Search for K⁺ decays to a charged lepton and invisible particles with MAG2 &

- The Kaon Factory @ CERN SPS -

Simone Schuchmann

Johannes Gutenberg University Mainz (Germany)

QCD 21 Conference, Montpellier 09.07.2021

Content

$K^+ \rightarrow \ell^+$ + invisible with NA62: search for new physics and particles beyond the Standard Model:

- Heavy Neutral Lepton (HNL) searches:
 - $K^+ \rightarrow e^+ N$ and $K^+ \rightarrow \mu^+ N$ (N = HNL)
- Related searches:
 - $K^+ \rightarrow \mu^+ \nu \nu \nu$ versus $K^+ \rightarrow \mu^+ \nu X$
 - X = invisible scalar or vector hidden sector mediator
- Results and prospects

Heavy Neutral Leptons (HNL)

• Heavy neutral leptons: three right-handed (sterile) neutrinos N_i are added to the Standard Model (SM), they mix with classical neutrinos:

$$\nu_{\alpha} = \sum_{i=1}^{3+k} U_{\alpha i} \nu_i, \qquad (\alpha = e, \mu, \tau)$$

- to account for neutrino masses and oscillations, for the evidence of Dark Matter and for the baryon asymmetry of the universe.
- The neutrino minimal Standard Model extension (vMSM) considers mass ranges and couplings: ([Asaka, Blanchet, Shaposhnikov, PLB 631 (2005) 151])
 - $N_1: m_1 \sim 10 \text{ keV} \text{dark matter candidate}$
 - $N_{2,3}$: $m_{2,3} \sim 100 \text{ MeV} 100 \text{ GeV}$
 - Yukawa couplings in the range 10⁻¹¹ to 10⁻⁶
- If HNLs exist, they would be produced in every process containing active neutrinos with a branching fraction proportional to the **mixing parameters** $|U_{\ell 4}|^2$; here considering k = 1
- Masses of *O*(GeV) are observable at NA62 via Kaon decays: HNL production and decay searches.

Global Constraints on a Heavy Neutrino: Upper limits estimates for HNL with k=1

- Assuming HNL decay products are not observable:
- > HNL accessible from decays:
 - beta
 - lepton (μ , τ)
 - meson
 - neutrinoless double β -decay
- > Lepton flavour violating processes
- > Lepton universality tests
- Mass range for Kaon decays:
 50 MeV < m₄ < 500 MeV

HNL production in K⁺ decays

[R. Shrock, PLB96 (1980) 159]

$$\Gamma(K^+ \to \ell^+ N) = \Gamma(K^+ \to \ell^+ \nu) \times \rho_\ell(m_N) \times |U_{\ell 4}|^2.$$

 $|U_{\ell 4}|^2$: elements of the extended neutrino mixing matrix $\rho_{\ell}(m_N)$: kinematic enhancement factor

HNL production in K^+ decays

[R. Shrock, PLB96 (1980) 159]

: elements of the extended neutrino mixing matrix : kinematic enhancement factor

$K^+ \rightarrow \mu^+ \nu X : X \rightarrow \text{invisible or } X \rightarrow \mu \mu / \gamma \gamma$

[PRL 124 (2020) 041802]

- $X \rightarrow$ invisible:
 - probe remaining parameter space in which muonic forces reconcile the $(g-2)_{\mu}$ anomaly
 - Dark Matter candidate (thermal DM production)
 - neutrinos: reduce the H₀ (Hubble constant) tension
- $X \rightarrow \mu \mu / \gamma \gamma$:
 - improve coverage for scalar and vector forces, covering $(g-2)_{\mu}$ favoured region
- Background potentially also from $K^+ \rightarrow \mu^+ \nu \nu \nu$:
 - Search for new physics with ultra-rare decay: probe the new chiral perturbation theory form factors related to the neutral weak boson exchange BR: 1.6×10⁻¹⁶ [JHEP 1610 (2016) 039]

> Here: X->invisible and $K^+ \rightarrow \mu^+ \nu \nu \nu$ as variation of the HNL analysis

The Kaon Factory: NA62 @ CERN SPS 💬

> Fixed target experiment

> Kaon decay-in-flight

 Main goal: BR(K⁺ → π⁺νν) measurement with $\mathscr{O}(10\%)$ precision
 Results: [PLB791 (2019) 156-166, JHEP11 (2020)] See talk by Z. Kucerova

