

Recent results from the NA62 and NA48/2 experiments at CERN

Andrea Bizzeti

University of Modena and Reggio Emilia and I.N.F.N. Sezione di Firenze, Italy

on behalf of the NA62 and NA48/2 collaborations

QCD 2022 Conference – Montpellier, France 7 July 2022

Outline

The NA62 experiment

Search for the $K^+ \rightarrow \pi^-(\pi^0) \, e^+ e^+$ LNV decays

Measurement of the $K^+ \rightarrow e^+ \nu \gamma$ decay

First observation of $K^+ \rightarrow \pi^0 \pi^0 \mu^+ \nu$ @ NA48/2

Summary

A. Bizzeti

The NA62 experiment

Search for the $K^+ \rightarrow \pi^-(\pi^0) e^+ e^+$ LNV decays

Measurement of the $K^+ \rightarrow e^+ \nu \gamma$ decay

First observation of $K^+ \rightarrow \pi^0 \pi^0 \mu^+ \nu$ @ NA48/2

Summary

The NA62 experiment

- Primary goal: BR($K^+ \rightarrow \pi^+ \nu \bar{\nu}$) [PLB 791 (2019) 156, JHEP 11 (2020) 042, JHEP 06 (2021) 093]
- New technique: K^+ decay-in-flight
- Broader Kaon physics programme:
 - Rare K^+ decays (e.g. $K^+ \to \pi^+ \mu^+ \mu^-$)
 - LNV/LFV decays [this talk]
 - Exotics (e.g. HNL, ...)
 - $\blacktriangleright K^+ \to e^+ \nu \gamma \text{ [this talk]}$

The NA62 beam and detector

A. Bizzeti

Recent NA62 and NA48/2 results

QCD2022

The NA62 experiment

Search for the $K^+ \to \pi^-(\pi^0) e^+ e^+$ LNV decays

Measurement of the $K^+ \rightarrow e^+ \nu \gamma$ decay

First observation of $K^+ \rightarrow \pi^0 \pi^0 \mu^+ \nu$ @ NA48/2

Summary

QCD2022

7/30

Searches for LNV decays

 Observation of Lepton Number Violation (LNV) would be a clear indication of BSM physics

• e.g. $K^+ \rightarrow \pi^- l_1^+ l_2^+$ via exchange of a Majorana neutrino (as in $0\nu\beta\beta$ decays) [JHEP 05(2009) 030], [PLB 491 (2000) 285]

A. Bizzeti

Recent NA62 and NA48/2 results

Event selection

- Select 3-track events forming a Q = +1 vertex in the FV
- Track momentum within 6–44 GeV/c
- ▶ Track separation at LKr > 200 mm
- $|P_{tot} P_{beam}| < 2(3) \text{ GeV/c}$ for $\pi ee(\pi \pi^0 ee)$; $P_T < 30 \text{ MeV/c}$
- LAV photon veto
- $e \operatorname{and} \pi$ identified using $E(\mathrm{LKr})/P$: $0.95 < \frac{E}{P}(e) < 1.05, \frac{E}{P}(\pi) < 0.85$

For $K^+ \rightarrow \pi^- \pi^0 e^+ e^+$ search:

- reconstruct $\pi^0 \rightarrow \gamma \gamma$ decay from 2 isolated photons in LKr
- the longitudinal position of π^0 decay $Z_{\pi^0} = Z_{\text{LKr}} - D_{12}\sqrt{E_1E_2}/m_{\pi^0}$ must be consistent with the decay vertex

Blind analysis: 1) plot the $\pi^-(\pi^0)e^+e^+$ invariant mass distribution; 2) uncover signal region after finalizing all cuts.

