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  QCD 22 / 253Motivation

Hadrons successfully explained by Quark Model 
Gell-Mann & Zweig in 1964

PHYS. LETT. 8 (1964) CERN-TH-201 & 412 (1964)

Within the string model, the tetraquark state could explain the S(1930) bump 
Rossi & Veneziano in 1977 NUCL. PHYS. B 123 (1977)

First experimental evidence of a tetraquark state, the S(1930) 
announced in 1974 by Brookhaven National Laboratory

A.S. CARROLL ET AL. (BNL COLLAB.), PHYS. REV. LETT. 32 (1974)

A very brief summary on Exotic Hadrons

The existence of a pentaquark state has been conjectured  
Montanet, Rossi & Veneziano in 1980 PHYS. REPT. 63 (1980)
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After almost 30 years…  
New experimental data are announced on the existence of a  

tetraquark state X(3872) and a pentaquark state 𝚯(1540) 
both announced in 2003 by Belle Collaboration

T. NAKANO ET AL. [BELLE COLLAB.], PHYS. REV. LETT. 91 (2003) 261601
S.K. CHOI ET AL. [BELLE COLLAB.], PHYS. REV. LETT. 91 (2003) 262001

A very brief summary on Exotic Hadrons
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Since 2013, LHCb collaboration announced the  
observation of several candidates for exotic hadrons

A very brief summary on Exotic Hadrons

LHCB COLLAB., NATURE COMMUNICATIONS 13 (2022) 3351
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The derivation of the FU profile relies on the assumed isospin
symmetry for the Tþ

cc ! D"D decays and the coupled-channel
interaction of the D*+D0 and D*0D0 system as required by
unitarity and causality following Ref. 91. The resulting energy-
dependent width of the Tþ

cc state accounts explicitly for the
Tþ
cc ! D0D0πþ, Tþ

cc ! D0Dþπ0 and Tþ
cc ! D0Dþγ decays. The

modification of the D* meson lineshape92 due to contributions
from triangle diagrams93 to the final-state interactions is neglected.
Similarly to the FBW profile, the FU function has two parameters:
the peak locationmU, defined as the mass value where the real part
of the complex amplitude vanishes, and the absolute value of the
coupling constant g for the Tþ

cc ! D"D decay.
The detector mass resolution, R, is modelled with the sum of

two Gaussian functions with a common mean, and parameters
taken from simulation, see Methods. The widths of the Gaussian
functions are corrected by a factor of 1.05, which accounts for a
small residual difference between simulation and data94–96. The
root mean square (RMS) of the resolution function is around
400 keV/c2.

A study of the D0π+ mass distribution for selected D0D0π+

combinations in the region above the D*0D+ mass threshold and
below 3.9 GeV/c2 shows that approximately 90% of all D0D0π+

combinations contain a true D*+ meson. Therefore, the back-
ground component is parameterised with a product of the two-
body phase-space function ΦD"þD0

97 and a positive polynomial
function Pn, convolved with the detector resolution function R

Bn ¼ ΦD"þD0 ´ Pn

! "
"R; ð2Þ

where n denotes the order of the polynomial function, n= 2 is
used in the default fit.

The D0D0π+ mass spectrum with non-D0 background
subtracted is shown in Fig. 1 with the result of the fit using a
model based on the FU signal profile overlaid. The fit gives
a signal yield of 186 ± 24 and a mass parameter relative to the
D*+D0 mass threshold, δmU of −359 ± 40 keV/c2. The statistical
significances of the observed Tþ

cc ! D0D0πþ signal and for the
δmU < 0 hypothesis are determined using Wilks’ theorem to be 22
and 9 standard deviations, respectively.

The width of the resonance is determined by the coupling
constant g for small values of g

## ##. With increasing g
## ##, the width

increases to an asymptotic value determined by the width of the
D*+ meson, see Methods and Supplementary Fig. 7. In this
regime of large g

## ##, the FU signal profile exhibits a scaling

property similar to the Flatté function94,98,99. The parameter g
## ##

effectively decouples from the fit model, and the model resembles
the scattering-length approximation81. The likelihood profile for
the parameter g

## ## is shown in Fig. 2, where one can see a plateau
at large values. At small values of the g

## ## parameter, g
## ##< 1GeV,

the likelihood function is independent of g
## ## because the

resonance is too narrow for the details of the FU signal profile
to be resolved by the detector. The lower limits on the g

## ##
parameter of g

## ##> 7:7 ð6:2ÞGeV at 90% (95%) confidence level
(CL) are obtained as the values where the difference in the
negative log-likelihood &Δ logL is equal to 1.35 and 1.92,
respectively. Smaller values for g

