

New measurement of the $K^+ \rightarrow \pi^+ \mu^+ \mu^-$ decay at NA62

Chris Parkinson, for the NA62 collaboration

QCD2020, Montpellier, France

28/09/2020

New measurement of the $K^+ \rightarrow \pi^+ \mu^+ \mu^-$ decay at NA62

Motivation for the measurement Introduction to the NA62 experiment Details of the analysis Future prospects and conclusions

Motivation

- Recent measurements of $b \rightarrow s\ell\ell$ transitions have shown striking deviations from SM predictions: "the B anomalies"
- Could expect similar effects to appear in $s \rightarrow d\ell \ell$ transitions
 - In *Minimal Flavour Violation* (MFV) models, correlated effects in B and K processes are anticipated, with the size of the effects dictated by the CKM matrix elements
 - More generally, new physics effects could actually be *larger* in kaon decays than B decays (in relative terms), since the existing CKM suppression in kaons is larger
- A strong motivation for studies of $s \to d\ell\ell$ kaon decays: $K^+ \to \pi^+ \ell^+ \ell^-$, $K_{S,L} \to \pi^0 \ell^+ \ell^-$

Motivation

- The $K^+ \to \pi^+ \ell^+ \ell^-$ decay is a *Flavour Changing Neutral Current* $s \to d\ell\ell$ process
- The SM branching fraction is O(10⁻⁷); dominated by long-distance effects [Nucl. Phys. B291 (1987) 692–719], [JHEP 08 (1998) 004], [Phys. Part. Nucl. Lett. 5 (2008) 76–84], [Eur. Phys. J. C70 (2010) 219–231]

$$\frac{d\Gamma}{dz} = \frac{\alpha^2 M_K}{12\pi (4\pi)^4} \lambda^{\frac{3}{2}} (1, z, r_\pi^2) \sqrt{1 - 4\frac{r_\ell^2}{z} \left(1 + 2\frac{r_\ell^2}{z}\right) |W(z)|^2} \quad \text{vector form factor}$$

 $z = m^2 (\mu^+ \mu^-) / m^2(K) = q^2 / m_K^2 \qquad W(z) = G_F M_K^2 (a_+ + b_+ z) + W^{\pi\pi}(z)$

 a_+, b_+ are $K^+ \to \pi^+ \ell \ell$ FF parameters, $W^{\pi\pi}(z)$ is a pion loop term

- Ongoing effort to determine FF parameters a_+ , b_+ from first principles using Lattice techniques [PoS LATTICE2016 (2017) 303], [Phys. Rev. D94 (2016) 114516]
- Short distance physics can be extracted by comparing form-factor parameters between $\pi^+\mu^+\mu^+$ and $\pi^+e^+e^-$ as the SM predicts them to be identical: a probe of *Lepton Flavour Universality*

Movation

- LFU predicts a_+ and b_+ to be the same in the ee and $\mu\mu$ mode
- Theoretical work published in [Phys. Rev. D 93, 074038 (2016)] tells us that a_+ can be related to C_{7V} :

$$a_{+}^{NP} = \frac{2\pi\sqrt{2}}{\alpha} V_{ud} V_{us}^* C_{7V}^{NP} \qquad C_{7V}^{\mu\mu} - C_{7V}^{ee} = \alpha \frac{a_{+}^{\mu\mu} - a_{+}^{ee}}{2\pi\sqrt{2}V_{ud}V_{us}^*}$$

• Which can be related to LFU in B decays (assuming MFV):

$$C_9^{B,\mu\mu} - C_9^{B,ee} = -\frac{a_+^{\mu\mu} - a_+^{ee}}{\sqrt{2}V_{td}V_{ts}^*} \approx -19 \pm 79$$

• Largest uncertainty is on $a^{\mu\mu}_+$

Channel	a_+	b_+	Reference
ee	-0.587 ± 0.010	-0.655 ± 0.044	E865 [14]
ee	-0.578 ± 0.016	-0.779 ± 0.066	NA48/2 [15]
$\mu\mu$	-0.575 ± 0.039	-0.813 ± 0.145	NA48/2 [16]

Table 1. Fitted values of coefficients in the vector form factor (5).

- A factor 10 improvement in precision will probe B anomalies.
- Strong motivation to reduce uncertainty on a_+ in the $\mu\mu$ mode
- NCLFU observables 2σ flavio $b \rightarrow s \mu \mu \& \text{ corr. obs. } 1 \sigma$ global 1σ , 2σ 1.0 $C_{10}^{bs\mu\mu}$ 0.5 0.0Eur. Phys. -0.55 -1.00.0 0.5-1.5-0.5 $C_{o}^{bs\mu\mu}$ 0 **,08** $R_{K^*} \cdot 1\sigma$ flavio $R_K \Delta \chi^2 = 1$ 3.0252 CLFU observables 1σ $\mu\mu$ & corr. obs. 1σ 2.5lobal 1σ , 2σ (2020)] 2.01.5 Constitu 1.0 0.5 0.0 -3.0-2.5-2.0-1.5-1.0-0.50.0 obsµµ

New measurement of the K+ --> π + μ + μ - decay at NA62, Chris Parkinson, QCD2020

The NA62 experiment

NA62 is a kaon physics experiment based at the CERN North Area (NA) It uses 400 GeV/c protons extracted from the CERN super-proton synchrotron (SPS) to perform decay-in-flight measurements of (ultra) rare kaon decays

