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Forewords

These notes are intended as some supporting material for a General Relativity course in the CCP/As-
tro MSc program at the University of Montpellier. They are not meant to be entirely covered during
the course as they are much more comprehensive than what we can study in 24 hours. Instead, I
intend them to be a set of reference notes that students can use in their future endeavours. Some of
the material included here will be covered in class as it is essential, while some applications will be
selected depending, in part, from the students’ interests and response to the course.
Chapter 2 is a summary of Special Relativity cast in a format and language that suits a smooth tran-
sition to General Relativity. It is not a Special Relativity course. In particular, it does not study
physical situations in great details and does not cover relativistic electrodynamics. Rather, it con-
centrates on relativistic kinematics, to prepare the stage for the generalisations necessary to include
gravitation in a relativistic theory. This means that it should contain only notions already encoun-
tered by most students, albeit in a language and form that might be unfamiliar to many.
Chapter 3 is the heart of these notes. First, it describes in some details the technical, mathemat-
ical tools of differentiable manifolds and calculus on such manifolds. Attempt has been made to
keep this introduction ’rigorous’ and, at the same time, easy to follow for physicists and focussed
on the material directly related to the development of General Relativity. This has meant some
compromise on the generality of discussions, in particular when it comes to the concept of affine
connections. Gradually, the general material blends with the developments of General Relativity,
taking the equivalence principle and special relativistic kinematics and dynamics as guiding prin-
ciples. Finally, in its last part, this chapter explains how sources generate the gravitational field,
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with a heuristic derivation of Einstein field equations. Chapters 2 and 3 contain a fair amount of
mathematical statements. I have put in appendix A some necessary concepts that students might
want to refer to when necessary. This is not a mathematics course and therefore, the stress will not
be set on mathematics here. Classes will provide students with heuristic ways to continuation to
navigate this material without command of higher mathematics. As we will see, a lot of the concept
we need from differential geometry and the theory of manifolds are actually just usual concepts of
calculus in R𝑛 cast in a new language, more appropriate to the problems at hand. This is actually
baked into what a manifold truly is, so that calculus on manifolds can be roughly summarised as
standard calculus applied locally, with some tricks to glue the local calculii together. But I think it
is important for more mathematically inclined students to be provided with some consistent story
here, even if it is, of necessity, a truncated and simplified one.
The remaining 3 chapters explore the physics in configurations of the gravitational field applicable
in particular contexts. Chapter 4 studies the properties of spacetime around isolated objects like
stars and black holes. The discussion is limited to the Schwarzschild spacetime, although more
realistic situations ought to be formulated in a Kerr setting. Unfortunately, this falls outside of what
we can reasonably hope to study here. We start by obtaining the Schwarzschild solution from first
principle. Then we study the trajectories of massive particles and photons around a spherical star,
concentrating on the historical tests of General Relativity: deviation of light, gravitational redshift,
advance of the perihelion of planets. Finally, we see how to extend the Schwarzschild geometry
past the event horizon to construct the eternal Schwarzschild black hole.
Chapter 5 concentrates on the definition and study of gravitational waves. It starts with a general in-
troduction to relativistic perturbation theory, a topic that will be central to the Cosmology course, in
the second year of the master’s programme. This discussion is fairly technical but students should
make use of appendix B when necessary and concentrate here on the ’storyline’ rather than the
technical details. Then, this framework is applied to the free gravitational field in vacuum, i.e. grav-
itational plane waves. We also discuss what it means to detect gravitational waves by attempting to
clarify what exactly happens when such a wave encounters matter. The chapter ends on a derivation
of the quadrupole formula that explains how a weak, slowly varying source generates gravitational
waves.
Finally, chapter 6 addresses the problem of cosmological solutions. In contrast with what usually
appears in General Relativity courses, i.e. a study of various solutions to Einstein field equations
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that are, in some loose or often historical sense, ’of cosmological interest’, it is explicitly focussed
on introducing, in the context of General Relativity, the first building block of our modern cosmo-
logical model. As such it differs from the previous chapters of these notes and aims at preparing
the readers to the Cosmology course that is the continuation of this one in the second year of the
programme.
There are countless books on Special and General Relativity. I can recommend here, a few of them
in no particular order. For Special Relativity, [12] is a wonderful book, extremely well adapted to
a General Relativity course, as it is written in the ’correct’, modern language used here. For Gen-
eral Relativity, there is now a host of very good references, among which I particularly recommend
[7, 13, 15, 19]. All of these have different, complementary takes on the topic. Such a diversity
of viewpoints is important in a rich field such as General Relativity, which contains developments
ranging from highly abstract and mathematical studies to applications is astrophysics. For the his-
torical texts, [16] remains a remarkable reference with a lot of insight on many aspects of the theory.
It is however, difficult to read as a course and should be used more as a pointed reference when one
knows what one is looking for. [21] will please mathematically inclined readers and is very good
for advanced topics. For very advanced topics, [14] is a compulsory reference.

