included the dominant contributions from the dimension-five
condensates:

ρmix(s) =
mc⟨q̄gσ.Gq⟩

26π4

αmax
∫

αmin

dα

[

−
2

α
(m2

c − α(1 − α)s) +

1−α
∫

βmin

dβ
[

(α + β)m2
c − αβs

]

(

1

α
+

α + β

β2

) ]

,(12)

where the contribution of dimension-six condensates ⟨g3G3⟩ is neglected, since assumed to be suppressed
by the loop factor 1/16π2. The usual estimate ⟨g3G3⟩ ≃ 1GeV2⟨αsG2⟩ [19] would deserve to be checked
in more detail. We have included the contribution of the dimension-six four-quark condensate:

ρ⟨q̄q⟩2(s) =
m2

c⟨q̄q⟩2

12π2

√

s − 4m2
c

s
, (13)

and (for completeness) a part of the dimension-8 condensate contributions 3:

Πmix⟨q̄q⟩
1 (M2) = −

m2
c⟨q̄gσ.Gq⟩⟨q̄q⟩

24π2

∫ 1

0

dα

[

1 +
m2

c

α(1 − α)M2
−

1

2(1 − α)

]

exp

[

−
m2

c

α(1 − α)M2

]

. (14)

III. LSR PREDICTIONS OF MX
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FIG. 1: The OPE convergence in the region 1.6 ≤ M2 ≤ 2.8 GeV2 for s1/2

0 = 4.17 GeV. We start with the
perturbative contribution (plus a very small mq contribution) and each subsequent line represents the addition
of one extra condensate dimension in the expansion.

In order to extract the mass MX without worrying about the value of the decay constant fX , we take
the derivative of Eq. (9) with respect to 1/M2, divide the result by Eq. (9) and obtain:

M2
X =

∫ s0

4m2
c
ds e−s/M2

s ρ(s)
∫ s0

4m2
c
ds e−s/M2 ρ(s)

. (15)

3 We should note that a complete evaluation of these contributions require more involved analysis including a non-trivial
choice of the factorization assumption basis [38]. We wish that we can perform this analysis in the future.
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obtained up to dimension-5 are very close to the ones obtained up to dimension-8. For definiteness, the
value of MX obtained by including the dimension-5 mixed condensate will be considered as the final
prediction from the LSR, and the effects of the higher condensates as the error due to the truncation of
the OPE.
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FIG. 3: The dashed line shows the relative pole contribution (the pole contribution divided by the total, pole
plus continuum, contribution) and the solid line shows the relative continuum contribution.

We get an upper limit constraint for M2 by imposing the rigorous constraint that the QCD continuum
contribution should be smaller than the pole contribution5. The maximum value of M2 for which this
constraint is satisfied depends on the value of s0. The comparison between pole and continuum contri-

butions for s1/2
0 = 4.2 GeV is shown in Fig. 3. The same analysis for the other value of the continuum

threshold gives M2 < 2.2 GeV2 for s1/2
0 = 4.1 GeV.

2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8
3.7

3.8

3.9

4.0

4.1

4.2

4.3

 s0

1/2 = 4.1 GeV

 s0

1/2 = 4.2 GeV

M
X
 (
G

eV
)

M2 (GeV2 )

5 More restrictive conditions are sometimes imposed in the literature, where, for example, it is required that the continuum
contribution is smaller than 30 % of the total contribution. In this case no sum rule-window is allowed. In our analysis, we
use a less restrictive criterion, having in mind that the role of the continuum is expected to be larger for high-dimensional
current operators than in the usual ρ-meson channel, as indicated by different sum rules analyses in the existing literature.

QCD sum rules calculation for X(3872)

jX
µ =

iϵabcϵdec√
2

[
(qT

a Cγ5cb)(q̄dγµCc̄T
e )+(qT

a Cγµcb)(q̄dγ5Cc̄T
e )

]
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good Borel window 2.0 ≤ M2 ≤ 2.3GeV2
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Introduction 5

for n > 0. From these two results, (10) and (11), one can
see that the Borel transformation removes the subtrac-
tion terms in the dispersion relation, and exponentially
suppresses the contribution from excited resonances and
continuum states in the phenomenological side. In the
OPE side the Borel transformation suppresses the contri-
bution from higher dimension condensates by a factorial
term.