## ## are further used for systematic
uncertainty evaluation.

The mode relative to the D*+D0 mass threshold, δm, and the full
width at half maximum (FWHM), w, for the FU profile are found
to be δm ¼ &361± 40 keV=c2 and w ¼ 47:8 ± 1:9 keV=c2, to be
compared with those quantities determined for the FBW signal
profile of δm ¼ &279± 59 keV=c2 and w ¼ 409 ± 163 keV=c2.
They appear to be rather different. Nonetheless, both functions
properly describe the data given the limited sample size, and
accounting for the detector resolution, and residual background.
To quantify the impact of these experimental effects, two ensembles
of pseudoexperiments are performed. Firstly, pseudodata samples
are generated with a model based on the FU profile. The
parameters used here are obtained from the default fit, and the
size of the sample corresponds to the size of data sample. Each
pseudodata sample is then analysed with a model based on theFBW

function. The obtained mean and RMS values for the parameters
δmBW and ΓBW over the ensemble are shown in Table 2. The mass
parameter δmBW agrees well with the value determined from
data71. The difference for the parameter ΓBW does not exceed one
standard deviation. Secondly, an ensemble of pseudodata samples
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Fig. 1 Distribution of D0D0π+ mass. Distribution of D0D0π+ mass where
the contribution of the non-D0 background has been statistically
subtracted. The result of the fit described in the text is overlaid.
Uncertainties on the data points are statistical only and represent one
standard deviation, calculated as a sum in quadrature of the assigned
weights from the background-subtraction procedure.

0

2

4

6

8

10

12

14

16

1−10 1 10 210 310

Fig. 2 Likelihood profile for the gj j parameter. Likelihood profile for the
absolute value of the coupling constant g from the fit to the background-
subtracted D0D0π+ mass spectrum with a model based on the FU signal
profile.

Table 2 Mean and root mean square (RMS) values for the
δmBW, ΓBW and δmU parameters obtained from
pseudoexperiments produced as a consistency check.

Pseudoexperiments

Parameter Mean RMS Data

δmBW keV=c2
$ %

−301 50 −273 ± 6171

ΓBW keV½ ( 222 121 410 ± 16571

δmU keV=c2
$ %

−378 46 −359 ± 40

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30206-w ARTICLE

NATURE COMMUNICATIONS | ��������(2022)�13:3351� | https://doi.org/10.1038/s41467-022-30206-w |www.nature.com/naturecommunications 3

• LHCb Collab. announces the presence  
of a 1+ state in the                 decays.

• Absence of a signal in the             and 
                 mass distributions.

• Strong argument for interpreting such 
a state as the isoscalar Tcc tetraquark, 
with JP = 1+.

• Mass around 3875 MeV.

NATURE COMMUNICATIONS 13 (2022) 3351
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THE METHOD IN QCD
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QCD SUM RULES
M.A. Shifman, A.I. Vainshtein, V.I. Zhakarov

P. Pascual and R. Tarrach, “QCD: renormalization for practitioner”, Springer (1984) 

L. J. Reinders, H. Rubinstein and S. Yazaki, “Hadron Properties from QCD Sum Rules”, Phys. Rept. 127 (1985) 

S. Narison, “QCD Spectral Sum Rules”, World Sci. Lect. Notes Phys. 26 (1989) 

S. Narison, “QCD as a Theory of Hadrons”, Cambridge Monogr. Part. Phys. Nucl. Phys. Cosmol. 17 (2004) 

B.L. Ioffe, “QCD at Low Energies”, Prog. Part. Nucl. Phys. 56 (2006) 

H.G. Dosch, “Nonperturbative methods in quantum chromodynamics”, Prog. Part. Nucl. Phys. 33 (1994) 

E. de Rafael, “An Introduction to Sum Rules in QCD”, hep-ph/9802448 (1998)  

F.J Yndurain, “The Theory of Quark and Gluon Interactions”, 3rd edition, Springer (1999)

Excellent reviews on the method can be found on…

QCD Sum Rules

NUCL. PHYS. B 147 (1979)
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Π
H H

2-point Correlator Function

Hadron		
Masses

The QCD inverse Laplace sum rules (LSR) approach
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We shall be concerned with the two-point correlator: 

The QCD inverse Laplace sum rules (LSR) approach

Π
H H

• The local hadronic operators introduce the characteristics of the hadron H. 

• It obeys Finite Energy Inverse Laplace Transform Sum Rule (LSR) and their ratios: 

R. Albuquerque, S. Narison and D. Rabetiarivony Nuclear Physics A 1023 (2022) 122451

2. The QCD inverse Laplace sum rules (LSR) approach

We shall be concerned with the two-point correlator:

!
µν
H (q2) = i

∫
d4x eiqx〈0|T Oµ

H(x)
(
Oν
H(0)

)† |0〉

≡ −
(

gµν − qµqν

q2

)
!

(1)
H (q2) + qµqν

q2 !
(0)
H (q2) (1)

built from the local hadronic operators Oµ
H(x) (see Table 1). It obeys the Finite Energy Inverse 

Laplace Transform Sum Rule (LSR) and their ratios:

Lc
n|H(τ,µ) =

tc∫

(2Mc+mq+mq′ )2

dt tn e−tτ 1
π

Im !
(1,0)
H (t,µ) : n = 0,1 ; Rc

H(τ ) = Lc
1|H

Lc
0|H

,

(2)

where q, q ′ ≡ u, d, s, Mc is the on-shell/pole charm quark mass and mq,q ′ (we shall neglect u, d
quark masses) the running strange quark mass, τ is the LSR variable, tc is the threshold of the 
“QCD continuum” which parametrizes, from the discontinuity of the Feynman diagrams, the 
spectral function Im!H(t, m2

c, m
2
s , µ

2). In the minimal duality ansatz which we shall use in this 
paper3:

1
π

Im!
(1,0)
H (t) = f 2

HM8
H δ(t − M2

H) + 1
π

Im!
(1,0)
H (t)|QCD θ(t − tc), (3)

one can deduce the mass squared from the ratio of LSR at the optimization point τ0:

Rc
H(τ0) = M2

H. (4)

We shall also work with the double ratio of sum rule (DRSR) [45]:

rH′/H(τ0) ≡
√
Rc

H′

Rc
H

= MH′

MH
, (5)

which can be free from systematics provided that Rc
H and Rc

H′ optimize at the same values of τ
and of tc:

τ0|H & τ0|H′ , tc|H & tc|H′ . (6)

This DRSR has been used in different channels for predicting successfully the few MeV mass-
splittings (SU3-breakings, parity splittings,...) between different hadrons [45–51]. In particular, it 
has been used for four-quark and molecule states in [49–51]. In this paper, we extend the previous 
analysis for improving the existing mass predictions of the XQ, ZQ and TQQq̄q̄ states and for 
giving a correlation among them. We also predict the mass-splittings due to SU3 breakings and 
to spin and parity for the TQQq̄q̄ ′ states.

3 Parametrization beyond the minimal duality ansatz ⊕ uses of high degree moments have been considered in [22–24]
to estimate the masses of the 1st radial excitation of four-quark/molecule states and in [12,44] for studying the gluonia 
spectra.

3
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• At the optimization point, we deduce the ground state mass of the hadron
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The precision technique: Double Ratio of Sum Rule (DRSR)

• In general, free from systematics errors. 

• Provided that         and         must optimize at the same values of 𝝉 and tc.
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This DRSR has been used in different channels for predicting successfully the few MeV mass-
splittings (SU3-breakings, parity splittings,...) between different hadrons [45–51]. In particular, it 
has been used for four-quark and molecule states in [49–51]. In this paper, we extend the previous 
analysis for improving the existing mass predictions of the XQ, ZQ and TQQq̄q̄ states and for 
giving a correlation among them. We also predict the mass-splittings due to SU3 breakings and 
to spin and parity for the TQQq̄q̄ ′ states.

3 Parametrization beyond the minimal duality ansatz ⊕ uses of high degree moments have been considered in [22–24]
to estimate the masses of the 1st radial excitation of four-quark/molecule states and in [12,44] for studying the gluonia 
spectra.
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which can be free from systematics provided that Rc
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H′ optimize at the same values of τ
and of tc:

τ0|H & τ0|H′ , tc|H & tc|H′ . (6)

This DRSR has been used in different channels for predicting successfully the few MeV mass-
splittings (SU3-breakings, parity splittings,...) between different hadrons [45–51]. In particular, it 
has been used for four-quark and molecule states in [49–51]. In this paper, we extend the previous 
analysis for improving the existing mass predictions of the XQ, ZQ and TQQq̄q̄ states and for 
giving a correlation among them. We also predict the mass-splittings due to SU3 breakings and 
to spin and parity for the TQQq̄q̄ ′ states.

3 Parametrization beyond the minimal duality ansatz ⊕ uses of high degree moments have been considered in [22–24]
to estimate the masses of the 1st radial excitation of four-quark/molecule states and in [12,44] for studying the gluonia 
spectra.
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The stability criteria for extracting the optimal results 

• 𝝉 - stability: region around of a minimum or inflexion points corresponding to a 
complete dominance of the lowest ground-state contribution. 

• tc - stability: we take the values until it to be around the mass of the first 
excitation state. 

• μ - stability: used to fix in a rigorous optimal way, the arbitrary subtraction 
constant appearing in the perturbative calculation and in the QCD input 
renormalized parameters. 

Physical observables should not depend on these parameters. 

NLO PT corrections
NLO PT corrections justify the use of running heavy quark mass.

OPTIMIZATION



  QCD 22 / 2514

QCD PARAMETERS

R. Albuquerque, S. Narison and D. Rabetiarivony Nuclear Physics A 1023 (2022) 122451

Table 1
Interpolating operators describing the Zc, Xc, Tccq̄′q̄ states discussed in this paper where b = 0 is the optimized mixing 
parameter [23].

States I (JP ) 3̄c3c Four-quark currents Refs.

Zc (1+) OAcq = εijkεmnk
[
(qT

i Cγ5 cj )(q̄ ′
mγµC c̄T

n ) + b, (qT
i C cj )(q̄ ′

mγµγ5C c̄T
n )

]
[23]

OD∗
qDq

= (c̄γµq)(q̄ ′ iγ5c)

Xc (1+) O3
X = εijk εmnk

[(
qT
i Cγ5 cj

)(
c̄m γ µC q̄T

n

)
+

(
qT
i Cγ µ cj

)(
c̄m γ5C q̄T

n

)]
[18,49–51]

O6
X = εijk εmnk

[(
qT
i Cγ5λa

ij cj

)(
c̄m γ µCλa

mn q̄T
n

)

+
(
qT
i Cγ µλa

ij cj

)(
c̄m γ5Cλa

mn q̄T
n

)]