Recent NA62 and NA48/2 results

QCD2022

 $K^+ \rightarrow \pi^- e^+ e^+$ (LNV) RICH-based e^+ identification used to suppress dominant backgrounds from $K^+ \to \pi^+ \pi^0_D(\pi^0_D \to e^+ e^- \gamma)$ and $K^+ \to \pi^+ e^+ e^-$ with double π/e mis-ID $\pi^+ e^+ e^-$ (normalization) $\pi^- e^+ e^+$ (LNV) [signal region] Events/ (2 MeV/c² 00 00 Events / (4 MeV/c² K⁺→π⁺π⁻e⁺v 10² 10 10 10^{-2} 10 350 300 400 450 500 550 200 250 300 350 400 450 500 550 $m(\pi^+ e^+ e^-)$ [MeV/c²] $m(\pi^{-}e^{+}e^{+})$ [MeV/c²] Observed $\pi^- e^+ e^+$ candidate events in signal region: 0 Expected background events: 0.43 ± 0.09 BR $(K^+ \to \pi^- e^+ e^+) < 5.3 \times 10^{-11}$ at 90% CL. [PLB 830 (2022) 137172] Factor 4 improvement w.r.t. previous measurement [PLB 797 (2019) 134794]

Recent NA62 and NA48/2 results

QCD2022

9/30

 $K^+ \rightarrow \pi^- \pi^0 e^+ e^+ (\text{LNV})$

The NA62 experiment

Search for the $K^+ \rightarrow \pi^-(\pi^0) e^+ e^+$ LNV decays

Measurement of the $K^+ \rightarrow e^+ \nu \gamma$ decay

First observation of $K^+ \rightarrow \pi^0 \pi^0 \mu^+ \nu$ @ NA48/2

Summary

A. Bizzeti

Recent NA62 and NA48/2 results

QCD2022

11/30

The $K^+ \rightarrow \pi^0 e^+ \nu \gamma (K_{e3\gamma})$ decay

Dominant Inner Bremsstrahlung (IB) decay amplitude:

- divergent for $E_{\gamma} \rightarrow 0$ and $\theta_{e\gamma} \rightarrow 0$
- parametrized in terms of K_{e3} form factors
- Direct Emission (DE) $\approx 1\%$ of total amplitude:
 - calculated up to $\mathcal{O}(p^6)$ in ChPT

A. Bizzeti

$BR(K^+ \rightarrow \pi^0 e^+ \nu \gamma)$: present status

Define three kinematical regions (i = 1, 2, 3):

$$R_{j} = \frac{\mathrm{BR}(K_{e3\gamma}^{j \operatorname{cut}})}{\mathrm{BR}(K_{e3})} = \frac{\mathrm{BR}(K^{+} \to \pi^{0}e^{+}\nu\gamma)[E_{\gamma}^{j \operatorname{cut}}, \theta_{e\gamma}^{j \operatorname{cut}}]}{\mathrm{BR}(K^{+} \to \pi^{0}e^{+}\nu)}$$

 \triangleright Cuts are applied on photon energy E_{γ} and photon-positron opening angle $\theta_{e\gamma}$ (in the Kaon rest frame)

			Theory	Measurements	
		Kubis e	Akin t al., EPJ C50, 557 (2007)	nenko et al., PAN 70, 702 (200 Pol	17) Iyarus et al., EPJ 81, 2, 161 (2021)
Region	E_γ cut	$ heta_{ heta,\gamma}$ cut	<i>О</i> (р ⁶) <u>СhPT</u> [EPJ C 50, 557]	ISTRA+	ОКА
$R_1 (\times 10^2)$	$E_{\gamma} >$ 10 MeV	$ heta_{ heta,\gamma} > 10^\circ$	1.804 ± 0.021	$1.81 \pm 0.03 \pm 0.07$	$1.990 \pm 0.017 \pm 0.021$
$R_2 (\times 10^2)$	$E_{\gamma} >$ 30 MeV	$ heta_{ heta,\gamma} > 20^\circ$	0.640 ± 0.008	$0.63 \pm 0.02 \pm 0.03$	$0.587 \pm 0.010 \pm 0.015$
$R_3 (\times 10^2)$	$E_{\gamma} >$ 10 MeV	$0.6 < \cos heta_{ extsf{e}, \gamma} < 0.9$	0.559 ± 0.006	$0.47 \pm 0.02 \pm 0.03$	$0.532 \pm 0.010 \pm 0.012$

Most recent calculation of $R_2 = (0.56 \pm 0.02)\%$ [Khriplovich et al., PAN 74, 1214 (2010)]

