

Open heavy flavour production in small systems with ALICE

Susanna Costanza University and INFN – Pavia, Italy On behalf of the ALICE Collaboration

Heavy flavour (HF) in pp collisions

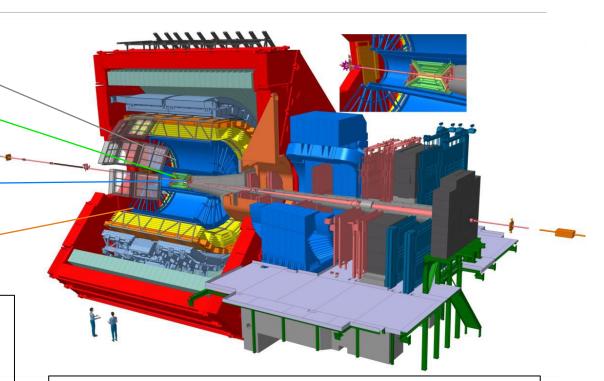
- Charm and beauty (**HF**) **production** measurements in pp collisions represent a fundamental **test** of perturbative QCD (**pQCD**) calculations.
- The standard cross section description is based on **factorisation approach**:

$$\frac{\mathrm{d}\sigma^{\mathrm{H}_{c}}}{\mathrm{d}\sigma^{\mathrm{H}_{c}}_{p_{\mathrm{T}}}}(p_{\mathrm{T}};\mu_{F},\mu_{R}) = \boxed{\mathrm{PDF}(x_{1},\mu_{F}) \cdot \mathrm{PDF}(x_{2},\mu_{F})}_{\mathbf{Parton distribution functions (PDFs)}} \otimes \underbrace{\frac{\mathrm{d}\sigma^{c}}{\mathrm{d}p^{c}_{\mathrm{T}}}(x_{1},x_{2};\mu_{R},\mu_{F})}_{\mathbf{Hard scattering cross section (pQCD)}} \otimes \underbrace{D_{\mathrm{c} \to H_{c}}(z = \frac{p_{\mathrm{H}_{c}}}{p_{c}},\mu_{F})}_{\mathbf{Fagmentation function (hadronisation)}}$$

- Fragmentation fractions are assumed universal among collision systems and constrained from e⁺e⁻ and e⁻p measurements
- Ratios of particle species \rightarrow ratios of fragmentation fractions, sensitive to HF quark hadronisation $f(c \rightarrow H_c) = \sigma(H_c)/\sigma(c\bar{c})$

The ALICE experiment

V0: trigger, centrality


Inner Tracking System (ITS): tracking, vertexing (primary, secondary HF), PID via dE/dx, trigger

Time Projection Chamber(TPC): tracking, PID via dE/dx

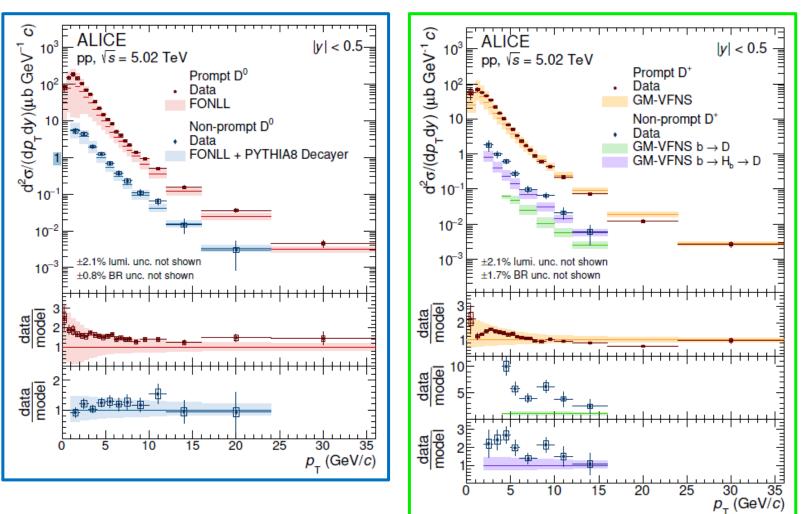
Time Of Flight (TOF): PID via time of flight

Reconstructed decays (open heavy flavours):