OD∗
qDq

= 1√
2

[
(q̄γ5c)(c̄γµq) − (q̄γµc)(c̄γ5q)

]

Oψπ = (c̄γµλac)(q̄γ5λaq)

Tccūd̄ 0(1+) O1+
T = 1√

2
εijk εmnk

(
cT
i Cγ µ cj

)[(
ūm γ5C d̄T

n

)
−

(
d̄m γ5C ūT

n

)]
[50]

Tccūs̄
1
2 (1+) O

T 1+
us

= εijk εmnk

(
ci Cγ µcT

j

)(
ūm γ5Cs̄T

n

)

Tccūd̄ 1(0+) O0+
T = 1√

2
εijk εmnk

(
cT
i Cγ µ cj

)[(
ūm γµC d̄T

n

)
+

(
d̄m γµC ūT

n

)]
[50]

Tccūs̄
1
2 (0+) O

T 0+
us

= εijk εmnk

(
ci CγµcT

j

)(
ūm γ µCs̄T

n

)

Tccs̄s̄ 0(0+) O0+
T = εijk εmnk

(
ci CγµcT

j

)(
s̄m γ µCs̄T

n

)

Table 2
QCD input parameters estimated from QSSR (Moments, LSR and ratios of sum rules) 
used here.

Parameters Values Sources Refs.

αs (MZ) 0.1181(16)(3) Mχ0c,b−Mηc,b
[52–54]

mc(mc) [MeV] 1266(6) D,Bc ⊕ J/ψ,χc1,ηc [52,54–59]
mb(mb) [MeV] 4196(8) Bc ⊕ ϒ [52,54–59]
µ̂q [MeV] 253(6) Light [27,60]
m̂s [MeV] 114(6) Light [27,60]
κ ≡ 〈s̄s〉/〈d̄d〉 0.74(6) Light-Heavy [27,60,61]
M2

0 [GeV2] 0.8(2) Light-Heavy [27,36,62–66]
〈αsG

2〉 [GeV4] 6.35(35)10−2 Light-Heavy [52,54]
〈g3G3〉/〈αsG

2〉 8.2(1.0) [GeV2] J/ψ [58,59]
ραs 〈q̄q〉2 [GeV6] 5.8(9)10−4 Light, τ -decay [36,63,64,67–70]

The chiral partner 1− and 0− states and the molecule assignments of the TQQq̄q̄ ′ states which 
deserves a particular attention due to the numerous possibilities of such assignments are post-
poned in a future publication.

5. QCD input parameters

The QCD parameters which shall be used here are the QCD coupling αs , the charm quark 
mass mc, the gluon condensates 〈αsG

2〉. Their values are given in Table 2. We shall use nf = 4
and 5 total number of flavours for the numerical value of as ≡ αs/π .
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Since, the pioneering work of Navarra, Nielsen and Lee, the 
mass and coupling of Tcc and its beauty analogue have been 
extracted from LSR by different groups. 

PHYS. LETT. B 649 (2007)

1. Z.-G. WANG 
2. AGAEV, AZIZI, H. SUNDU  
3. TANG, WAN, MALTMAN, QIAO 
4. DU, CHEN, ZHU

We improve and extend the analysis using LSR and DRSR by 
including the factorized NLO PT contributions and controlling 
the different sources of the errors.

Tetraquark:

THE Tcc STATE
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Fig. 7. f
T 0+
cc

and M
T 0+
cc

as function of τ for # values of tc , for µ = 4.65 GeV and for the QCD inputs in Table 2.

However, one can notice as in [51] that the alone study of the mass of the Xc and Zc cannot 
provide a sharp selection for the four-quark and/or molecule nature of these states without study-
ing in details their decay modes. At the present stage, we can only provide a description of these 
states as tetramole (T ) states.

Another point which deserves future studies is the careful analysis of isospin violation which 
can differentiate the role of D∗D, DD, ... in the molecule description of these states. We plan to 
come back to this point in a future work.

In the following part of the paper, we shall definitely use the experimental mass Xc(3872) for a 
normalization of the DRSR analysis of the Tccqq -like states together with the corresponding four-
quark current O3

X which provides the best prediction compared to the data (see Eq. (13)). Instead, 
we could have also choosen to work with the currents D∗D and Acd which also reproduce quite 
well the experimental Zc(3900) mass. Unfortunately, the corresponding DRSR do not present 
τ -stability.

Hereafter, the Xc,3 state will be also called Xc and will be identified with the experimental 
Xc(3872) state.

9. The Tccūd̄ ≡ Tcc (1+) state

Since, the pioneering work of [77], the mass and coupling of Tccq̄q̄ ′ and its beauty analogue 
have been extracted from LSR by different groups [50,78–82]. In this paper, we improve and ex-
tend the analysis in [50] using LSR and DRSR by including the factorized NLO PT contributions 
and by paying more carefully attention on the different sources of the errors. In the following, 
we shall consider the four-quark currents given in Table 1.