I wish to thank Théo Paret and Lucas Maret, from the 2022/2023 MSc programme, for pointing
out numerous typos in the original version those notes.
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Notations and conventions

• Lorentzian metrics in 4 dimensions will be written in the (−, +, +, +) signature. Physically,
this means that positive spacetime intervals, d𝑠2 will be spacelike and proper times will be
d𝜏2 = −d𝑠2.

• 4-vectors will be denoted with boldface letters, capital or not, e.g.: 𝒖, 𝑿 etc.

• The same convention will apply to linear maps such as tensor fields but not to (scalar) func-
tions.

• 3-vectors, i.e. the spatial part of 4-vectors will be denoted with an arrow, e.g.: ®𝑣 or ®𝑉 .

• The notes are written in units with the speed of light equal to unity: 𝑐 = 1. In some instances,
we put the appropriate powers of 𝑐 back into important formulæ. Students are encouraged to
do that systematically using dimensional analysis. This is a very good exercise.
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We list some useful numerical values that one may find useful when working on the content of
these notes, especially on chapters 4, 5 and 6. Some of these values are approximate and the values
adopted here will suffice to obtain results that are precise enough for our purposes.

1. Fundamental Constants:

• Speed of light: 𝑐 = 299 792 458𝑚 · 𝑠−1 ' 3 × 108 m · s−1

• Planck Mass: 𝑀𝑝 ' 1.67 × 10−27 kg

• Boltzmann constant: 𝑘𝐵 ' 1.38 × 10−23 J · K−1

• Newton constant: 𝐺 ' 6.67 × 10−11 N ·m2 · kg−2.

2. Conversion factors:

• 1AU ' 1.5 × 1011 m

• 1 eV ' 1.6 × 10−19 J

• 1 pc ' 3 × 1016 m

• 1 sterad = 1 rad2 =
(

180
𝜋

)2
deg2

• 1 yr ' 3.16 × 107 s.

3. Sun’s characteristics:

• 𝑀� ' 2 × 1030 kg

• 𝑅� ' 7 × 108 m
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General Introduction 2

1.1 Why study General Relativity?

For a very long time after its formulation by Einstein in 1916, General Relativity remained a fringe
subject in physical science. Although it was regarded as an elegant theory of gravitation that passed
with remarkable success its first empirical tests, deviations from Newtonian physics in the observ-
able physical world remained very small and largely unattainable by experiments and observations.
Besides, its incompatibility with quantum mechanics, which was shaping the rest of physics, made
it an awkward subject from a formal point of view. Until the late 1960s, there was no cosmological
observations precise enough to test the relativistic model built in the 1930s to 1950s. Black holes
where considered a mathematical curiosity and potentially a sign of failure for the theory and grav-
itational waves a natural prediction that was so faint that it could not be probed in any conceivable
way. At the same time, particle and nuclear physics were developing hand-in-hand with remarkable
experimental leaps. This context explains why most physicists turned to particle physics while Gen-
eral Relativity was mostly studied in mathematics departments. All this has changed dramatically
over the last 40 years.
Cosmology has become a precision science which cannot be understood without General Relativ-
ity. Although the local dynamics of matter is everywhere quasi-Newtonian on cosmological scales,
our understandings of the early Universe, the formation of structure and the dynamics of the largest
scales cannot be understood in a Newtonian context. Black Holes have been observed, both small
and (very) big, albeit indirectly, i.e. by the effect they have on surrounding matter. But this means
that the most extreme objects predicted by General Relativity are now becoming part of astrophysics
so that General Relativity is finding its way into astrophysics. And finally, gravitational waves have
been detected and measured, vindicating yet again General Relativity, while opening a new window
on the Universe; in a few decades, gravitational wave astrophysics will be part of the way we probe
our Universe.
Clearly, it is now a wonderful time for young physicists to study General Relativity.