- D mesons: $D^0(uc) \rightarrow K^-\pi^+$, $D^+(dc) \rightarrow K^-\pi^+\pi^+$
- $D_s^+(cs) \to \Phi \pi^+$
- $\Lambda_c^+(udc) \to pK^-\pi^+, \ pK_s^0 \to p\pi^+\pi^-$
- $\Sigma_{c}^{0,++}(ddc, uuc) \rightarrow \Lambda_{c}^{+}\pi^{-,+}$
- $\bullet \quad \Xi^0_c(dsc) \to \Xi^- e^+ \nu_e, \Xi^- \pi^+$
- $\Xi_c^+(usc) \to \Xi^- \pi^+ \pi^+$
- $\Omega_{\rm c}^0({\rm ssc}) \to \Omega^- \pi^+$

Data samples:

p pp


•
$$\sqrt{s} = 5.02 \text{ TeV} \rightarrow L_{\text{int}} \approx 19 \text{ nb}^{-1}$$

•
$$\sqrt{s} = 13 \text{ TeV} \rightarrow L_{\text{int}} \approx 32 \text{ nb}^{-1}$$

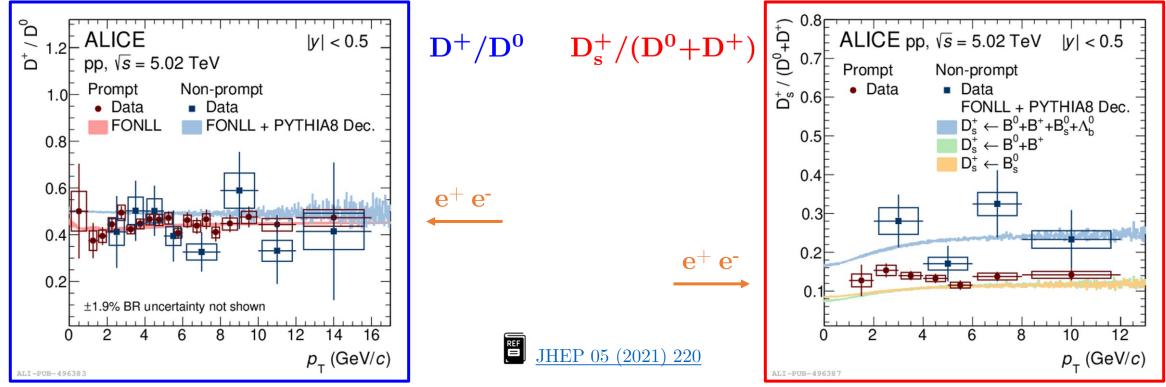
• p-Pb
•
$$\sqrt{s_{\rm NN}} = 5.02 \text{ TeV} \rightarrow L_{\rm int} \approx 287 \ \mu \text{b}^{-1}$$

D meson production in pp collisions

 $\mathbf{D^0}$

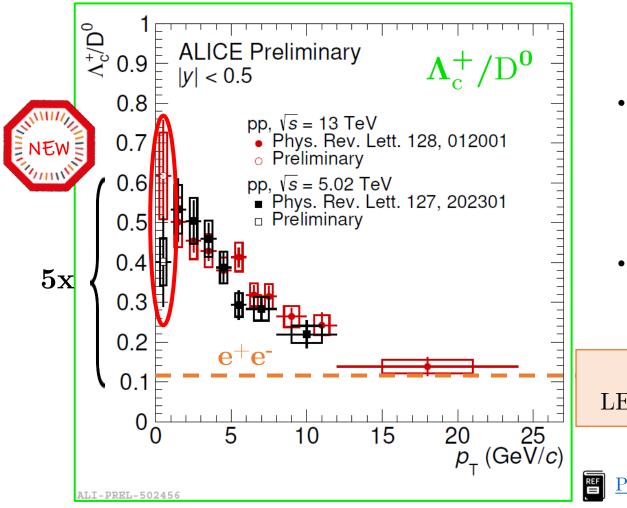

\mathbf{D}^+

 $\mathrm{D}^{0,+}$ measured down to $p_{\mathrm{T}}=0$


JHEP 05 (2021) 220

REF

- $p_{\rm T}$ differential cross sections described within uncertainties by pQCD models
- GM-VFNSpredictionsunderestimatenon-prompt(from b quarks)D-meson crosssections
- Data provide good constraints
 for models (experimental uncertainties lower that theory ones)