• Mass and decay constant from LSR at NLO

The τ and tc behaviors are very similar to the case of Xc and are shown in Fig. 7. The stability 
region (minimum in τ for the coupling and inflexion point for the mass) is obtained for the sets 
(τ, tc) = (0.31, 30) to (0.34, 46) in units of (GeV−2, GeV2) (see Table 3) from which we deduce:

fTcc (1
+) = 491(48) KeV, MTcc (1

+) = 3885(123) MeV , (19)

where the mass can be compared with the experimental value MTcc(1
+) = 3875 MeV [43].

12

stability region for the set

𝝉 = 0.31 — 0.34 GeV-2 

tc = 30 — 46 GeV2

From which we deduce:
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Fig. 7. f
T 0+
cc

and M
T 0+
cc

as function of τ for # values of tc , for µ = 4.65 GeV and for the QCD inputs in Table 2.

However, one can notice as in [51] that the alone study of the mass of the Xc and Zc cannot 
provide a sharp selection for the four-quark and/or molecule nature of these states without study-
ing in details their decay modes. At the present stage, we can only provide a description of these 
states as tetramole (T ) states.

Another point which deserves future studies is the careful analysis of isospin violation which 
can differentiate the role of D∗D, DD, ... in the molecule description of these states. We plan to 
come back to this point in a future work.

In the following part of the paper, we shall definitely use the experimental mass Xc(3872) for a 
normalization of the DRSR analysis of the Tccqq -like states together with the corresponding four-
quark current O3

X which provides the best prediction compared to the data (see Eq. (13)). Instead, 
we could have also choosen to work with the currents D∗D and Acd which also reproduce quite 
well the experimental Zc(3900) mass. Unfortunately, the corresponding DRSR do not present 
τ -stability.

Hereafter, the Xc,3 state will be also called Xc and will be identified with the experimental 
Xc(3872) state.

9. The Tccūd̄ ≡ Tcc (1+) state

Since, the pioneering work of [77], the mass and coupling of Tccq̄q̄ ′ and its beauty analogue 
have been extracted from LSR by different groups [50,78–82]. In this paper, we improve and ex-
tend the analysis in [50] using LSR and DRSR by including the factorized NLO PT contributions 
and by paying more carefully attention on the different sources of the errors. In the following, 
we shall consider the four-quark currents given in Table 1.

• Mass and decay constant from LSR at NLO

The τ and tc behaviors are very similar to the case of Xc and are shown in Fig. 7. The stability 
region (minimum in τ for the coupling and inflexion point for the mass) is obtained for the sets 
(τ, tc) = (0.31, 30) to (0.34, 46) in units of (GeV−2, GeV2) (see Table 3) from which we deduce:

fTcc (1
+) = 491(48) KeV, MTcc (1

+) = 3885(123) MeV , (19)

where the mass can be compared with the experimental value MTcc(1
+) = 3875 MeV [43].

12This mass can be compared with the experimental value 3875 MeV.
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cc /Xc

as a function of ⌧ at NLO for # values of tc, for µ=4.65 GeV and for the QCD inputs in Table 2.

9. The Tccd̄d̄ or Tcc (0++) state

• The O
1+

T
four-quark current

⇧ Mass and decay constant from LSR at NLO

We pursue the analysis for the case of 0++ state. It is shown in Fig. 8. The optimal results are obtained

with the sets :(⌧, tc)=(0.31,30) to (0.34,46) (GeV�2,GeV2):

fTcc(0
++) = 841(83) KeV, MTcc(0

++) = 3882(129) MeV , (19)
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Table 2.

⇧ Ratio of masses r
T 0+
cc /Xc

from DRSR

The result of the analysis is shown in Fig. 9 from which we deduce for the sets (⌧, tc)=(1.28,15) to

(1.32,20) (GeV�2,GeV2):

r
T 0+
cc /Xc

= 1.0033(10) =) MTcc(0
++) = 3885(4) MeV, (20)
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Fig. 8. rTccs̄ū/Tcc (1
+) ratio of masses as function of τ at NLO for # values of tc , for µ = 4.65 GeV and for the QCD 

inputs in Table 2.

• Ratio of masses r
T 1+

cc /Xc
from DRSR

The result of the analysis is very similar to the one in Fig. 6. The optimal result is obtained 
for the sets (τ, tc) = (1.24, 15) to (1.30, 20) in units of (GeV−2, GeV2) (see Table 3):

r
T 1+

cc /Xc
= 1.0035(10) =⇒ MTcc (1

+) = 3886(4) MeV (20)

where we have taken the experimental mass of the Xc(3872) [71]. The result is in perfect agree-
ment with the direct mass determination in Eq. (19) but very accurate as the DRSR is less affected 
by systematics which tend to cancel out.

• Final prediction for MTcc(1
+)

As a final prediction, we take the mean of the two previous determinations and take the most 
precise error:

MTcc (1
+) = 3886(4) MeV. (21)

This value is comparable with the recent LHCb data Tcc(1+) = 3875 MeV which is (9 ±4) MeV
above the D∗D threshold of 3877 MeV [71].