$K^+ \rightarrow \pi^0 e^+ \nu \gamma$ decay: T-asymmetry

T-odd observable ξ (in the Kaon rest frame) and **T-violating** asymmetry A_{ξ} :

$$\xi = \frac{\overrightarrow{p_{\gamma}} \cdot (\overrightarrow{p_e} \times \overrightarrow{p_{\pi}})}{m_K^3} \quad ; \quad A_{\xi} = \frac{N_+ - N_-}{N_+ + N_-}$$

Non-zero A_{ξ} values due to NLO (one-loop) electromagnetic and hadronic corrections

[Müller et al., EPJ C 48 (2006) 427]

<u>Theoretical predictions:</u> $|A_{\xi}^{\text{SM and beyond}}| < 10^{-4}$

State of the art (measurements):

 $A_{\varepsilon}^{ISTRA+}(R_3) = (1.5 \pm 2.1) \times 10^{-2}$

No measurements provided for R_1 and R_2

$K_{e3(\gamma)}$ event selection

- ► 2017–2018 data sample
- Use K_{e3} as normalization channel

- K^+ : track and momentum reconstructed in GTK, identified in KTAG
- e^+ : track and momentum reconstructed in STRAW, identified by RICH and from E(LKr)/P(STRAW)
- Decay vertex identified by K^+ and positron tracks
- $\pi^0 \rightarrow \gamma \gamma$ identified selecting two photons in LKr and reconstructing the invariant mass (assuming they originate from the vertex)
- Radiative γ identified as an extra in-time gamma in LKr
- No in-time extra activity in Veto system and MUV
- ▶ Dedicated kinematic cuts to reject $K^+ \rightarrow \pi^+ \pi^0(\pi^0)$ backgrounds
- Final kinematic selection based on the missing (neutrino) mass both for signal and normalization channels:

$$m_{miss}^2(\underline{K_{e3\gamma}}) = (P_K - P_e - P_{\pi^0} - P_{\gamma})^2$$

$$m_{miss}^2(K_{e3}) = (P_K - P_e - P_{\pi^0})^2$$

QCD2022

- Data

MC Keg

MC Kets Rea

$K_{e3(\gamma)}$ selected events

NA62 Preliminary

R2 selection

Normalization: 66M events, $B/S \sim 10^{-4}$

NA62 Preliminary

R1 selection

-20 -15 -10

Signal(R3): 39K events, $B/S \simeq 0.3\%$

Ke3γ R2 events / (500 MeV²/c⁴ ≅ ੋ

- Deta

MC Keg

MC Kets Bir

QCD2022

5 10 15 20 m²_{miss}(Ke3γ) [MeV²/c⁴]

 $K^+ \to \pi^0 e^+ \nu \gamma$: preliminary R_j measurements

NA48/2 preliminary results based on 2017–2018 data set

	$O(p^6)$ ChPT	ISTRA+	OKA	NA62 preliminary
$R_1 (\times 10^2)$	1.804 ± 0.021	$1.81 \pm 0.03 \pm 0.07$	$1.990 \pm 0.017 \pm 0.021$	$1.684 \pm 0.005 \pm 0.010$
$R_2 (\times 10^2)$	0.640 ± 0.008	$0.63 \pm 0.02 \pm 0.03$	$0.587 \pm 0.010 \pm 0.015$	$0.599 \pm 0.003 \pm 0.005$
$R_3 (\times 10^2)$	0.559 ± 0.006	$0.47 \pm 0.02 \pm 0.03$	$0.532 \pm 0.010 \pm 0.012$	$0.523 \pm 0.003 \pm 0.003$

[Kubis et al.]

- Improved precision (factor between 2 and 3.6) w.r.t. previous results
- ▶ Measured values are 6–7% lower than predictions by Kubis et al.(2007)
- NA62 result for R_2 is half way between the two latest theoretical predictions:

Theor(R_2)= (0.640 ± 0.008)% [Kubis et al., EPJ C50 (2007) 557] Theor(R_2)= (0.56 ± 0.02)% [Khriplovitch et al., PAN 74 (2011) 1214]