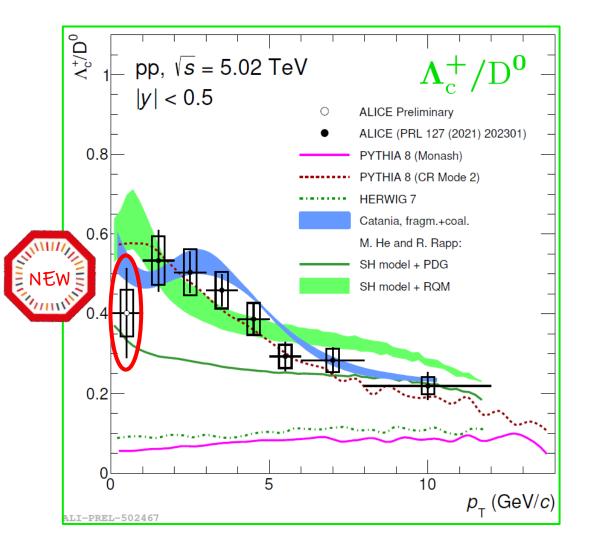


Charm hadron formation in PP collisions

- Meson-to-meson ratio is $p_{\rm T}$ and collision system independent
- D^+/D^0 prompt and non-prompt ratios are in **agreement** with:
 - **pQCD** model calculations (FONLL, JHEP 10 (2012) 137), based on factorisation approach and relying on universal fragmentation fractions (e⁺e⁻, e⁻p measurements)
 - e⁺e⁻ and e⁻p measurements
- $D_s^+/(D^0+D^+)$ higher for non-prompt mesons \rightarrow substantial B_s^0 -decay contribution

Charm hadron formation in pp collisions

 ${
m First} \ \Lambda_c^+ {
m measurement} \ {
m down} \ {
m to} \ p_{
m T} = 0$

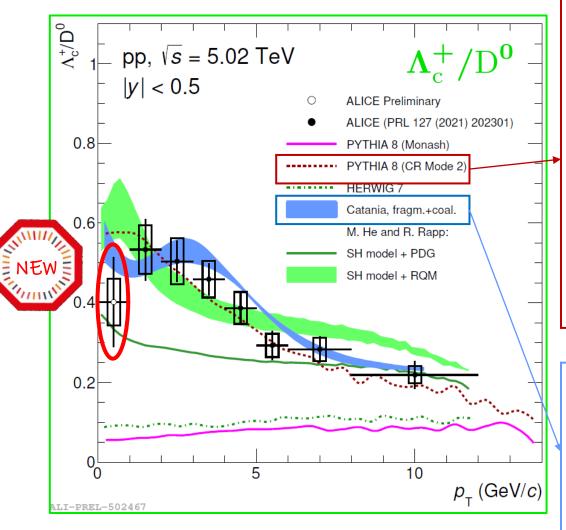

- Charmed baryon-to-meson ratio shows a strong $p_{\rm T}$ dependence
 - ratio significantly higher that in e⁺e⁻ and e⁻p collisions: factor 2x 5x (at low $p_{\rm T}$) enhancement
- Centre of mass energy independence within uncertainties ($\sqrt{s} = 5.02$ TeV and $\sqrt{s} = 13$ TeV)

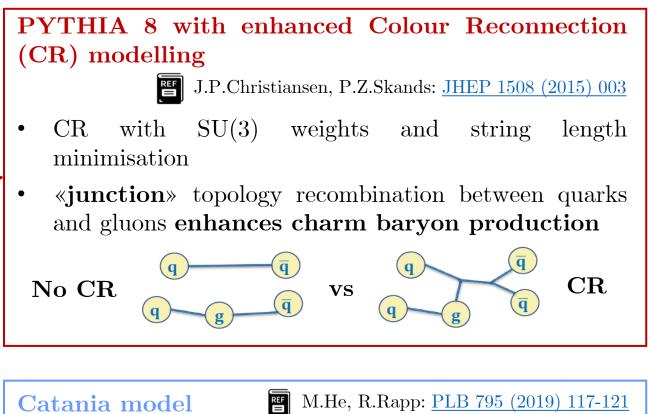
LEP average, <u>EPJC 75, 19 (2015)</u>

 $0.113 \pm 0.013 \pm 0.006$

Phys. Rev. Lett. 127, 202301 (2021) Phys. Rev. Lett. 128, 012001 (2022)