10. The Tccs̄ū(1+) mass

• r
T 1+

ccs̄ū/T 1+
cc

ratio of masses

We study the SU3 ratio of masses r
T 1+

ccs̄ū/T 1+
cc

in Fig. 8. The optimal result is obtained for the 

sets (τ, tc) = (0.72, 23) to (0.74, 32) (GeV−2, GeV2) at which we deduce:

rTccs̄ū/Tcc(1+) = 1.0115(13) =⇒ MTccs̄ū (1
+) = 3931(7) MeV. (22)

• Decay constant and mass from LSR at NLO

Here, we extract directly the Tccs̄ū coupling and mass from the LSR moments and ratio of 
moments. The τ and tc-behaviors are very similar to the one in Fig. 3. The optimal result is 

13
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Fig. 8. rTccs̄ū/Tcc (1
+) ratio of masses as function of τ at NLO for # values of tc , for µ = 4.65 GeV and for the QCD 

inputs in Table 2.

• Ratio of masses r
T 1+

cc /Xc
from DRSR

The result of the analysis is very similar to the one in Fig. 6. The optimal result is obtained 
for the sets (τ, tc) = (1.24, 15) to (1.30, 20) in units of (GeV−2, GeV2) (see Table 3):

r
T 1+

cc /Xc
= 1.0035(10) =⇒ MTcc (1

+) = 3886(4) MeV (20)

where we have taken the experimental mass of the Xc(3872) [71]. The result is in perfect agree-
ment with the direct mass determination in Eq. (19) but very accurate as the DRSR is less affected 
by systematics which tend to cancel out.

• Final prediction for MTcc(1
+)

As a final prediction, we take the mean of the two previous determinations and take the most 
precise error:

MTcc (1
+) = 3886(4) MeV. (21)

This value is comparable with the recent LHCb data Tcc(1+) = 3875 MeV which is (9 ±4) MeV
above the D∗D threshold of 3877 MeV [71].

10. The Tccs̄ū(1+) mass

• r
T 1+

ccs̄ū/T 1+
cc

ratio of masses

We study the SU3 ratio of masses r
T 1+

ccs̄ū/T 1+
cc

in Fig. 8. The optimal result is obtained for the 

sets (τ, tc) = (0.72, 23) to (0.74, 32) (GeV−2, GeV2) at which we deduce:

rTccs̄ū/Tcc(1+) = 1.0115(13) =⇒ MTccs̄ū (1
+) = 3931(7) MeV. (22)

• Decay constant and mass from LSR at NLO

Here, we extract directly the Tccs̄ū coupling and mass from the LSR moments and ratio of 
moments. The τ and tc-behaviors are very similar to the one in Fig. 3. The optimal result is 
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Fig. 8. rTccs̄ū/Tcc (1
+) ratio of masses as function of τ at NLO for # values of tc , for µ = 4.65 GeV and for the QCD 

inputs in Table 2.

• Ratio of masses r
T 1+

cc /Xc
from DRSR

The result of the analysis is very similar to the one in Fig. 6. The optimal result is obtained 
for the sets (τ, tc) = (1.24, 15) to (1.30, 20) in units of (GeV−2, GeV2) (see Table 3):

r
T 1+

cc /Xc
= 1.0035(10) =⇒ MTcc (1

+) = 3886(4) MeV (20)

where we have taken the experimental mass of the Xc(3872) [71]. The result is in perfect agree-
ment with the direct mass determination in Eq. (19) but very accurate as the DRSR is less affected 
by systematics which tend to cancel out.

• Final prediction for MTcc(1
+)

As a final prediction, we take the mean of the two previous determinations and take the most 
precise error:

MTcc (1
+) = 3886(4) MeV. (21)

This value is comparable with the recent LHCb data Tcc(1+) = 3875 MeV which is (9 ±4) MeV
above the D∗D threshold of 3877 MeV [71].

10. The Tccs̄ū(1+) mass

• r
T 1+

ccs̄ū/T 1+
cc

ratio of masses

We study the SU3 ratio of masses r
T 1+

ccs̄ū/T 1+
cc

in Fig. 8. The optimal result is obtained for the 

sets (τ, tc) = (0.72, 23) to (0.74, 32) (GeV−2, GeV2) at which we deduce:

rTccs̄ū/Tcc(1+) = 1.0115(13) =⇒ MTccs̄ū (1
+) = 3931(7) MeV. (22)

• Decay constant and mass from LSR at NLO

Here, we extract directly the Tccs̄ū coupling and mass from the LSR moments and ratio of 
moments. The τ and tc-behaviors are very similar to the one in Fig. 3. The optimal result is 
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Fig. 7. f
T 0+
cc

and M
T 0+
cc

as function of τ for # values of tc , for µ = 4.65 GeV and for the QCD inputs in Table 2.

However, one can notice as in [51] that the alone study of the mass of the Xc and Zc cannot 
provide a sharp selection for the four-quark and/or molecule nature of these states without study-
ing in details their decay modes. At the present stage, we can only provide a description of these 
states as tetramole (T ) states.

Another point which deserves future studies is the careful analysis of isospin violation which 
can differentiate the role of D∗D, DD, ... in the molecule description of these states. We plan to 
come back to this point in a future work.

In the following part of the paper, we shall definitely use the experimental mass Xc(3872) for a 
normalization of the DRSR analysis of the Tccqq -like states together with the corresponding four-
quark current O3

X which provides the best prediction compared to the data (see Eq. (13)). Instead, 
we could have also choosen to work with the currents D∗D and Acd which also reproduce quite 
well the experimental Zc(3900) mass. Unfortunately, the corresponding DRSR do not present 
τ -stability.