1.2 Structure of the course

This course takes a clear physical approach the General Relativity by choosing to present the theory
through its manifestations in three iconic regimes:

• The gravitational field around stars and black holes; chapter 4. This is the occasion to develop
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the tools to understand the standard tests of General Relativity: deviation of light by the
Sun, advance of the perihelion of Mercury and gravitational spectral shift. Unfortunately,
lack of time means that we cannot approach other important effects, e.g. the frame-dragging
due to rotation or the technology of the GPS. Black holes are also studied in their simplest,
unrealistic form i.e. without any rotation. It is an example where introducing rotation and
going from the Schwarzschild to the Kerr metric requires significant technical and conceptual
jumps. General Relativity is so complex that this is often the case: straying from the simplest,
idealised situation might prove terribly difficult.

• Gravitational waves; chapter 5. These are the analogue in General Relativity of electromag-
netic waves in electrodynamics. We will see that they are produced by quadrupolar motions
at least and that they propagate into two polarisation modes. We will also characterise their
physical effects, something that is often the occasion for some confusions that we will try to
clarify.

• Cosmology and the dynamics of the Universe on very large scales; chapter 6. This chapter is a
preparation for the advanced course on cosmology that is given in the second year of the MSc
program. It introduces the homogeneous and isotropic description we use when dealing with
the large scale dynamics of the Universe. It is the occasion to understand what distances are
in relativistic cosmology and to understand the importance of past lightcones. It also allows
us to introduce the matter-energy content of the Universe and discuss its thermal history.

In addition, we try not to completely sacrifice the mathematical elegance of the theory and we go to
some length presenting this material in chapter 2 and in appendix B. This will be presented much
more briefly in class than it is done here in the notes, the goal being to be ready to attack the physics
chapter. Students are thus encouraged to read chapter 2 while focusing on what is discussed in class,
and skipping the unnecessary digressions. However, the interested and/or mathematically inclined
reader is welcome to pay more attention to the details and to ask for more explanation and resources
when needed. Finally, the notes contain a chapter on Special Relativity, chapter 1. Once again, this
chapter contains much more than what we will talk about in class. It is an attempt at reformulating
Special Relativity in a way that makes it easy to jump to General Relativity and that is what inter-
ests us here. So it may differ in places from the way things were presented to you in L3, when the
emphasis is usually on the electrodynamical side of things.
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To work on this course and prepare for the exam, in addition to understanding the concepts and
being able to explain them, you need to be able to reproduce some parts of this notes that will be
indicated to you in class. Some calculations and developments will also be ’left to the students’.
This is meant seriously and is examinable. Finally, you will also receive regular problem sheets
with exercises and problems that will require you to apply what you’ve learnt and , hopefully, help
you learn.
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2.1 Relativity in Newtonian physics

2.1.1 The concept of relativity through history

The concept of relativity has been central to our pictures of the natural world for a very long time,
at least since the work of Aristotle (384 BCE-322 BCE) but certainly well before that, including
in other traditions. It grew from attempts at formalising the concept of motion, when addressing
the rather mundane question: ”motion relative to what?” It should not be confused with relativism,
which, in its various guises, is usually a statement about the ontology of our discourse rather than an
attempt at formulating a theory of space and time, which is what will be at the centre of these notes.
Of course, these questions are not independent, but their intertwining is subtle and relativism as to
motion does not necessarily or simply correlate with ontological relativism (or any other derived
form of it).
Mostly, we can distinguish two broad classes of attitudes in the description of motion. Either the
concepts of space and time are absolute and motion must always, in fine be referred to these absolute
yardsticks; or they are relational concepts bereft of an absolute reference. In the first class we find
Plato, Kant and Newton; in the second we have Aristotle, Descartes and Leibniz but also, of course,
Einstein. In this section, I would like to spend some time reviewing what are space, time and motion
in Newtonian mechanics with a modern viewpoint on these concepts in order to contrast them with
their formulation in special and general relativity. It would be interesting to expand on the concept
of relativity of motion prior to the Newtonian revolution and this might be included here in a future
iteration of these notes.
For now, let us begin our story with Newtonian mechanics.

2.1.2 Newtonian spacetime

The fundamental laws of Newtonian mechanics, Newton’s three laws, are formulated in a very spe-
cific setting for spacetime, one which allows to use vector analysis and simple calculus and place
these formalisms at the heart of mechanics. The central notions are absolute space and time as
presented by Newton in his Philosophiæ Naturalis Principia Mathematica (1687) [17]:
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Newtonian space and time

• Absolute space, in its own nature, without regard to anything external, remains always
similar and immovable. Relative space is some movable dimension or measure of the
absolute spaces; which our senses determine by its position to bodies: and which is
vulgarly taken for immovable space […] Absolute motion is the translation of a body
from one absolute place into another: and relative motion, the translation from one
relative place into another.