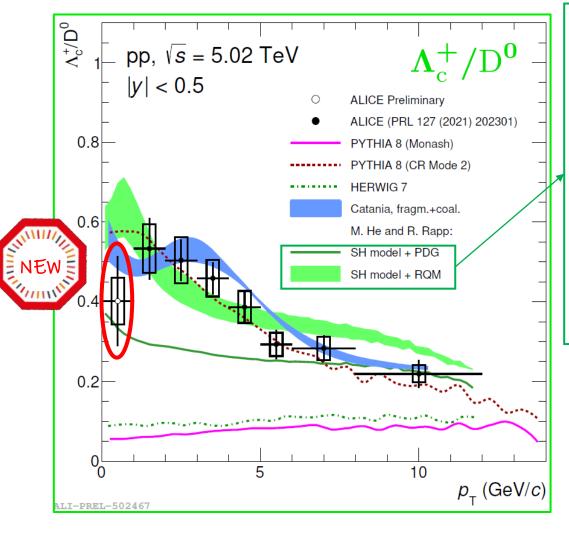
 Λ^+_{c}/D^{o} in pp collisions - models




 Models tuned to reproduce e⁺e⁻ results, assuming universal fragmentation fractions (i.e. HERWIG7, GM-VFNS) underestimate Λ⁺_c/D⁰ measurements in pp collisions

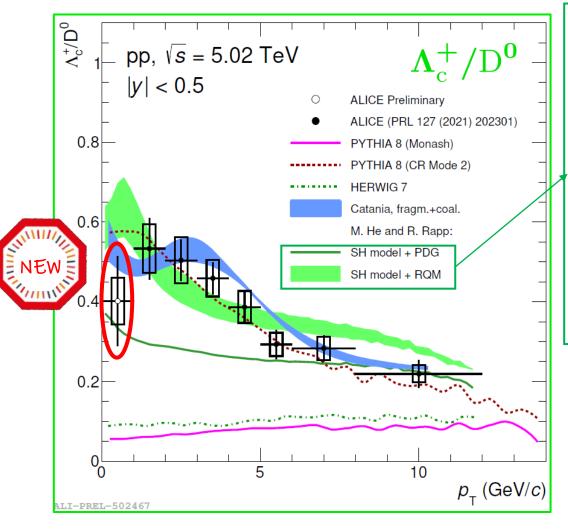
Further hadronisation mechanisms? Non-universal fragmentation fractions?

• Models including enhanced HF hadronisation mechanisms better describe the results


 Λ^+_{c}/D^{o} in pp collisions - models

- Light quarks (u,d,s) and gluons assumed as thermalised system
- Mixed hadron formation: **fragmentation** + **coalescence** (imposed as only mechanism at $p \rightarrow 0$)

 Λ^+_{c}/D^{o} in pp collisions - models

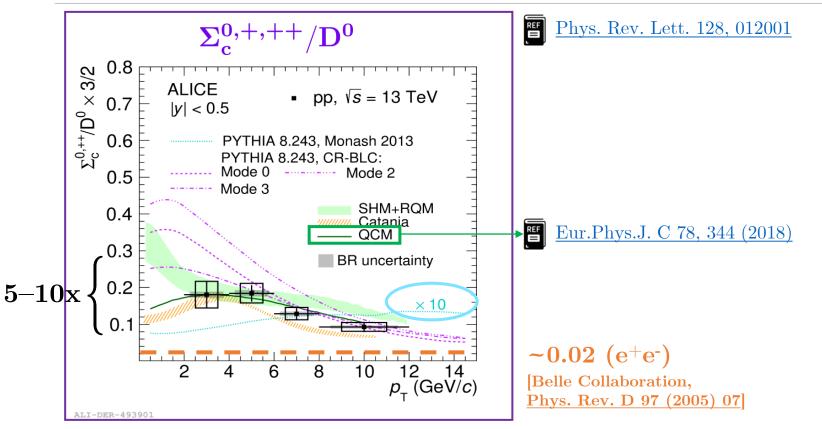


Statistical Hadronisation Model and Relativistic Quark Model (SHM + RQM)