Hereafter, the Xc,3 state will be also called Xc and will be identified with the experimental 
Xc(3872) state.

9. The Tccūd̄ ≡ Tcc (1+) state

Since, the pioneering work of [77], the mass and coupling of Tccq̄q̄ ′ and its beauty analogue 
have been extracted from LSR by different groups [50,78–82]. In this paper, we improve and ex-
tend the analysis in [50] using LSR and DRSR by including the factorized NLO PT contributions 
and by paying more carefully attention on the different sources of the errors. In the following, 
we shall consider the four-quark currents given in Table 1.

• Mass and decay constant from LSR at NLO

The τ and tc behaviors are very similar to the case of Xc and are shown in Fig. 7. The stability 
region (minimum in τ for the coupling and inflexion point for the mass) is obtained for the sets 
(τ, tc) = (0.31, 30) to (0.34, 46) in units of (GeV−2, GeV2) (see Table 3) from which we deduce:

fTcc (1
+) = 491(48) KeV, MTcc (1

+) = 3885(123) MeV , (19)

where the mass can be compared with the experimental value MTcc(1
+) = 3875 MeV [43].
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+) ratio of masses as function of τ at NLO for # values of tc , for µ = 4.65 GeV and for the QCD 

inputs in Table 2.
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from DRSR

The result of the analysis is very similar to the one in Fig. 6. The optimal result is obtained 
for the sets (τ, tc) = (1.24, 15) to (1.30, 20) in units of (GeV−2, GeV2) (see Table 3):

r
T 1+

cc /Xc
= 1.0035(10) =⇒ MTcc (1

+) = 3886(4) MeV (20)

where we have taken the experimental mass of the Xc(3872) [71]. The result is in perfect agree-
ment with the direct mass determination in Eq. (19) but very accurate as the DRSR is less affected 
by systematics which tend to cancel out.

• Final prediction for MTcc(1
+)

As a final prediction, we take the mean of the two previous determinations and take the most 
precise error:

MTcc (1
+) = 3886(4) MeV. (21)

This value is comparable with the recent LHCb data Tcc(1+) = 3875 MeV which is (9 ±4) MeV
above the D∗D threshold of 3877 MeV [71].

10. The Tccs̄ū(1+) mass

• r
T 1+

ccs̄ū/T 1+
cc

ratio of masses

We study the SU3 ratio of masses r
T 1+

ccs̄ū/T 1+
cc

in Fig. 8. The optimal result is obtained for the 

sets (τ, tc) = (0.72, 23) to (0.74, 32) (GeV−2, GeV2) at which we deduce:

rTccs̄ū/Tcc(1+) = 1.0115(13) =⇒ MTccs̄ū (1
+) = 3931(7) MeV. (22)

• Decay constant and mass from LSR at NLO

Here, we extract directly the Tccs̄ū coupling and mass from the LSR moments and ratio of 
moments. The τ and tc-behaviors are very similar to the one in Fig. 3. The optimal result is 
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THE Tccsu STATE

DRSR Analysis

• This value is a prediction for the SU(3) breaking mass symmetry. 

• We notice that the mass value is below the D* Ds threshold of 3975 MeV. 

• Then we do not expect strong decay channels for this state. 

• LHCb Collaboration could provide some new results on the D* Ds decay 
channel in a future publications.

We can perform the SU(3) mass ratios between the Tccsu and Tcc
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Here, we extract directly the Tccs̄ū coupling and mass from the LSR moments and ratio of 
moments. The τ and tc-behaviors are very similar to the one in Fig. 3. The optimal result is 

13

Tetraquark:
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Table 1
Interpolating operators describing the Zc, Xc, Tccq̄′q̄ states discussed in this paper where b = 0 is the optimized mixing 
parameter [23].

States I (JP ) 3̄c3c Four-quark currents Refs.

Zc (1+) OAcq = εijkεmnk
[
(qT

i Cγ5 cj )(q̄ ′
mγµC c̄T

n ) + b, (qT
i C cj )(q̄ ′

mγµγ5C c̄T
n )

]
[23]

OD∗
qDq

= (c̄γµq)(q̄ ′ iγ5c)

Xc (1+) O3
X = εijk εmnk

[(
qT
i Cγ5 cj

)(
c̄m γ µC q̄T

n

)
+

(
qT
i Cγ µ cj

)(
c̄m γ5C q̄T

n

)]
[18,49–51]

O6
X = εijk εmnk

[(
qT
i Cγ5λa

ij cj

)(
c̄m γ µCλa

mn q̄T
n

)

+
(
qT
i Cγ µλa

ij cj

)(
c̄m γ5Cλa

mn q̄T
n

)]

OD∗
qDq

= 1√
2

[
(q̄γ5c)(c̄γµq) − (q̄γµc)(c̄γ5q)

]

Oψπ = (c̄γµλac)(q̄γ5λaq)

Tccūd̄ 0(1+) O1+
T = 1√

2
εijk εmnk

(
cT
i Cγ µ cj

)[(
ūm γ5C d̄T

n

)
−

(
d̄m γ5C ūT

n

)]
[50]