@SPS at CERN

The Kaon Factory: NA62 @ CERN SPS

Nominal beam rate: 750 MHz: K⁺ rate 45 MHz and 3.7 MHz mean K⁺ decay rate in fiducial volume (FV)

The Kaon Factory: NA62

Data taking, trigger conditions and selections

- 2.2 x 10¹⁸ proton-on-target events (POT) in Run1 (2016 2018): 6 x 10¹² K⁺ decays recorded
- Excellent time resolution: $\mathcal{O}(100 \text{ ps})$ to match beam and daughter particle information
- PID capability (RICH+LKr+HAC+MUV): $\mathcal{O}(10^{-8})$ muon suppression
- High-efficiency photon veto: $\mathscr{O}(10^{-8})$ rejection of $\pi^0 \rightarrow \gamma\gamma$ for $E(\pi^0) > 40$ GeV
- Kinematics: rejection of main K⁺ modes down to 10⁻⁴ via kinematics reconstruction

Specific selections within the considered searches:

- Triggers used: $K^+ \rightarrow \pi^+ \nu \nu$ for $K^+ \rightarrow e^+ N$; minimum bias (downscaled by 400) for $K^+ \rightarrow \mu^+ N$
- Good downstream track reconstructed by the STRAW spectrometer in acceptance of LKr and MUV3
- Lepton momentum requirements: $5 < p_e < 30 \text{ GeV/c}$; $5 < p_{\mu} < 70 \text{ GeV/c}$
- Lepton PID: e^+ : 0.92 < E_{LKr}/p_e < 1.08, RICH and MUV3 veto ; μ^+ : E_{LKr}/p_{μ} < 0.2, RICH and MUV3 information
- Upstream track identified by KTAG and GTK matched with the downstream lepton

HNL search with Run1 data-set

Search for $K^+ \rightarrow \mu^+ N$

Search for $K^+ \rightarrow e^+ N$

[Phys. Lett. B 816 (2021) 136259]

 $(1.14 \pm 0.02) \times 10^{10}$

09.07.2021

[Phys. Lett. B 807 (2020) 135599]

- Peak search in the missing mass distribution $m_{miss}^2 = (P_K - P_\ell)^2$ with $P_K(P_\ell)$: kaon (lepton) four-momentum, using GTK and STRAW information
- $K^+ \rightarrow \mu^+ \nu$ with $\mu^+ \rightarrow e^+ \nu \nu$ suppressed by good vertex resolution
- $\pi^+ \rightarrow e^+ v$ accidental mistagging
- > HNL production signal: a spike above continuous missing mass spectrum
- No HNL production signals are observed.

Simone Schuchmann, JGU Mainz, Germany

 $(3.52 \pm 0.02) \times 10^{12}$

HNL: Mass scan, background estimate and uncertainties

- HNL mass range: $e^+: m_N = 144 462 \text{ MeV/c}^2$ $\mu^+: m_N = 188 386 \text{ MeV/c}^2$
- Mass scan steps: $e^+: \sigma_m/2$ $\mu^+: 1 \text{ MeV/c}^2 \text{ below}; 0.5 \text{ MeV/c}^2 \text{ above } m_N = 300 \text{ MeV/c}^2$
- Number of mass hypotheses: e^+ : 260 μ^+ : 269
- Signal window: $|m_{miss} m_N| < 1.5 \sigma_m$ (σ_m mass resolution, evaluated with simulation (see next slide))
- N_{exp} : number of expected background events: for each hypothesis: fit of 2nd order polynomial to data in side-bands 1.5 $\sigma_m < |m_{miss} m_N| < 11.25 \sigma_m$ of the m^2_{miss} spectrum

Systematic uncertainty estimation:

- Possible HNL signals in side-bands: inject artificial HNL signals corresponding to the Single Event Sensitivity (SES) into side-bands
 > negligible
- Background shape: compare 2nd and 3rd order polynomials
 - > dominant contribution to δN_{exp} is statistical, systematic uncertainties become comparable as m_N approaches the boundaries of the HNL search region.
- Total uncertainty of background estimates, $\delta N_{exp}/N_{exp}$:
 - \triangleright e⁺: 0.2% few %; μ +: 1-2% for m_N < 300 MeV, increases up to 10% in HNL search region

HNL: Mass resolution and acceptance and and sensitivity Single event sensitivity for:

Signal selection acceptance A_N from simulations assuming infinite HNL lifetime

Single event sensitivity for: $BR_{SES} = 1/(N_K \times A_N)$ N_K : effective number of Kaon decays in FV and $|U_{\ell 4}|^2_{SES} = BR_{SES} / [BR(K^+ \rightarrow \ell^+ \nu) \rho_\ell(m_N)]$