E M.He, R.Rapp: <u>PLB 795 (2019) 117-121</u>

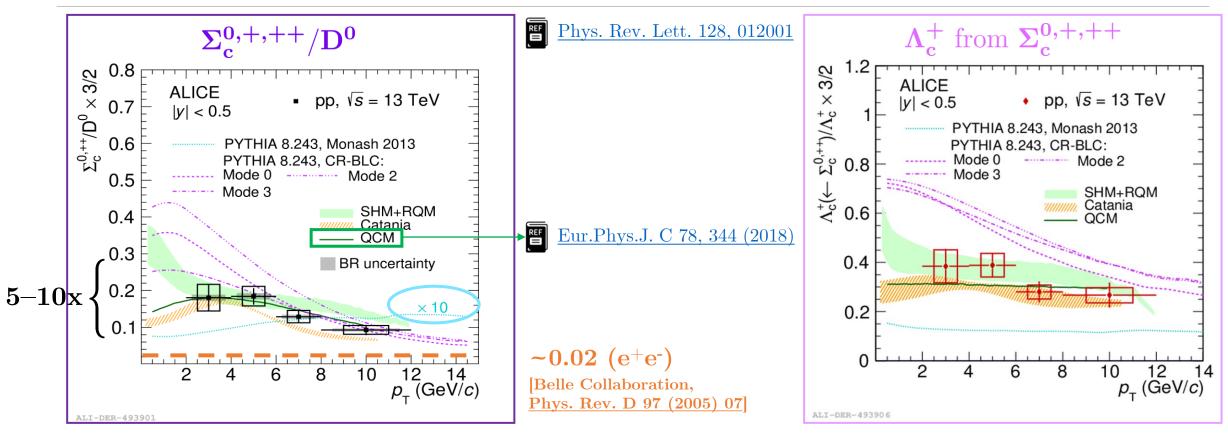
- Hadronisation driven by statistical weights governed by hadron masses at hadronisation temperature $T_{\rm H}$ $(n_{\rm i} \sim m_{\rm i}^2 T_{\rm H} K_2(m_{\rm i}/T_{\rm H}))$
- Strong feed-down from an augmented set of excited charm baryons
 - PDG/RQM define quantity of decaying additional baryons

 Λ^+_{c}/D^{o} in pp collisions - models


Statistical Hadronisation Model and Relativistic Quark Model (SHM + RQM)

E M.He, R.Rapp: <u>PLB 795 (2019) 117-121</u>

- Hadronisation driven by statistical weights governed by hadron masses at hadronisation temperature $T_{\rm H}$ $(n_{\rm i} \sim m_{\rm i}^2 T_{\rm H} K_2(m_{\rm i}/T_{\rm H}))$
- Strong feed-down from an augmented set of excited charm baryons
 - PDG/RQM define quantity of decaying additional baryons


Further baryon measurements to understand the mechanisms that influence baryon enhancement

Heavier charmed baryons: $\Sigma_{c}^{0,+,++}(2455)$

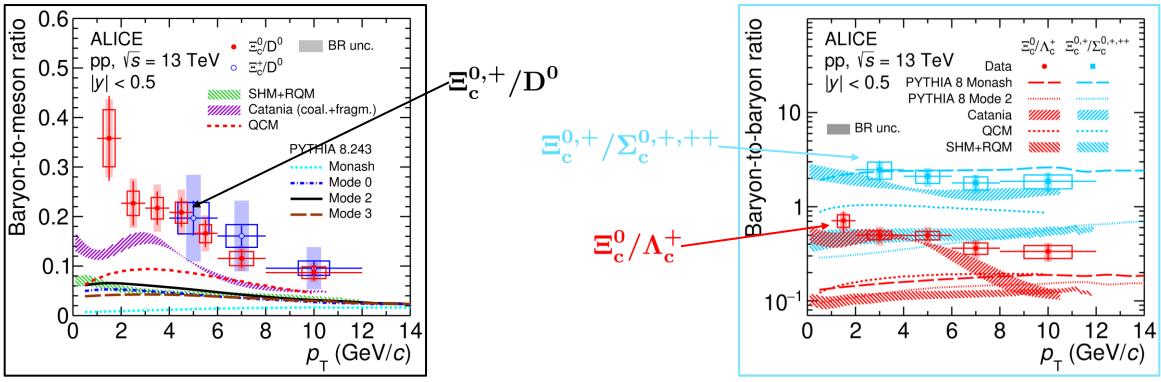
- Ratio larger than e^+e^- results and **PYTHIA Monash** (based on e^+e^-)
- $\Sigma^{0,+,++}/D^0$ well described by predictions from SHM+RQM, Catania and QCM