Tccūs̄
1
2 (1+) O

T 1+
us

= εijk εmnk

(
ci Cγ µcT

j

)(
ūm γ5Cs̄T

n

)

Tccūd̄ 1(0+) O0+
T = 1√

2
εijk εmnk

(
cT
i Cγ µ cj

)[(
ūm γµC d̄T

n

)
+

(
d̄m γµC ūT

n

)]
[50]

Tccūs̄
1
2 (0+) O

T 0+
us

= εijk εmnk

(
ci CγµcT

j

)(
ūm γ µCs̄T

n

)

Tccs̄s̄ 0(0+) O0+
T = εijk εmnk

(
ci CγµcT

j

)(
s̄m γ µCs̄T

n

)

Table 2
QCD input parameters estimated from QSSR (Moments, LSR and ratios of sum rules) 
used here.

Parameters Values Sources Refs.

αs (MZ) 0.1181(16)(3) Mχ0c,b−Mηc,b
[52–54]

mc(mc) [MeV] 1266(6) D,Bc ⊕ J/ψ,χc1,ηc [52,54–59]
mb(mb) [MeV] 4196(8) Bc ⊕ ϒ [52,54–59]
µ̂q [MeV] 253(6) Light [27,60]
m̂s [MeV] 114(6) Light [27,60]
κ ≡ 〈s̄s〉/〈d̄d〉 0.74(6) Light-Heavy [27,60,61]
M2

0 [GeV2] 0.8(2) Light-Heavy [27,36,62–66]
〈αsG

2〉 [GeV4] 6.35(35)10−2 Light-Heavy [52,54]
〈g3G3〉/〈αsG

2〉 8.2(1.0) [GeV2] J/ψ [58,59]
ραs 〈q̄q〉2 [GeV6] 5.8(9)10−4 Light, τ -decay [36,63,64,67–70]

The chiral partner 1− and 0− states and the molecule assignments of the TQQq̄q̄ ′ states which 
deserves a particular attention due to the numerous possibilities of such assignments are post-
poned in a future publication.

5. QCD input parameters

The QCD parameters which shall be used here are the QCD coupling αs , the charm quark 
mass mc, the gluon condensates 〈αsG

2〉. Their values are given in Table 2. We shall use nf = 4
and 5 total number of flavours for the numerical value of as ≡ αs/π .
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Fig. 24. Different determinations of T 1+,0+
ccqq′ from LSR. The horizontal lines are physical thresholds. Comments and 

corrections of some results are given in the text. The predictions of Du et al. and ours for the η1 current quoted in Table 8
are too high and are not shown here. The red rectangle and open circle below the ones of Tang et al. are our predictions 
for the same 8̄c8c current. (For interpretation of the colors in the figure(s), the reader is referred to the web version of 
this article.)

Fig. 25. Same as Fig. 24 but for T
1+,0+
bbqq′ .
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are too high and are not shown here. The red rectangle and open circle below the ones of Tang et al. are our predictions 
for the same 8̄c8c current. (For interpretation of the colors in the figure(s), the reader is referred to the web version of 
this article.)

Fig. 25. Same as Fig. 24 but for T
1+,0+
bbqq′ .
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Confronting DRSR results with Lattice and Quark ModelsR. Albuquerque, S. Narison and D. Rabetiarivony Nuclear Physics A 1023 (2022) 122451

Fig. 26. Confronting the LSR ⊕ DSR results of T
1+,0+
QQqq′ masses with some estimates from lattice and quark models.

threshold while the Tbb one is below the threshold (except the one from [103]) and then stable 
against strong interactions. However, the recent LHCb data for the 1+ Tcc candidate does not 
favor the models of [97–99] which predict a too high 1+ Tcc mass.

For the Tbb 0+ scalar state, the situation is quite similar. This state is expected to be below the 
hadronic threshold by different approaches except the lattice result of [91] and the quark model 
of [97].

• Some comments on our results

Our predictions for different 1+ and 0+ states including SU3 breakings states are clustered in 
the range −250 to +150 MeV of the hadronic thresholds.

From our approach, the mass shifts due to SU3 breakings are positive but tiny. Therefore, our 
results for the masses of different states are grouped around the physical thresholds. This is not 
often the case of some other approaches. In particular, a lattice calculation [89] and some quark 
models [97–99,101–103] expect a mass of the Tccs̄s̄ and Tbbs̄s̄ 0+ states well above the physical 
threshold while in our case the Tbbs̄s̄ state lies below the physical threshold and the one of the 
Tccs̄s̄ 0+ state is slightly above (see Table 5). This peculiar feature of SU3 breakings for exotic 
states needs to be checked experimentally.
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• We do an extensive analysis on axialvector (1+) TQQ-like state. 

• We confront our results with the ones from different approaches. 

• The Tcc state is expected to be around the physical threshold. 

• While the Tbb state is below the threshold. 

• We do predictions for SU(3) breakings states and we hope LHCb could 
test them in a near future publications. 

• In general, our results for the masses of different states are grouped 
around the physical thresholds. 

• For more details, please check it out…
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