Hard probes of heavy ion collisions with ATLAS

Martin Krivos for ATLAS collaboration

CHARLES UNIVERSITY Faculty of mathematics and physics

QCD22 Montpellier

Introduction

Introduction

Inclusive jet production

• Deviation from unity \rightarrow isospin effect

 $u\bar{d} \to W^+$ and $d\bar{u} \to W^-$ processes

D(p_T) and D(z) distributions arXiv:1805.05424 (5.02TeV), PRC 98 (2018) 024908, EPJC 77 (2017) 379

To understand the large jet suppression we need to measure modifications of the jet substructure

$$z \equiv \frac{p_{\rm T}}{p_{\rm T}^{\rm jet}} \cos \Delta R$$
$$R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$$

$D(p_{\tau})$ and D(z) distributions arXiv:1805.05424 (5.02TeV), PRC 98 (2018) 024908, EPJC 77 (2017) 379

To understand the large jet suppression we need to measure modifications of the jet substructure

γ -tagged jets

• Q: Is there <u>flavour dependence</u> of the energy loss?

γ -tagged jets

Suppression is present

Suppression is present

- Ratio > 1 → visible effect from colour difference
- Quarks lose less energy than ₁₀ gluons

Z-tagged charged particles

- Motivation:
 - Get lower in p_{T}
 - Removes the survival bias
 - Z-tagging constrains the jet flavor
- Ratio of per-Z yields:

 $I_{\rm AA} = Y_{\rm Pb+Pb}/Y_{pp}$

No explicit jet required

Z-tagged charged particles

- Motivation:
 - Get lower in p_{T}
 - Removes the survival bias
 - Z-tagging constrains the jet flavor
- Ratio of per-Z yields:

 $I_{\rm AA} = Y_{\rm Pb+Pb}/Y_{pp}$

• No explicit jet required

12

Z-tagged charged particles

- Larger amplitude
 - \circ smaller Z p_T

 0-10% centrality JEWEL theoretical prediction describes the trends

b-tagged jets

Q: Is there <u>mass dependence</u> of the energy loss?

Dead cone effect:

Josef m/E

Heavy-tagged jets

Inclusive jets - lighter quarks

b-tagged jets

Less suppression of b-jets than inclusive jets

 R_{AA} (b-jet) / R_{AA} (inc. jet) ~20% above unity

Less suppression of b-jets than inclusive jets

$\mathsf{R}_{\mathsf{A}\mathsf{A}}$ of muons from D and B meson decays

ATLAS-CONF-2021-020

Underprediction at low p_{τ} from

charmonia model

Central collisions: 0 - 10%

High p_T : About the same suppression (mass is less important)

Dependence of suppression on jet structure ATLAS-CONF-2022-026

Q: What is the resolution scale of the medium?

Dependence of suppression on jet structure ATLAS-CONF-2022-026

Grooming procedure:

Soft-drop condition:

$$\frac{\min(p_{\rm T}^{sj_1}, p_{\rm T}^{sj_2})}{p_{\rm T}^{sj_1} + p_{\rm T}^{sj_2}} > z_{\rm cut} \left(\frac{\Delta R_{12}}{R}\right)^{\beta}$$

 $r_g = \Delta R_{j1,j2} \rightarrow r_g > 0 \rightarrow jet has substructure$ $\rightarrow r_g = 0 \rightarrow jet does not have substructure$

$$\Delta R_{12} = \sqrt{\Delta \eta_{12}^2 + \Delta \phi_{12}^2}$$

Dependence of suppression on jet structure ATLAS-CONF-2022-026

Dijet balance

 $x_{\rm J} \equiv p_{\rm T_2}/p_{\rm T_1}$

- Broadening of x_{J} for low cent. and p_{T}
- High $p_T \rightarrow$ no visible broadening. (not shown)

Dijet balance

 $x_{\rm J} \equiv p_{\rm T_2}/p_{\rm T_1}$

- Broadening of x_{J} for low cent. and p_{T}
- High $p_T \rightarrow$ no visible broadening. (not shown)

 Not low x_j increase, but rather high x_j decrease

Upsilon suppression

- The theory predicts sequential melting dependent on the binding energy
- Good analogy with Debeye screening

Upsilon suppression

- The theory predicts sequential melting dependent on the binding energy
- Good analogy with Debeye screening

Upsilon suppression

 Expected suppression hierarchy confirmed: 1S < 2S < (2+3)S

 No strong p_T or |y| dependence is observed.

- Presence of QGP is affecting produced particles in the scattering process
- Significant suppression in Pb+Pb wrt pp collisions reported for:
 - \circ inclusive jets, γ -tagged jets, and b-tagged jets
 - B and D mesons
 - charmonia and bottomonia
- Substructure of the jets is studied to better understand the mechanism of energy loss
- To understand the role of fluctuations and path-length in the jet quenching the dijet suppression is quantified

Thank you for your attention

Questions?

Measuring fragmentation function

To understand the large jet suppression we need to measure modifications of the jet substructure

$$R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$$

Dependence of suppression on jet structure ATLAS-CONF-2019-056

- First measurement of large-R heavy-ion jets
- R=0.2 jets with p_T > 35 GeV reclustered using anti-k_T
 - Soft contribution removed
 - \circ Recluster with anti-k_T
 - Allows to study k_{τ} splitting scale
- Observe suppression up to 1 TeV

Dependence of suppression on jet structure ATLAS-CONF-2019-056

Jets with single sub jet are less suppressed

$$\sqrt{d_{12}} = \min(p_{T,1}, p_{T,2}) \cdot \Delta R_{12}$$