The NA62 detector

- Proton-target interactions + achromatic selector forms secondary hadron beam with $p \approx 75 \ GeV/c$
 - There are 750MHz of particles in the secondary beam; 6% are K^+ (45MHz)
- Measurement of all beam particles by kaon tagger **KTAG** and beam-particle tracker **GTK**
- About 15% of K^+ decay within the ~ 75m vacuum **decay region**, which defines the experiments **fiducial volume**
- Measurement of K⁺ decay products by the **STRAW** tracker and **CHOD** detectors
- Particle identification by the RICH, the LKr and MUV calorimeters, and the MUV3 detector
- Hermetic photon veto provided by the LAV, LKr, IRC, SAC photon detectors

NA62 data sample

- Three years of *NA*62 data taking: **2016**: $\sim 1 \times 10^{11} K^+$ decays **2017**: $\sim 2 \times 10^{12} K^+$ decays **2018**: $\sim 4 \times 10^{12} K^+$ decays
- Present result based on 2017 & 2018 data
- Triggers employed for the $\pi\mu\mu$ analysis:
 - Generic "multi track" trigger with typical downscaling of D = 100
 - Specific "di muon" trigger with downscaling of D = 2

NA62 $K^+ \rightarrow \pi^+ \pi^+ \pi^-$ sample

- Generic three-track selection:
 - Three tracks reconstructed in the STRAW spectrometer, consistent with having originated from a K⁺ decay in the fiducial volume of the detector
 - Track timing from CHOD and KTAG
 - Electrons suppressed using information from the LKr calorimeter
- 2.78 × 10⁸ K⁺ → π⁺π⁺π⁻ candidates were selected in the data, to be used as a normalisation channel
- Number of kaon decays in the fiducial volume estimated to be: $N_K \approx 6.76 \times 10^{12}$

Candidate invariant mass under $\pi\pi\pi$ assumption

New measurement of the K+ --> π + μ + μ - decay at NA62, Chris Parkinson, QCD2020

9

NA62 $K^+ \rightarrow \pi^+ \mu^+ \mu^-$ sample

10

- Specific $\pi^+\mu^+\mu^-$ selection:
 - Muons identified using information from MUV3 and LKr
 - Kinematic cuts applied to further suppress $K^+ \rightarrow \pi^+ \pi^+ \pi^-$ backgrounds
- 28011 $\pi\mu\mu$ candidates were selected in the data
 - About 9x more than NA48/2 measurement [Physics Letters B 697 (2011), pages 107-115]
- Background contamination O(10) events; less than 1 per mille

Candidate invariant mass under $\pi\mu\mu$ assumption

Fit to the form-factor parameters

Fitting procedure:

- z spectrum of simulated $K^+ \rightarrow \pi^+ \mu^+ \mu^-$ events reweighted to best fit the data by minimising $\chi^2(a, b)$
- Best fit of FF parameters:

 $a = -0.592 \pm 0.013_{\text{stat}}$ $b = -0.699 \pm 0.046_{\text{stat}}$

• Goodness of fit:

 $\chi^2/ndf = 20.3/14$, *p*-value = 0.122

- Correlation coefficient: $\rho_{\rm stat}({\it a,b}) = -0.973$
- Model-dependent branching fraction: $B(K^+ \rightarrow \pi^+ \mu^+ \mu^-) = (9.27 \pm 0.07_{stat}) \times 10^{-8}$

Detailed fit results

28/10/2020

Comparison with existing measurements

- The NA62 measurement of $a^{\mu\mu}_+$ is the worlds most precise determination
- The result is consistent with the earlier NA48/2 measurement, and is consistent with existing measurements of a^{ee}₊
- No indication of discrepancy with SM predictions, including LFU violation

Future prospects

- NA62 will continue running from 2021 through 2024 [CERN-SPSC-2019-039]
 - Beam intensity to be increased by $\sim 50\%$
 - Prospects for $K^+ \rightarrow \pi^+ \ell^+ \ell^-$ under study (depends strongly on the trigger setup)
- Designs for a high-intensity kaon facility at CERN are being prepared [arXiv:2009.10941]
 - New K_L^0 experiment with x6 beam intensity (relative to 2021+)
 - Potential for improved $K_L^0 \rightarrow \pi^0 \ell^+ \ell^-$ measurement to be assessed
 - Further K^+ experiment with x4 beam intensity
- Kaon prospects at LHCb Run 3 recently examined [J. High Energ. Phys. (2019) 2019: 48]
 - New GPU-based software trigger to collect strange hadron decays with 100% efficiency
 - LHCb can record $O(10k) K^+ \rightarrow \pi^+ \mu^+ \mu^-$ decays each year
 - Unique capability to study $K_S^0 \rightarrow \pi^0 \mu^+ \mu^-$ decays

Summary

- New physics effects such as Lepton Flavour Universality can be probed in rare K^+ decays
 - Such measurements are strongly motivated by (anomalous) results in rare B decays
- The NA62 experiment at CERN is the worlds only dedicated K^+ experiment
- NA62 has made the *worlds most precise* determination of the $K^+ \rightarrow \pi^+ \mu^+ \mu^-$ form-factor parameters a_+ and b_+ using data collected in 2017 and 2018
- No sign of Lepton Flavour Universality violation so far
- Excellent prospects for further measurements, at NA62 and elsewhere

Backup

28/10/2020

New measurement of the K+ --> π + μ + μ - decay at NA62, Chris Parkinson, QCD2020

17