After making a Borel transform on both sides of the
sum rule, and transferring the continuum contribution to
the OPE side, the sum rule can be written as

λ2e−m2/M2

=

∫ s0

smin

ds e−s/M2

ρOPE(s) . (12)

If both sides of the sum rule were calculated to arbi-
trary high accuracy, the matching would be independent
of M2. In practice, however, both sides are represented
imperfectly. The hope is that there exists a range of M2,
called Borel window, in which the two sides have a good
overlap and information on the lowest resonance can be
extracted. In general, to determine the allowed Borel
window, one analyses the OPE convergence and the pole
contribution: the minimum value of the Borel mass is
fixed by considering the convergence of the OPE, and
the maximum value of the Borel mass is determined by
imposing the condition that the pole contribution must
be bigger than the continuum contribution.

In order to extract the mass m without worrying about
the value of the coupling λ, it is possible to take the
derivative of Eq. (12) with respect to 1/M2, and divide
the result by Eq. (12). This gives:

m2 =

∫ s0

smin
ds e−s/M2

s ρOPE(s)
∫ s0

smin
ds e−s/M2 ρOPE(s)

. (13)

This quantity has the advantage to be less sensitive to
the perturbative radiative corrections than the individual
sum rules. Therefore, we expect that our results obtained
to leading order in αs will be quite accurate.

D. Choice of currents

Mesonic currents for charmed mesons are given in Ta-
ble I.

TABLE I Currents for the D mesons
state symbol current JP

scalar meson D0 q̄c 0+

pseudoscalar meson D iq̄γ5c 0−

vector meson D∗ q̄γµc 1−

axial-vector meson D1 q̄γµγ5c 1+

From these currents we can construct molecular cur-
rents which can be eingenstates of charge conjugation C
and G-parity. Let us consider, as an example, a current

with JPC = 1++ for the molecular D0D∗0 system. It can
be written as a combination of two currents (70; 71):

j1
µ(x) = [ū(x)γ5c(x)][c̄(x)γµu(x)], (14)

and

j2
µ(x) = [ū(x)γµc(x)][c̄(x)γ5u(x)]. (15)

Since the charge conjugation transformation is defined
as: (q̄)C = −qT C−1 = qT C and (q)C = Cq̄T , we get

(j1
µ)C = −(c̄γ5u)(ūγµc) = −j2

µ, (16)

(j2
µ)C = −(c̄γµu)(ūγ5c) = −j1

µ. (17)

Therefore, the current

jµ(x) =
1√
2

(

j1
µ(x) − j2

µ(x)
)

, (18)

has positive C. However, this current is not a G-parity
eingenstate. The G-parity transformation is an isospin
rotation of the charge conjugated current:

(j1
µ)G = −(c̄γ5d)(d̄γµc), (19)

(j2
µ)G = −(c̄γµd)(d̄γ5c). (20)

In the case of a charged molecular D1D∗ current with
JP = 0−, it can also be written as a combination of two
currents:

j1 = (c̄γµγ5u)(d̄γµc), (21)

j2 = (c̄γµu)(d̄γµγ5c). (22)

The charge conjugation transformation in these currents
leads to

(j1)C = −(ūγµγ5c)(c̄γ
µd), (23)

(j2)C = −(ūγµc)(c̄γµγ5d), (24)

and the isospin rotation gives

(j1)G = (d̄γµγ5c)(c̄γ
µu) = j2, (25)

(j2)G = (d̄γµc)(c̄γµγ5u) = j1. (26)

Therefore, the current

j =
1√
2

(j1 + j2) , (27)

has positive G-parity.
In the case of tetraquark [cq][c̄q̄] currents, they can

be constructed in terms of color anti-symmetric diquark
states: εabc[qT

a CΓcb], where a, b, c are color indices of the

2

was used to study the light scalar mesons [22, 23, 24, 25] and the D+
sJ(2317) meson [26, 27], considered as

four-quark states and a good agreement with the experimental masses was obtained. However, the tests
were not decisive as the usual quark–antiquark assignments also provide predictions consistent with data
and more importantly with chiral symmetry expectations [19, 23, 28, 29]. In the four-quark scenario,
scalar mesons can be considered as S-wave bound states of diquark-antidiquark pairs, where the diquark
was taken to be a spin zero color anti-triplet. Here we follow ref. [1], and consider the X(3872) as the
JPC = 1++ state with the symmetric spin distribution: [cq]S=1[c̄q̄]S=0 + [cq]S=0[c̄q̄]S=1. Therefore, the
corresponding lowest-dimension interpolating operator for describing Xq is given by:

jµ =
iϵabcϵdec√

2
[(qT

a Cγ5cb)(q̄dγµCc̄T
e ) + (qT

a Cγµcb)(q̄dγ5Cc̄T
e )] , (1)

where a, b, c, ... are color indices, C is the charge conjugation matrix and q denotes a u or d quark.
In general, one should consider all possible combinations of different 1++ four-quark operators, similar

to e.g. done in [31] for the 0++ light mesons and consider their mixing under renormalizations [32]
from which one can form renormalization group invariant (RGI) physical currents. However, we might
expect that, working with a particular choice of current given above will provide a general feature of the
four-quark model predictions for the X(3872), provided that we can work with quantities less affected by
radiative corrections and where the OPE converges quite well 1 As pointed out in [1], isospin forbidden
decays are possible if X is not a pure isospin state. Pure isospin states are:

