

Searches for lepton flavor and lepton number violation in K+ decays

Elisa Minucci

on behalf of the NA62 Collaboration

Outline:

- Introduction
- The NA62 experiment
- Search for $K^+ \rightarrow \pi^{\pm} \mu^{\mp} e^+$ decays
- Search for $\mathbf{K}^+ \rightarrow \pi^- \mathbf{l}^+ \mathbf{l}^+$ decays
- Summary

European Research Council

Lepton Number & Lepton Flavor violation in K⁺ decay

Lepton Number (L) and Lepton Flavor(L_e, L_μ, L_τ) are approximately conserved numbers within the SM: their conservation is not imposed by any local gauge symmetry \rightarrow interesting to search for New Physics effects, exploring high mass scale.

Lepton Number Violation

E.g: <u>Type I see-saw mechanism</u> $\Delta L = 2$ via exchange of Majorana neutrinos **Lepton Flavor Violation**

 $\Delta L_i = 1 \& \Delta L_j = 1 i, j = [\mu, e]$ E.g mediated at three level by <u>leptoquark</u> that can couples with fermions of more than one families or by a <u>new heavy Z' boson</u> with family non-universal coupling

Searches in K decays are complementary to searches in B-physics and in pure leptonic processes as: $\mu \rightarrow 3e$

E.Minucci

LNV & LFV in \mathbf{K}^+ decay: State of the art

The NA62 experiment at the CERN SPS

- Data taking: 2016-2018
- Fixed target experiment (400 GeV/c proton from SPS onto a Beryllium target)
- Unseparated secondary beam
- Kaon decay-in-flight technique ~5 MHz K⁺decay rate within the fiducial volume

Main goal:

Measure $\ Br(K^+ o \pi^+
u ar{
u})$ with O(10%) precision

SM prediction :

$$Br(K^+ o \pi^+
u ar{
u}) = (8.4 \pm 1.0) imes 10^{-11}$$

[Buras et al. JHEP 1511(2015)33]

Latest results \rightarrow Talk by A. Antonelli

Broad physics program

- Rare and forbidden decays : LN and LF violation
- Precision measurements of SM decays. Talk by C. Parkinson
- **Exotics searches:** dark photon, heavy neutral leptons, axion-like particles → Talk by M.Corvino

The NA62 experiment & the $K^+ \rightarrow \pi^{\pm} l^{\pm} l^{'\mp}$

Tag K+: **KTAG** (Cherenkov detector), $\sigma_t \sim 70$ ps

Reconstruct momentum and direction of 3 charged tracks: STRAW

- Total momentum consistent with the K+ beam momentum
- Reconstruct vertex in **FV**
- PID:
 - **LKr:** $E/P \rightarrow E$ = energy deposited in calorimeter; P = reconstructed momentum
 - MUV3: ID/veto muons
 - **RICH:** ID positive charged particle: $\pi/\mu/e$ separation (used only in the $K^+ \rightarrow \pi^- e^+ e^+$ analysis)

Photon vetos: hermetic (0-50) mrad: 12LAVs, 2SAVs (IRC+SAC), LKr Track Timing: CHOD $\sigma_t \sim 200 \text{ ps}$

84.52

- Blinded analysis strategy [2 independent analysis cross-checked]
- 2017+2018 data
- The invariant mass of the three selected tracks built under the $\pi \mu e$ hypothesis $M_{\pi\mu e}$ ($\sigma_{M} \sim 1.4$ MeV), is the kinematic variable used to distinguish between signal and background

Triggers:

- L0 (hardware) + L1 (software)
- Rare+Exotics triggers taken simultaneously with πvv trigger
- Data analyzed \rightarrow Logic OR of three triggers

Trigger name	Downscaling	Description	Use in analysis
Multi-Track	D _{MT} = 100	Minimum bias 3-track trigger	Collect $K^+ \rightarrow \pi^+ \pi^+ \pi^-$ + Signal events
Multi-Track µ	D _{µ-MT} = 8	3 track + > 10 GeV in LKr + ≥ 1µ (MUV3)	Collect Signal events
Multi Track e	D _{e-MT} = 8	3 track + > 20 GeV in LKr	Collect Signal events