Heavier charmed baryons: $\Sigma_c^{0,+,++}(2455)$

- Ratio larger than e^+e^- results and **PYTHIA Monash** (based on e^+e^-)
- $\Sigma^{0,+,++}/D^0$ well described by predictions from SHM+RQM, Catania and QCM
- The ratio enhancements partially accounts for larger Λ_c^+/D^0
- Measurement of Λ_c feed-down from Σ_c : $\Lambda_c^+ (\leftarrow \Sigma_c) / \Lambda_c^+ = 0.38 \pm 0.06 \text{ (stat.)} \pm 0.06 \text{ (syst.)}$

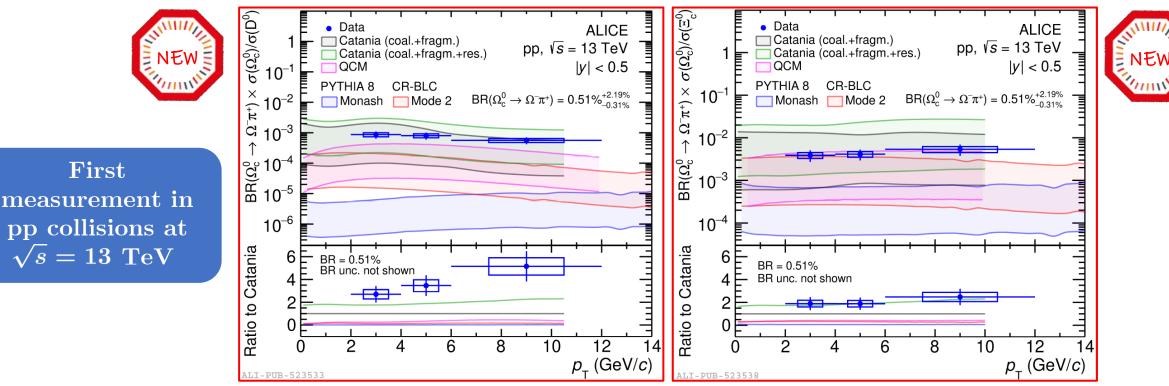
Strange charmed baryons: $\Xi_{c}^{0,+}$

Phys. Rev. Lett. 127, 271001
JHEP 10 (2021) 159


0.6 Baryon-to-meson ratio ALICE Ξ⁰_c/D⁰ BR unc. pp, √*s* = 13 TeV Ξ_{a}^{+}/D^{0} 0.5F $\Xi_{\rm c}^{0,+}/{
m D}^0$ |y| < 0.5SHM+RQM Catania (coal.+fragm.) 0.4 QCM **PYTHIA 8.243** 0.3 Monash Mode 0 Mode 2 Mode 3 2 0.1 12 0 6 8 10 14 p_{τ} (GeV/c)

- Clear $p_{\rm T}$ dependence
- Significantly underestimated by models
 - factor ~30 at low $p_{\rm T}$ wrt PYTHIA Monash
 - Catania model (fragm. + coal.) closer to measurements than other theories