X(I = 0) =
Xu + Xd√

2
, and X(I = 1) =

Xu − Xd√
2

. (2)

If the physical states are just the mass eigenstates Xu or Xd, maximal isospin violations are possible.
Deviations from these two ideal situations are described by a mixing angle between Xu and Xd [1]:

Xl = Xu cos θ + Xd sin θ,

Xh = −Xu sin θ + Xd cos θ. (3)

In ref. [1], by considering the X decays into two and three pions, a mixing angle θ ∼ 20◦ is deduced
and a mass difference

m(Xh) − m(Xl) = (8 ± 3)MeV. (4)

In this work, we want to test in which conditions the results of the sum rules are compatible with the
above predictions.

II. THE QCD EXPRESSION OF THE TWO-POINT CORRELATOR

The SR are constructed from the two-point correlation function

Πµν(q) = i

∫

d4x eiq.x⟨0|T [jµ(x)j†ν(0)]|0⟩ = −Π1(q
2)(gµν −

qµqν

q2
) + Π0(q

2)
qµqν

q2
. (5)

Since the axial vector current is not conserved, the two functions, Π1 and Π0, appearing in Eq. (5) are
independent and have respectively the quantum numbers of the spin 1 and 0 mesons.

The fundamental assumption of the sum rules approach is the principle of duality. Specifically, we
assume that there is an interval over which the correlation function may be equivalently described at both
the quark and the hadron levels. Therefore, on the one hand, we calculate the correlation function at the
quark level in terms of quark and gluon fields. On the other hand, the correlation function is calculated
at the hadronic level introducing hadron characteristics such as masses and coupling constants. At the

1 In the well-known case of baryon sum rules, a simplest choice of operator [33] and a more general choice [34] have been
given in the literature. Though technically apparently different, mainly for the region of convergence of the OPE, the
two choices of interpolating currents have provided the same predictions for the proton mass and mixed condensate but
only differs for values of higher dimension four-quark condensates.
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obtained up to dimension-5 are very close to the ones obtained up to dimension-8. For definiteness, the
value of MX obtained by including the dimension-5 mixed condensate will be considered as the final
prediction from the LSR, and the effects of the higher condensates as the error due to the truncation of
the OPE.
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FIG. 3: The dashed line shows the relative pole contribution (the pole contribution divided by the total, pole
plus continuum, contribution) and the solid line shows the relative continuum contribution.

We get an upper limit constraint for M2 by imposing the rigorous constraint that the QCD continuum
contribution should be smaller than the pole contribution5. The maximum value of M2 for which this
constraint is satisfied depends on the value of s0. The comparison between pole and continuum contri-

butions for s1/2
0 = 4.2 GeV is shown in Fig. 3. The same analysis for the other value of the continuum

threshold gives M2 < 2.2 GeV2 for s1/2
0 = 4.1 GeV.
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5 More restrictive conditions are sometimes imposed in the literature, where, for example, it is required that the continuum
contribution is smaller than 30 % of the total contribution. In this case no sum rule-window is allowed. In our analysis, we
use a less restrictive criterion, having in mind that the role of the continuum is expected to be larger for high-dimensional
current operators than in the usual ρ-meson channel, as indicated by different sum rules analyses in the existing literature.
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contribution should be smaller than the pole contribution5. The maximum value of M2 for which this
constraint is satisfied depends on the value of s0. The comparison between pole and continuum contri-

butions for s1/2
0 = 4.2 GeV is shown in Fig. 3. The same analysis for the other value of the continuum

threshold gives M2 < 2.2 GeV2 for s1/2
0 = 4.1 GeV.
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5 More restrictive conditions are sometimes imposed in the literature, where, for example, it is required that the continuum
contribution is smaller than 30 % of the total contribution. In this case no sum rule-window is allowed. In our analysis, we
use a less restrictive criterion, having in mind that the role of the continuum is expected to be larger for high-dimensional
current operators than in the usual ρ-meson channel, as indicated by different sum rules analyses in the existing literature.