Single Event Sensitivity

The $\mathbf{K}^+ \rightarrow \pi^+ \mu^- e^+$ and $\mathbf{K}^+ \rightarrow \pi^- \mu^+ e^+$ signals are normalized to the $\mathbf{K}^+ \rightarrow \pi^+ \pi^- \pi^+ \pi^-$ channel: Br = (5.583 ± 0.024)% \rightarrow cancellation of systematic effects: trigger efficiency, intrinsic detector inefficiencies

 $N_K = rac{N_{K3\pi}}{Br_{K3\pi} \cdot A_n \cdot \epsilon_n} rac{D_{MT}}{D_{eff}}$ $N_K = (1.32 \pm 0.01) imes 10^{12}$

 N_{κ} = number of kaon decays in the FV. Account for the downscaling factor of the three triggers (D_{aff})

$$S.\,E.\,S=rac{1}{N_{K}\cdot A_{s}\cdot \epsilon_{trig}}$$

Account for signal trigger efficiency

 $A_s(K^+ o \pi^- \mu^+ e^+) = (4.90 \pm 0.02)\% \implies S.\, E.\, S = (1.82 \pm 0.08) imes 10^{-11}$ $A_s(K^+ o \pi^+ \mu^- e^+) = (6.21 \pm 0.02)\% \implies S.\, E.\, S = (1.44 \pm 0.05) imes 10^{-11}$

1. Mis-identification (mis-ID)

Measure the mis-ID probability from data π^{\pm} : E/P < 0.9 e^{\pm} : 0.95 < E/P < 1.05

- $\pi^{\pm} \Rightarrow e^{\pm}$ from pure sample of $K^+ \rightarrow \pi^+ \pi^- \pi^-$
- $e^{\pm} \Rightarrow \pi^{\pm}$ from pure sample of $K^+ \rightarrow \pi^+ \pi^0$, $\pi^0 \rightarrow e^+ e^- \gamma$

Model applied to simulation \rightarrow boosts statistical power

Also $\pi^{\pm} \Rightarrow \mu^{\pm}$ and $\mu^{\pm} \Rightarrow e^{\pm}$ have been consider (MUV3 accidentals)

2. Decay-in-flight

 $\pi^{\pm} \rightarrow \mu^{\pm} v_{\mu}$ or $\mu^{\pm} \rightarrow e^{\pm} v_{e}$ Dalitz decay : $\pi^{0} \rightarrow e^{+} e^{-} \gamma$

$A_s(K^+ o \pi^+ \mu^- e^+) = (6.21 \pm 0.02)\% \implies S.\, E.\, S = (1.44 \pm 0.05) imes 10^{-11}$

Main sources of background in control and signal regions:

```
□ K3\pi upstream decay in flight + \pi^+ ⇒ e^+
```

$$\Box \quad \text{Ke4 with } \pi^{\pm} \to \mu^{\pm} \nu_{\mu} \text{ or } \pi^{\pm} \Rightarrow \mu^{\pm}$$

	N _{CRB}	N _{CRA}
Total bkg expected	3.41 ± 0.54	1.27 ± 0.40
Observed events	2	0
p-value	0.99	

$K^+ \rightarrow \pi^- \mu^+ e^+$ Analysis

$$A_s(K^+ \to \pi^- \mu^+ e^+) = (4.90 \pm 0.02)\% \implies S. E. S = (1.82 \pm 0.08) \times 10^{-11}$$

[dedicated cut to reject K⁺ decays with $\pi^0 \to e^+ e^- \gamma$ DIF]

Main sources of background in control and signal regions:

- $K^+ \rightarrow \pi^+ e^+ e^-$ with $\pi^+ \rightarrow \mu^+ \nu_{\mu}$ and $e^- \Rightarrow \pi^-$ K3 π upstream decay in flight + $\pi^+ \Rightarrow e^+$
- $K^+ \rightarrow \mu^+ v e^+ e^-$ with $e^- \Rightarrow \pi^-$

	N _{CRB}	N _{CRA}	
Total bkg expected	1.68 ± 0.20	1.66 ± 0.26	
Observed events	2	4	
p-value	0.18		