- Mass window condition for each HNL mass hypothesis (m_{HNL}) : $|m-m_{HNL}| < 1.5\sigma_m$: background is proportional to mass resolution \rightarrow ! resolution is crucial to resolve possible HNL mass splitting!
- Number of expected HNL signal events: $N_s = BR(K^+ \rightarrow \ell^+ \nu) / BR_{SES} = |U_{\ell 4}|^2 / |U_{\ell 4}|^2_{SES} \rightarrow obtain upper limits @ 90\% confidence level$

HNL: Upper limits of N_s - Run1 data set

Search for $K^+ \rightarrow \mu^+ N$

Search for $K^+ \rightarrow e^+ N$

Upper limit (UL) of the number of signal events N_s at 90% CL using CLs technique:

- Use the number of observed events (N_{obs} , δN_{obs}) within the signal window and expected background events (N_{exp} , δN_{exp}) \rightarrow compute the local signal significance for each mass hypothesis and evaluate UL of N_s
- µ⁺: significance never exceeds 3σ
 → no HNL production signals are
 observed.
- e⁺: maximum local significance of 3.6 for m_N =346 MeV/c². Accounting for look-elsewhere effect: global significance = 2.2

 N_{obs} , and the observed UL of N_s , and the expected $\pm 1\sigma$ and $\pm 2\sigma$ bands of variation of N_s in the null (i.e. background-only) hypothesis.

09.07.2021

HNL: Upper limits of $|U_{\ell 4}|^2$ - Run1 data set

- $\succ \mathscr{O}(10^{-9})$ limits on $|U_{e4}|^2$ and $\mathscr{O}(10^{-8})$ limits on $|U_{\mu4}|^2$
- More than 2(1) orders of magnitude improvements from run 1 data for e⁺(µ⁺) with respect to previous results.
- For µ⁺: NA62 consistent with the E949 result and extends UL to higher masses.
- For e⁺: values favoured by the Big Bang Nucleosynthesis (BBN) constraint (dashed red line) are excluded for HNL masses up to 340 MeV/c²

Search for new particles: $K^+ \rightarrow \mu^+ \nu X$

- Mass range 10-370 MeV/c²
- Compare expected and observed number of events for each mass hypothesis and extract limit: → No signal observed
- The limits obtained in the scalar model are stronger than those in the vector model due to larger mean m²_{miss} value.

Search for new particles: $K^+ \rightarrow \mu^+ \nu X$

- Mass range 10—370 MeV/c²
- Compare expected and observed number of events for each mass hypothesis and extract limit: → No signal observed
- The limits obtained in the scalar model are stronger than those in the vector model due to larger mean m²_{miss} value.

Related search: $K^+ \rightarrow \mu^+ v v v$, current limit: BR < 2.4×10⁻⁶ (E949, [PRD94 (2016) 032012])

- Search region m²_{miss} > 0.1 GeV²/c⁴ (optimized to extract strongest limit)
- Observed events: 6894; expected from MC: 7549 ± 928 → set new upper limit: BR <1.0×10⁻⁶ at 90% CL in the SM framework

Summary, conclusions and outlook

- World best upper limits on HNL mixing parameters have been set with Run1 data:
 - $\mathcal{O}(10^{-9})$ limits on $|U_{e4}|^2$, full data set [PLB 807 (2020) 135599]
 - *O*(10⁻⁸) limits on |U_{μ4}|², full data set [PLB 816 (2021) 136259]
- First search for $K^+ \rightarrow \mu^+ \nu X$ decays has been performed in the mass range 10-370 MeV/c²: upper limits between $\mathscr{O}(10^{-7})$ for high m_X and $\mathscr{O}(10^{-5})$ for low m_X at 90% CL ([PLB 816 (2021) 136259])
- World best upper limit on BR($K^+ \rightarrow \mu^+ \nu \nu \nu$) has been set: 1.0×10⁻⁶ at 90% CL ([PLB 816 (2021) 136259])
- With the NA62 experiment at CERN, a considerable spectrum of ongoing and potential measurements to test and challenge the Standard Model is available.
- The high intensity Kaon beam provides the basis for rare decay studies, precision measurements as well as Dark Matter and New Physics searches.
- ... and with future data recordings in Run2 with higher intensity in July 2021 to improve the sensitivity to $|U_{\ell 4}|^2$