mXb = (10.26± 0.30) GeV
Prediction for Xb:



QCD sum rules calculation for X(3872)
tetraquark state (PRD75 (2007) 014005)

jX = [cq]S=1[c̄q̄]S=0 + [cq]S=0[c̄q̄]S=1

mX = (3.92 ± 0.13) GeV

molecular state (arXiv:0803.1168)

jX = D∗0D̄0 + D̄∗0D0

mX = (3.87 ± 0.07) GeV

Better agreement with the molecular model

– p.11/32

6

obtained up to dimension-5 are very close to the ones obtained up to dimension-8. For definiteness, the
value of MX obtained by including the dimension-5 mixed condensate will be considered as the final
prediction from the LSR, and the effects of the higher condensates as the error due to the truncation of
the OPE.

2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8

   30

   35

   40

   45

   50

   55

   60

   65

   70
s0

1/2 = 4.2 GeV

 Continuum
 Pole

C
on

tr
ib

ut
io

n/
(P

ol
e+

C
on

tin
uu

m
) 
(%

)

M2 (GeV2 )

FIG. 3: The dashed line shows the relative pole contribution (the pole contribution divided by the total, pole
plus continuum, contribution) and the solid line shows the relative continuum contribution.

We get an upper limit constraint for M2 by imposing the rigorous constraint that the QCD continuum
contribution should be smaller than the pole contribution5. The maximum value of M2 for which this
constraint is satisfied depends on the value of s0. The comparison between pole and continuum contri-

butions for s1/2
0 = 4.2 GeV is shown in Fig. 3. The same analysis for the other value of the continuum

threshold gives M2 < 2.2 GeV2 for s1/2
0 = 4.1 GeV.

2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8
3.7

3.8

3.9

4.0

4.1

4.2

4.3

 s0

1/2 = 4.1 GeV

 s0

1/2 = 4.2 GeV

M
X
 (
G

eV
)

M2 (GeV2 )

5 More restrictive conditions are sometimes imposed in the literature, where, for example, it is required that the continuum
contribution is smaller than 30 % of the total contribution. In this case no sum rule-window is allowed. In our analysis, we
use a less restrictive criterion, having in mind that the role of the continuum is expected to be larger for high-dimensional
current operators than in the usual ρ-meson channel, as indicated by different sum rules analyses in the existing literature.

QCD sum rules calculation for X(3872)
tetraquark state (PRD75 (2007) 014005)

jX = [cq]S=1[c̄q̄]S=0 + [cq]S=0[c̄q̄]S=1

mX = (3.92 ± 0.13) GeV

molecular state (arXiv:0803.1168)

jX = D∗0D̄0 + D̄∗0D0

mX = (3.87 ± 0.07) GeV

Better agreement with the molecular model

– p.11/32

Lee, MN, Wiedner:              molecular current (arXiv:0803.1168)D0D̄�0

mXb = (10.26± 0.30) GeV
Prediction for Xb:
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Since Tcc (ccqq) can be described by a DD* current and 
X(3872) (ccqq) by a DD* current, similar comparison can also 
be made for X and Tcc states.
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Table 1: QCD input parameters. For the heavy quark masses, we use the range

spanned by the running MS mass mQ(MQ) and the on-shell mass from QCD

(spectral) sum rules compiled in page 602,603 of the book in [25]. The values

of Λ and µ̂q have been obtained from αs(Mτ) = 0.325(8) [37] and from the

running masses: (mu + md)(2) = 7.9(3) MeV [38]. The original errors have

been multiplied by 2 for a conservative estimate of the errors.

Parameters Values Ref.

Λ(nf = 4) (324 ± 15) MeV [37, 39]

µ̂q (263 ± 7) MeV [25, 38]

m̂s (0.114 ± 0.021) GeV [25, 38, 39]

mc (1.23 ∼ 1.47) GeV [25, 38–42]

mb (4.2 ∼ 4.7) GeV [25, 38–41]

m2
0

(0.8 ± 0.2) GeV2 [28, 43, 44]

⟨αsG2⟩ (6 ± 2) × 10−2 GeV4 [37, 40, 45–51]

ραs⟨d̄d⟩2 (4.5 ± 0.3) × 10−4 GeV6 [37, 43, 45]

In ref. [8] it was obtained that the DRSR for the tetraquark cur-

rent and for the molecular current is:

rmol/3 =

√

Rmol
R3
≃ 1.00 , (19)

with a negligible error. Therefore, the result in Eq. (18) is the

same for the current in Eq. (5). The value obtained for MX

is in good agreement (within the errors) with the experimental

candidate [39]:

MX |exp = (3872.2 ± 0.8) MeV . (20)
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Figure 1: The double ratio rTcc/X defined in Eq. (11) as a function of τ for√
tc = 4.15 GeV and for two values of mc = 1.23 (solid line) and 1.47 GeV

(dashed line).