 $K^+ \rightarrow \pi^- \mu^+ e^+$ Analysis: $K^+ \rightarrow \pi^+ e^+ e^-$ background

 $A_s(K^+ o \pi^+ \mu^- e^+) = (6.21 \pm 0.02)\% \implies S.\, E.\, S = (1.44 \pm 0.05) imes 10^{-11}$

Main sources of background in control and signal regions:

```
□ K3\pi upstream decay in flight + \pi^+ ⇒ e^+
```

In signal region

$$n_{bkg} = 0.92 \pm 0.34, \;\; n_{obs} = 2$$

 $Br(K^+ o \pi^+ \mu^- e^+) < 6.6 imes 10^{-11} @ 90\% \ C. \, L$

[Counting experiment, CLs treatment]

$K^+ \rightarrow \pi \bar{\mu}^+ e^+$ Analysis: Signal Region opened

 $A_s(K^+ \to \pi^- \mu^+ e^+) = (4.90 \pm 0.02)\% \implies S. E. S = (1.82 \pm 0.08) \times 10^{-11}$ [dedicated cut to reject K⁺ decays with $\pi^0 \to e^+e^-\gamma$ DIF]

Main sources of background in control and signal regions:

- $\mathbf{K}^+ \to \pi^+ \, \mathbf{e}^+ \, \mathbf{e}^- \text{ with } \pi^+ \to \mu^+ \mathbf{v}_{\mu} \text{ and } \mathbf{e}^- \Rightarrow \pi^-$
- **G** K3 π upstream decay in flight + $\pi^+ \Rightarrow e^+$
- $\Box \quad \mathbf{K}^{+} \rightarrow \ \mathbf{\mu}^{+} \mathbf{v} \ \mathbf{e}^{+} \ \mathbf{e}^{-} \ \text{with} \ \mathbf{e}^{-} \Rightarrow \pi^{-}$

```
In signal regionn_{bkg} = 1.06 \pm 0.20, \;\; n_{obs} = 0
```

$$Br(K^+ o \pi^- \mu^+ e^+) < 4.2 imes 10^{-11} @ 90\% \ C. \, L$$

[Counting experiment, CLs treatment]

 $K^+ \rightarrow \pi^- e^+ e^+$ Analysis (2017 data)

Additional RICH condition for $\pi^{*}\!/e^{*}$ separation

 $K^+ \rightarrow \pi^- \mu^+ \mu^+$ Analysis (2017 data)

Summary: LN & LF violating searches at NA62

	Previous UL @ 90% C.L	NA62 UL @ 90% C.L	
$K^+ ightarrow \pi^- \mu^+ \mu^+$	8.6 × 10 ⁻¹¹	4.2 × 10 ⁻¹¹	2017 data \rightarrow improved by factor 2
$K^+ \rightarrow \pi^- e^+ e^+$	6.4 × 10 ⁻¹⁰	2.2 × 10 ⁻¹⁰	2017 data \rightarrow improved by factor 3
$K^+ \rightarrow \pi^- \mu^+ e^+$	5.0 × 10 ⁻¹⁰	4.2 × 10 ⁻¹¹	2017+2018 data \rightarrow improved by factor 12
$K^+ \rightarrow \pi^+ \mu^- e^+$	5.2 × 10 ⁻¹⁰	6.6 × 10 ⁻¹¹	2017+2018 data \rightarrow improved by factor 8
$K^+ \rightarrow \pi^+ \mu^+ e^-$	1.3 × 10 ⁻¹¹	-	sensitivity similar to the previous search
$K^+ \rightarrow \mu^- v e^+ e^+$	2.1 × 10 ⁻⁸	-	Ongoing analysis: 2017 data <i>S.E.S</i> ~ 1×10^{-10}
$K^+ \rightarrow e^- v \mu^+ \mu^+$	no limit	-	Ongoing analysis: 2017 data <i>S.E.S</i> ~ 5×10^{-11}

Large improvements on most of the LN & LF violating K⁺ decays \rightarrow sensitivity up to 10⁻¹¹

□ NA62 will resume data taking after LS2

Thanks

Backup slides

$K^+ \rightarrow \pi^{\pm} \mu^{\tau} e^+$ Analysis: K3 π Upstream background