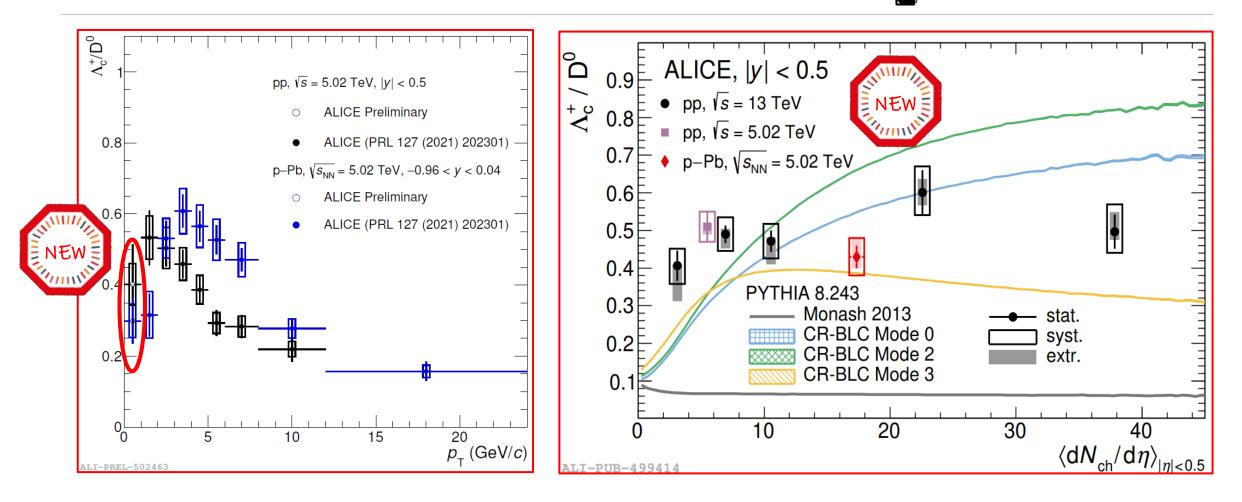
Strange charmed baryons: $\Xi_{c}^{0,+}$


E <u>Phys. Rev. Lett. 127, 271001</u>

<u>JHEP 10 (2021) 159</u>

- Clear $p_{\rm T}$ dependence
- Significantly underestimated by models
 - factor ~30 at low $p_{\rm T}$ wrt PYTHIA Monash
 - Catania model (fragm. + coal.) closer to measurements than other theories
- $\Xi_c^{0,+}/\Sigma_c^{0,+,++}$ in agreement with PYTHIA Monash
 - similar suppression in e^+e^- for $\Xi_c^{0,+}$ and $\Sigma_c^{0,+,++}$

Doubly strange charmed baryons: Ω_{c}^{0}


- Branching ratio $BR(\Omega_c^0 \to \Omega_c^- \pi^+) = (0.51 \pm 0.07)\%$ from Y. Hsiao et al., <u>EPJC 80, 1066 (2020)</u>
- **PYTHIA 8** + **CR-BLC** effects **underestimates** the data
- Better **agreement with coalescence** models
- Ω_c^0/Ξ_c^0 described by Catania (fragm. + coal.) including higher-mass resonance decays
- $\Omega_c^0/\Xi_c^0 \approx 1 \implies$ important contribution to charm production at LHC energies by Ω_c^0 ?

REF

arXiv:2205.13993

 Λ^+/D^0 in pp and in p-Pb

Phys. Rev. D 105, L011103 (2022)

- Λ_c^+/D^0 in p-Pb collisions larger than in pp collisions for $p_T > 3 \text{ GeV/c}$ (harder $p_T(\Lambda_c^+)$ spectrum)
- Compatible $p_{\rm T}$ -integrated $\Lambda_{\rm c}^+/{\rm D}^0$ ratio in pp and p-Pb collisions within uncertainties

Charm fragmentation in PP and in P-Pb

Charm fragmentation fractions in hadronic collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV

- pp: Phys. Rev. D 105, L011103 (2022)
- p**-**Pb:
 - D^0 and Λ_c : measured
 - D⁺ and D^{*}_s: extrapolated to $p_{\rm T}=0$ with PYTHIA+POWEG
 - $\Xi_{\rm c}^0$: not measured $\rightarrow \sigma_{\rm pp}(\Xi_{\rm c}^0) \times 208 \times R_{\rm pPb}(\Lambda_{\rm c}^+)$

- pp and p–Pb results compatible
- Significant baryon enhancement with respect to e⁺e⁻ and e⁻p

- pQCD calcuations based on factorisation approach and assuming universal fragmentation fractions among different collision systems do not describe charm baryon production in hadronic collisions at the LHC:
 - **baryon-to-meson ratios** and **fragmentation fractions** significantly **differ** among different collision systems

 \rightarrow charm parton-to-hadron fragmentation is not universal across different collision systems

- Additional charm hadronisation mechanisms could happen in pp compared to e⁺e⁻ and e⁻p
 - \rightarrow models including enhanced baryon production better describe the ALICE data
 - \rightarrow more studies are needed to discriminate among different theoretical descriptions
- New measurements will open new physics horizons, thanks to:
 - Run 3 and Run 4 larger statistics and improved tracking resolution
 - a new heavy-ion experiment at LHC for Run 5 and 6