We now study the DRSR of the Tcc/X defined in Eq. (11).

In Fig. 1, we show the τ-dependence of the ratio for
√
tc =

4.15 GeV and for two values of mc = 1.23 GeV and 1.47 GeV.

From Fig. 1 one can see that there is a τ-stability around τ ≃
0.4 GeV−2 and for this value of τ, we get:

rTcc/X = 1.00 ± 0.01 . (21)

In Fig. 2, we show the tc-dependence of the ratio for τ =

0.4 GeV−2 and for two values of mc = 1.23 GeV and 1.47

GeV. From this figure one can see that the ratio increases with

tc. However, considering the large range of tc presented in the

figure, the ratio does not differ more than 3% from 1.
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Figure 2: The double ratio rTcc/X as a function of tc for τ = 0.4 GeV
−2 and for

two values of mc = 1.23 (solid line) and 1.47 GeV (dashed line).

Our analysis has shown that the DD̄∗+ c.c. and DD∗ currents

lead to (almost) the same mass predictions within the accuracy

of the approach. Therefore, if the observed X(3872) is a molec-

ular DD̄∗ + c.c. state its molecular cousin DD∗ should also be a

bound state with approximately the same mass.

3.4. Tbb/Xb ratio of masses

Using the same interpolating field in Eqs. (5) and (6) with

the charm quark replaced by the bottom one, we can analyse

the DRSR:

rTbb/Xb ≡

√

RTbb
RXb
≃
MTbb

MXb

. (22)

In Fig. 3, we show the τ-dependence of the ratio in Eq. (22)

for
√
tc = 10.5 GeV and for two values of mb. From this figure

one can see the ratio is very stable. The same happens for the

dependence of this ratio with tc, as can be seen by Fig. 4. We

get:

rTbb/Xb = 1.00 . (23)

Therefore, we can predict the degeneracy between the masses

of the Tbb and of the Xb given in Eq. (24).
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Since Tcc (ccqq) can be described by a DD* current and 
X(3872) (ccqq) by a DD* current, similar comparison can also 
be made for X and Tcc states.
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Table 1: QCD input parameters. For the heavy quark masses, we use the range

spanned by the running MS mass mQ(MQ) and the on-shell mass from QCD

(spectral) sum rules compiled in page 602,603 of the book in [25]. The values

of Λ and µ̂q have been obtained from αs(Mτ) = 0.325(8) [37] and from the

running masses: (mu + md)(2) = 7.9(3) MeV [38]. The original errors have

been multiplied by 2 for a conservative estimate of the errors.

Parameters Values Ref.

Λ(nf = 4) (324 ± 15) MeV [37, 39]

µ̂q (263 ± 7) MeV [25, 38]

m̂s (0.114 ± 0.021) GeV [25, 38, 39]

mc (1.23 ∼ 1.47) GeV [25, 38–42]

mb (4.2 ∼ 4.7) GeV [25, 38–41]

m2
0

(0.8 ± 0.2) GeV2 [28, 43, 44]

⟨αsG2⟩ (6 ± 2) × 10−2 GeV4 [37, 40, 45–51]

ραs⟨d̄d⟩2 (4.5 ± 0.3) × 10−4 GeV6 [37, 43, 45]

In ref. [8] it was obtained that the DRSR for the tetraquark cur-

rent and for the molecular current is:

rmol/3 =

√

Rmol
R3
≃ 1.00 , (19)

with a negligible error. Therefore, the result in Eq. (18) is the

same for the current in Eq. (5). The value obtained for MX

is in good agreement (within the errors) with the experimental

candidate [39]:

MX |exp = (3872.2 ± 0.8) MeV . (20)
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We now study the DRSR of the Tcc/X defined in Eq. (11).