NA62 preliminary A_{ξ} measurements

	R_1 selection	R_2 selection	R_3 selection
A_{ξ}^{Data} (×10 ²)	0.2 ± 0.3	0.1 ± 0.4	-0.6 ± 0.5
$A_{\xi}^{\text{MC-reco}}$ (×10 ²)	0.3 ± 0.2	0.4 ± 0.3	0.3 ± 0.5
$A_{\xi}^{\text{MC-gene}}$ (×10 ²)	-0.01 ± 0.01	0.00 ± 0.02	-0.01 ± 0.02
A_{ξ} (×10 ²)	$-0.1\pm0.3_{\rm stat}\pm0.2_{\rm MC}$	$-0.3\pm0.4_{stat}\pm0.3_{MC}$	$-0.9\pm0.5_{stat}\pm0.4_{MC}$

 \triangleright *R*₃ T-asymmetry precision improved by a factor greater than 3:

$$A_{\xi}^{ISTRA+}(R_3) = (1.5 \pm 2.1) \times 10^{-2}$$

▶ First T-asymmetry measurements ever performed for *R*₁ and *R*₂

T-asymmetry consistent with zero, sensitivity still far from theoretical predictions

A. Bizzeti

Recent NA62 and NA48/2 results

QCD2022

18/30

The NA62 experiment

Search for the $K^+ \to \pi^-(\pi^0) e^+ e^+$ LNV decays

Measurement of the $K^+ \rightarrow e^+ \nu \gamma$ decay

First observation of $K^+ \rightarrow \pi^0 \pi^0 \mu^+ \nu$ @ NA48/2

Summary

A. Bizzeti

$K^{\pm} \rightarrow \pi \pi l^{\pm} \nu (K_{l4})$ – current status

Theory

$$K^+(\text{at rest}) \rightarrow \pi \pi \ l^+ \nu \ (l = e, \mu)$$

Five kinematic variables (Cabibbo-Maksymowicz 1965):

$$\begin{split} S_{\pi} &= M_{\pi\pi}^2 , \quad \frac{S_e}{S_e} = M_{l\nu}^2 , \\ \cos \theta_{\pi} , & \cos \theta_l , \quad \phi \end{split}$$

- The $K^{\pm} \rightarrow \pi \pi \ l^{\pm} \nu$ amplitudes depend on *F*, *G*, *H*, *R* form factors.
- $\pi^0 \pi^0$ in s-wave \Rightarrow no dependence on $\cos \theta_{\pi}$, ϕ ; only *F* and *R* contribute.
- Negligible *R* contribution to K_{e4} due to the small electron mass.

Measurements

K_{l4} mode	BR $[10^{-5}]$	Ncandidates	Experiment
K_{e4}^{+-}	4.26 ± 0.04	1 108 941	NA48/2 (2012)
K_{e4}^{00}	2.55 ± 0.04	65 210	NA48/2 (2014)
$K_{\mu 4}^{+ -}$	1.4 ± 0.9	7	Bisi et al. (1967)
$K^{00}_{\mu 4}$?		

$K^{\pm} ightarrow \pi^0 \pi^0 \mu^{\pm} \nu$ ($K^{00}_{\mu 4}$) at NA48/2

Goals:

- first observation
- ChPT test
- check of R presence

Analisys challenge:

suppression of huge background from $K^{\pm} \to \pi^0 \pi^0 \pi^{\pm} (\pi^{\pm} \to \mu^+ \nu)$

Form factors:

- ► Use the experimental $F(S_{\pi}, S_l)$ parameterization from K_{e4}^{00} , according to lepton universality [NA48/2 JHEP 08 (2014) 159]
- For R(S_π, S_l) use ChPT calculation
 [J.Bijnens, G.Colangelo, J.Gasser, Nucl.Phys.B 427 (1994) 427]

The NA48/2 experiment

The NA48/2 collaboration:

 $\sim 100 \ {\rm physicists}$ from 15 institutes in 8 countries

Cambridge, CERN, Chicago, Dubna, Edinburgh, Ferrara, Firenze, Mainz, Northwestern, Perugia, Pisa, Saclay, Siegen, Torino, Wien

- NA31 (1984–1990)
 K_L/K_S, direct CPV:
 First evidence
- NA48 (1997–2001) *K_L/K_S*, direct CPV: Precise measurement
- NA48/1 (2002), K_S:
 K_S/hyperon rare decays
- NA48/2 (2003–2004) K^+/K^- : CPV search, charge asymmetry
- NA62- R_K (2007–2008) $K^+/K^-: e/\mu$ universality
- NA62 (2014–), K^+ : Rare Kaon decays, $K^+ \rightarrow \pi^+ \nu \bar{\nu}$