In Fig. 1, we show the τ-dependence of the ratio for
√
tc =

4.15 GeV and for two values of mc = 1.23 GeV and 1.47 GeV.

From Fig. 1 one can see that there is a τ-stability around τ ≃
0.4 GeV−2 and for this value of τ, we get:

rTcc/X = 1.00 ± 0.01 . (21)

In Fig. 2, we show the tc-dependence of the ratio for τ =

0.4 GeV−2 and for two values of mc = 1.23 GeV and 1.47

GeV. From this figure one can see that the ratio increases with

tc. However, considering the large range of tc presented in the

figure, the ratio does not differ more than 3% from 1.
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dependence of this ratio with tc, as can be seen by Fig. 4. We
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Therefore, we can predict the degeneracy between the masses
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Our analysis has shown that the DD̄∗+ c.c. and DD∗ currents

lead to (almost) the same mass predictions within the accuracy

of the approach. Therefore, if the observed X(3872) is a molec-

ular DD̄∗ + c.c. state its molecular cousin DD∗ should also be a

bound state with approximately the same mass.
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one can see the ratio is very stable. The same happens for the
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get:
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Therefore, we can predict the degeneracy between the masses
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mDD̄�
= 1.00± 0.01

Using the X(3872) experimental mass our 
prediction for the Tcc mass is:

Since Tcc (ccqq) can be described by a DD* current and 
X(3872) (ccqq) by a DD* current, similar comparison can also 
be made for X and Tcc states.
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From Eqs. (58) and (61) we get the following relation
between the coupling constants:

gXψωfω

gXψρfρ
=

Nω

(

cosα + sinα
)

Nρ

(

cosα − sinα
) . (62)

Using the previous result in Eq. (41) and the numerical
values for fω and fρ we have

Γ(X → J/ψ π+π−π0)

Γ(X → J/ψ π+π−)
≃ 0.15

(

cosα + sinα

cosα − sinα

)2

. (63)

This is exactly the same relation obtained in refs. [11, 27],
that determines α ∼ 200 for reproducing the experimen-
tal result in Eq.(1).

With this mixing angle α defined, we can now eval-
uate the decay rate itself, for any one of the decays:
X → J/ψρ or X → J/ψω, since they will be the same.
Therefore, we choose to work with X → J/ψω since the
combination cosα + sinα appears in both sides of the
sum rule and the result for gXψω is independent of α.
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FIG. 4: Diagrams which contribute to the OPE side of the sum rule.

In the OPE side we consider condensates up to di-
mension five , as shown in Fig. 4. Taking the limit
p2 = p′2 = −P 2 and doing a single Borel transform to
P 2 → M2, we get in the structure ϵανσγp′σqγp′µ (the same
considered in ref.[27]) (Q2 = −q2):

C(Q2)
(

e−m2
ψ/M2

− e−m2
X/M2

)

+ B e−s0/M2

=

(Q2 + m2
ω)Π(OPE)(M2, Q2), (64)

where

Π(OPE)(M2, Q2) =
⟨q̄q⟩

6
√

2π2Q2

[(

m2
0

3Q2
+

− 1

)
∫ u0

4m2
c

du e−u/M2 √

1 − 4m2
c/u

(

1

2
+

m2
c

u

)

+

−
m2

0

16

∫ 1

0
dα

1 + 3α

α
e

−m2
c

α(1−α)M2

]

. (65)

In Eq. (64)

C(Q2) =
6

sin(θ)
mωfω

fψλq

mψ(m2
X − m2

ψ)
gXψω(Q2), (66)

and B gives the contribution of the pole-continuum tran-
sitions [27, 28, 29]. s0 and u0 are the continuum thresh-
olds for X and J/ψ respectively. Notice that in Eq.(65)
we have introduced the form factor gXψω(Q2). This is
because the meson ω is off-shell in the vertex XJ/ψω.

If we parametrize C(Q2) as a monopole:

C(Q2) =
c1

Q2 + c2
, (67)

we can fit the left hand side of Eq. (64) as a function
of Q2 and M2 to the QCDSR results in the right hand
side, obtaining c1, c2 and B. In Fig. 5 we show the
points obtained if we isolate C(Q2) in Eq. (64) and vary
both Q2 and M2. The function C(Q2) (and consequently
gXψω(Q2)) should not depend on M2, so we limit our fit
region to 3.0 GeV2 ≤ M2 ≤ 3.5 GeV2 where C(Q2) is
clearly stable in M2 for all values of Q2.