The NA48/2 Kaon beam

The NA48/2 detectors

Photon vetos

$K^{\pm} \rightarrow \pi^0 \pi^0 \mu^{\pm} \nu$ event selection

- Use $K^{\pm} \rightarrow \pi^{\pm} \pi^0 \pi^0$ as normalization channel
- First set of common cuts for signal and normalization: select one charged particle and 2 π⁰s from a common origin
- Dedicated kinematical cuts to select signal events
- ► Reject $K^{\pm} \to \pi^{\pm} \pi^0 \pi^0$ events with $\pi^{\pm} \to \mu^{\pm} \nu$ decay in flight by imposing $S_l \equiv M^2(\mu^{\pm}\nu) > 0.03 \,\text{GeV}^2/\text{c}^4$

$K^{\pm} ightarrow \pi^0 \pi^0 \mu^{\pm} u$ – residual background

► 2437 events in the M_{miss}^2 signal region [-0.002,+0.002] GeV²/c⁴

• $354 \pm 33_{\text{stat}} \pm 62_{\text{syst}}$ expected background events

$K^{\pm} \rightarrow \pi^0 \pi^0 \mu^{\pm} \nu$ Branching Ratio

NA48/2 preliminary results

• For the restricted phase space:

$$\begin{aligned} \mathsf{BR}(K^{\pm} \to \pi^0 \pi^0 \mu^{\pm} \nu, \ S_l > 0.03 \ \frac{\mathsf{GeV}^2}{\mathsf{c}^4}) &= (0.65 \pm 0.019_{\mathsf{stat}} \pm 0.024_{\mathsf{syst}}) \times 10^{-6} \\ &= (0.65 \pm 0.03) \times 10^{-6} \end{aligned}$$

• For the full phase space:

$$BR(K^{\pm} \to \pi^0 \pi^0 \mu^{\pm} \nu) = (3.4 \pm 0.10_{\text{stat}} \pm 0.13_{\text{syst}}) \times 10^{-6}$$
$$= (3.4 \pm 0.2) \times 10^{-6}$$

A. Bizzeti

QCD2022

$K^{\pm} \rightarrow \pi^0 \pi^0 \mu^{\pm} \nu$ – Comparison with theory

Theory: J. Bijnens, G. Colangelo, J. Gasser, Nucl. Phys. B 427 (1994) 427 • tree approximation;

- 1-loop;
- 'beyond 1-loop' with measured F from [Rosselet et al., Phys.Rev.D 15(1977) 574]

NA48/2 preliminary results are consistent with a contribution of the R form factor, as from 1-loop ChPT calculation

A. Bizzeti

Recent NA62 and NA48/2 results

QCD2022

28/30

The NA62 experiment

Search for the $K^+ \rightarrow \pi^-(\pi^0) e^+ e^+$ LNV decays

Measurement of the $K^+ \rightarrow e^+ \nu \gamma$ decay

First observation of $K^+ \rightarrow \pi^0 \pi^0 \mu^+ \nu$ @ NA48/2

Summary

Summary

- Searches for $K^+ \to \pi^- e^+ e^+$ and $K^+ \to \pi^- \pi^0 e^+ e^+$ LNV decays have been performed at NA62 using 2016–2018 data:
 - world-best limits obtained, sensitivity limited by the dataset size.
 - Results published in Phys. Lett. B 830 (2022) 137172
- New preliminary NA62 results on $K^+ \rightarrow \pi^0 e^+ \nu \gamma$ decay:
 - experimental precision in branching fracion ratios (R_j) improved by a factor between 2.0 and 3.6, relative uncertainties < 1%
 - measured T-asymmetries still compatible with zero, experimental sensitivity far from theoretical expectations
 - first T-asymmetry measurement for R₁ and R₂, improvement by a factor greater than 3 for R₃
- NA48/2 observed for the first time the $K^{\pm} \rightarrow \pi \pi e^{\pm} \nu (K_{e4})$ decay:
 - preliminary measurements of the branching fraction are consistent with ChPT predictions for the *R* form factor