We do the fitting for s1/2
0 = 4.4 GeV as the results

do not depend much on this parameter, the results are
shown bellow:

c1 = 2.5 × 10−2 GeV7,

c2 = 38 GeV2,
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uate the decay rate itself, for any one of the decays:
X → J/ψρ or X → J/ψω, since they will be the same.
Therefore, we choose to work with X → J/ψω since the
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In the OPE side we consider condensates up to di-
mension five , as shown in Fig. 4. Taking the limit
p2 = p′2 = −P 2 and doing a single Borel transform to
P 2 → M2, we get in the structure ϵανσγp′σqγp′µ (the same
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and B gives the contribution of the pole-continuum tran-
sitions [27, 28, 29]. s0 and u0 are the continuum thresh-
olds for X and J/ψ respectively. Notice that in Eq.(65)
we have introduced the form factor gXψω(Q2). This is
because the meson ω is off-shell in the vertex XJ/ψω.

If we parametrize C(Q2) as a monopole:

C(Q2) =
c1

Q2 + c2
, (67)

we can fit the left hand side of Eq. (64) as a function
of Q2 and M2 to the QCDSR results in the right hand
side, obtaining c1, c2 and B. In Fig. 5 we show the
points obtained if we isolate C(Q2) in Eq. (64) and vary
both Q2 and M2. The function C(Q2) (and consequently
gXψω(Q2)) should not depend on M2, so we limit our fit
region to 3.0 GeV2 ≤ M2 ≤ 3.5 GeV2 where C(Q2) is
clearly stable in M2 for all values of Q2.

We do the fitting for s1/2
0 = 4.4 GeV as the results

do not depend much on this parameter, the results are
shown bellow:

c1 = 2.5 × 10−2 GeV7,

c2 = 38 GeV2,

OPE side: if X(3872) is a genuine tetraquark state, only 
color-conected diagrams will contribute
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Compatible with the experimental X(3872) width: Γ<1.2 MeV
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with

E =
gZcDD∗(Q2)λZcfD∗fDm2

D

mcmD∗(m2
Zc

−m2
D∗)

. (33)

We use the experimental values for mD and mD∗ [36]
and we extract fD and fD∗ from ref. [26]:

mD = 1.869 GeV, fD = (0.18± 0.02) GeV,

mD∗ = 2.01 GeV, fD∗ = (0.24± 0.02) GeV. (34)

In Fig. 6 we show gZcDD∗(Q2), as a function of both
M2 and Q2, from where we notice that we get a Borel
stability in the region 2.2 ≤ M2 ≤ 2.8 GeV2.

FIG. 7. QCDSR results for gZcDD∗(Q2), as a function of
Q2, for ∆s0 = 0.5 GeV (squares). The solid line gives the
parametrization of the QCDSR results through Eq. (24).

Fixing M2 = 2.6 GeV2 we show in Fig. 7, through
the squares, the Q2 dependence of the gZcDD∗(Q2) form
factor. Again, to extract the coupling constant we fit the
QCDSR results using the exponential form in Eq. (24)
with g1 = 1.733 GeV and g2 = 0.076 GeV−2. The line
in in Fig. 7 shows the fit of the QCDSR results for

∆s0 = 0.5 GeV, using Eq. (24). We get for the coupling
constant:

gZcDD∗ = gZcDD∗(−m2
D) = (2.5± 0.3) GeV. (35)

The uncertainty in the coupling constant comes from
variations in s0, λZc , fD, fD∗ and mc. This value for
this coupling is again in excelent agreement with the es-
timate presented in [17]. Using again Eq. (13) with this
coupling, the decay width in this channel is

Γ(Z+
c → D+D̄∗0) = (3.2± 0.7) MeV. (36)

V. CONCLUSIONS

In conclusion, we have used the three-point QCDSR
to evaluate the coupling constants in the vertices
Z+
c (3900)J/ψπ+, Z+

c (3900)ηcρ+ and Z+
c (3900)D+D̄∗0.

In the case of the Z+
c (3900)J/ψπ+ vertex, we have used

the sum rule at the pion pole, and the coupling was
extracted directly from the sum rule. In the cases of
Z+
c (3900)ηcρ+ and Z+

c (3900)D+D̄∗0 vertices, we have
extracted the form factors, and the couplings were ob-
tained with a fit of the QCDSR results. In the three
cases we have only considered the color connected di-
agrams, since we expect the Zc(3900) to be a genuine
tetraquark state with a non-trivial color structure. The
obtained couplings, with the respective decay widths, are
given in Table I. We have also included in this table the
results for the vertex Z+

c (3900)D̄0D∗+, since it is exactly
the same result as in the Z+

c (3900)D+D̄∗0 vertex.

Table I: Coupling constants and decay widths in different
channels.

Vertex coupling constant (GeV) decay width (MeV)

Z+
c (3900)J/ψπ+ 3.89 ± 0.56 29.1 ± 8.2

Z+
c (3900)ηcρ+ 4.85 ± 0.81 27.5 ± 8.5

Z+
c (3900)D+D̄∗0 2.5± 0.3 3.2 ± 0.7

Z+
c (3900)D̄0D∗+ 2.5± 0.3 3.2 ± 0.7

Considering these four decay channels we get a total
width Γ = (63.0 ± 18.1) GeV for Zc(3900) which is in
agreement with the two experimental values: Γ = (46 ±
22) MeV from BESIII [1], and Γ = (63 ± 35) MeV from
BELLE [2].
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e−m2
D∗/M

2

− e−m2
Zc

/M2
)

+ F e−s0/M
2
]

=

mc⟨q̄gσ.Gq⟩
48

√
2π2

[

1

m2
c +Q2

∫ 1

0
dα
α(2 + α)

1− α
e

−m2
c

α(1−α)M2

− e−m2
c/M

2
∫ 1

0
dα

α(2 + α)

m2
c + (1− α)Q2

]

, (32)

with

E =
gZcDD∗(Q2)λZcfD∗fDm2

D

mcmD∗(m2
Zc

−m2
D∗)

. (33)

We use the experimental values for mD and mD∗ [36]
and we extract fD and fD∗ from ref. [26]:

mD = 1.869 GeV, fD = (0.18± 0.02) GeV,

mD∗ = 2.01 GeV, fD∗ = (0.24± 0.02) GeV. (34)

In Fig. 6 we show gZcDD∗(Q2), as a function of both
M2 and Q2, from where we notice that we get a Borel
stability in the region 2.2 ≤ M2 ≤ 2.8 GeV2.

FIG. 7. QCDSR results for gZcDD∗(Q2), as a function of
Q2, for ∆s0 = 0.5 GeV (squares). The solid line gives the
parametrization of the QCDSR results through Eq. (24).

Fixing M2 = 2.6 GeV2 we show in Fig. 7, through
the squares, the Q2 dependence of the gZcDD∗(Q2) form
factor. Again, to extract the coupling constant we fit the
QCDSR results using the exponential form in Eq. (24)
with g1 = 1.733 GeV and g2 = 0.076 GeV−2. The line
in in Fig. 7 shows the fit of the QCDSR results for

∆s0 = 0.5 GeV, using Eq. (24). We get for the coupling
constant:

gZcDD∗ = gZcDD∗(−m2
D) = (2.5± 0.3) GeV. (35)

The uncertainty in the coupling constant comes from
variations in s0, λZc , fD, fD∗ and mc. This value for
this coupling is again in excelent agreement with the es-
timate presented in [17]. Using again Eq. (13) with this
coupling, the decay width in this channel is

Γ(Z+
c → D+D̄∗0) = (3.2± 0.7) MeV. (36)

V. CONCLUSIONS

In conclusion, we have used the three-point QCDSR
to evaluate the coupling constants in the vertices
Z+
c (3900)J/ψπ+, Z+

c (3900)ηcρ+ and Z+
c (3900)D+D̄∗0.

In the case of the Z+
c (3900)J/ψπ+ vertex, we have used

the sum rule at the pion pole, and the coupling was
extracted directly from the sum rule. In the cases of
Z+
c (3900)ηcρ+ and Z+

c (3900)D+D̄∗0 vertices, we have
extracted the form factors, and the couplings were ob-
tained with a fit of the QCDSR results. In the three
cases we have only considered the color connected di-
agrams, since we expect the Zc(3900) to be a genuine
tetraquark state with a non-trivial color structure. The
obtained couplings, with the respective decay widths, are
given in Table I. We have also included in this table the
results for the vertex Z+

c (3900)D̄0D∗+, since it is exactly
the same result as in the Z+

c (3900)D+D̄∗0 vertex.

Table I: Coupling constants and decay widths in different
channels.

Vertex coupling constant (GeV) decay width (MeV)

Z+
c (3900)J/ψπ+ 3.89 ± 0.56 29.1 ± 8.2

Z+
c (3900)ηcρ+ 4.85 ± 0.81 27.5 ± 8.5

Z+
c (3900)D+D̄∗0 2.5± 0.3 3.2 ± 0.7

Z+
c (3900)D̄0D∗+ 2.5± 0.3 3.2 ± 0.7

Considering these four decay channels we get a total
width Γ = (63.0 ± 18.1) GeV for Zc(3900) which is in
agreement with the two experimental values: Γ = (46 ±
22) MeV from BESIII [1], and Γ = (63 ± 35) MeV from
BELLE [2].
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