• Absolute, true andmathematical time, of itself, and from its own nature flows equably
without regard to anything external, and by another name is called duration: relative,
apparent and common time, is some sensible and external (whether accurate or un-
equable) measure of duration by the means of motion, which is commonly used instead
of true time.

We will return later to the notion of relative space. What matters here is that Newton postulates
the existence of absolute space and time, which remain identical to themselves without regard to
anything external. Such entities, rooted in Newton’s religious beliefs, were quite revolutionary at
the time. In any case and in practise, what it means is that the theatre of nature unfolds in a fixed
set-up that fits quite naturally in basic mathematical structures:

• Space, 𝐸 , is Euclidean, i.e. that it is such that the shortest distance between two points is
given along the straight line connecting those points, and the sum of the angles of a triangle
always equals 𝜋. It is also infinite and without boundary. Once an origin has been chosen,
vectors and couples of points can be identified and 𝐸 can be represented by a vector space
of dimension 3. The Euclidean nature of space means that it can be provided with a scalar
product 〈·, ·〉, which takes two vectors as inputs and returns a real number. As a scalar product,
it has a few important properties:

1. it is bilinear: ∀(𝑋,𝑌, 𝑍) ∈ 𝐸3, ∀(𝜆, 𝜇) ∈ R2, 〈𝜆𝑋 + 𝜇𝑌, 𝑍〉 = 𝜆〈𝑋, 𝑍〉 + 𝜇〈𝑌, 𝑍〉 and
〈𝑋, 𝜆𝑌 + 𝜇𝑍〉 = 𝜆〈𝑋,𝑌〉 + 𝜇〈𝑋, 𝑍〉;

2. it is symmetric: ∀(𝑋,𝑌 ) ∈ 𝐸2, 〈𝑋,𝑌〉 = 〈𝑌, 𝑋〉;

3. it is positive: ∀𝑋 ∈ 𝐸, 〈𝑋, 𝑋〉 ≥ 0;
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4. it is definite: ∀𝑋 ∈ 𝐸, 〈𝑋, 𝑋〉 = 0 ⇒ 𝑋 = 0.

We say that a vector 𝑋 ∈ 𝐸 has length ‖𝑋 ‖ =
√
〈𝑋, 𝑋〉 and that two non-zero vectors (𝑋,𝑌 ) ∈

𝐸2 form an angle 𝛾 given by:
cos 𝛾 =

〈𝑋,𝑌〉
‖𝑋 ‖‖𝑌 ‖ . (2.1)

Once given a basis of 𝐸 , it is linearly isomorphic to R3. Let us call {𝑒1, 𝑒2, 𝑒3} such a basis
that, without loss of generality, we will assume orthonormal, that is we will assume:

〈𝑒𝑖 , 𝑒 𝑗〉 = 𝛿𝑖 𝑗 , (2.2)

where 𝛿𝑖 𝑗 is the Kronecker symbol, equal to 1 if 𝑖 = 𝑗 and 0 otherwise. Such a basis is often
called Cartesian. Any vector 𝑋 ∈ 𝐸 can then be uniquely represented by its components:

∀𝑋 ∈ 𝐸, ∃!
(
𝑋1, 𝑋2, 𝑋3

)
∈ R3, 𝑋 = 𝑋1𝑒1 + 𝑋2𝑒2 + 𝑋3𝑒3 . (2.3)

The length of a vector is then simply:

‖𝑋 ‖ =
√(
𝑋1)2 +

(
𝑋2)2 +

(
𝑋3)2

, (2.4)

which is nothing but the Pythagorean theorem in 3 dimensions, and the scalar product of two
vectors is:

〈𝑋,𝑌〉 = 𝑋1𝑌1 + 𝑋2𝑌2 + 𝑋3𝑌3 =
∑
𝑖, 𝑗

𝛿𝑖 𝑗𝑋
𝑖𝑌 𝑗 . (2.5)

This can be written:
‖𝑋 ‖2 = 𝛿𝑖 𝑗𝑋

𝑖𝑋 𝑗 , (2.6)

using Einstein’s summation convention, which consists in assuming that an index repeated
as subscript and superscript in an expression is a dummy index that we have to sum over all
its possible values. The object 𝛿𝑖 𝑗 is called the representation fo the Euclidean metric on 𝐸
in the Cartesian basis {𝑒1, 𝑒2, 𝑒3}. when convenient, we will denote 〈·, ·〉 as usual as the dot
product:

〈𝑋,𝑌〉 = 𝑋 · 𝑌 . (2.7)

or using the Kroneker symbol when using indices:

〈𝑋,𝑌〉 = 𝛿𝑖 𝑗𝑋 𝑖𝑌 𝑗 . (2.8)
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Moreover, we will use arrows to denote 3 dimensional vectors. Beware that Euclidean space
can have a metric whose components are not simply 𝛿𝑖 𝑗 if we use a basis that is not Cartesian.
Think of the spherical basis, for example. Let us now imagine two points 𝑃 ∈ 𝐸 and 𝑄 ∈ 𝐸
that are infinitesimally close, i.e. such that

−−→
𝑃𝑄 = d𝑥𝑖𝑒𝑖 with |d𝑥𝑖 | � 1, then we can construct

the quadratic quantity called the line element associated with the Euclidean metric:

d𝑠2 = 𝛿𝑖 𝑗d𝑥𝑖d𝑥 𝑗 , (2.9)

such that d𝑠 is the infinitesimal length of
−−→
𝑃𝑄. It will prove a very useful object in what

follows.

• Time is simply a coordinate on the Euclidean line 𝐿: 𝑡 ∈ R. It is fixed by choosing an origin
on the line and a basis vector. Equivalently, we need a single function 𝑇 : R → 𝐿 such that
𝑇 (𝑡) = 𝑃 ∈ 𝐿 which is continuous and bijective (hence necessarily monotonous).

In this framework, one can formulate Newton’s three laws of mechanics, the principle of inertia, the
second law that links acceleration and forces and the law of action and reaction.

2.1.3 Newtonian relativity

What I call here Newtonian relativity emerged slowly from a set of ideas to interpret a certain number
of facts and principle usually subsumed in physics under the term of ”Galilean invariance” as it was
first formulated in a ’modern’ way in Galileo’s Dialogue Concerning the Two Chief World Systems
(1632).
Newton, starting from Galileo’s principles of equivalence and of inertia, postulated his famous law
of inertia: if an object is not subject to any force, then the object will remain at rest (velocity ®𝑣 = ®0)
or in constant, straight line motion (velocity ®𝑣 constant but non-zero). But there is something we
left ’under the rug’ here: the law of inertia mentions that objects will remain at rest or move with
constant velocity, in absence of any force acting upon them. But what is to be understood as ’rest’
and constant motion? These concepts are, after all, relative: one is at rest or in constant motion
relatively to something else. Think about a car on a straight road, and a cow standing in a field next
to the road: for the cow, certainly the poles along the field are at rest, and the car moves relative
to them, but for the driver inside the car, all the parts of the car are at rest, while the cow and the
poles move. In a nutshell, that means that the new mechanics formulated by Galileo and Newton
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introduces a high degree of relativism; the notions of motion and rest have to be defined relative
to reference frames. In which reference frames do objects not subjected to any force remain at rest
or in uniform translation? These are known as inertial frames. Their nature can be enshrined in
a:

Principle of relativity

Physical laws are identical when expressed in inertial frames.
In other words, identical physical experiments carried out in different inertial frames lead to
identical results.

However, none of this tells us how to find or construct inertial frames. At the time of Newton, it
had been known for a very long time (at least since the ancient Egyptians), that some stars visible in
the sky did not apparently move with respect to our Sun. They were called the fixed stars. The idea
of Newton was thus to define inertia with respect to his absolute space and to anchor this one by
choosing the centre of the Sun as origin¹, and by picking three fixed stars. The three lines through
the centre of the Sun passing through each of these three fixed stars thus defined a frame that could
be used as a reference: the motion of objects with respect to this frame could determine whether
or not the motions were inertial. Indeed, if the object is at rest or moving along a straight line at
constant speed with respect to this absolute space, the motion can be said to be inertial. If it is not
the case, then it is the sign that a force (or the combination of several forces) is acting on the object
and makes its trajectory deviate from an inertial motion.
It is important to realize that, for Newton, absolute space was really absolute: the fixed stars were
just practical means of identifying this space with a given physical reference frame. Nevertheless,
for all practical purposes, this subtlety does not matter. The only relevant idea here is that inertia is
only defined with respect to a reference frame.
Absolute space is an inertial frame by construction but what are the other ones? To define a reference
frame, we pick up a point 𝑂 ∈ 𝐸 that we call the origin. Through that point, we draw three infinite
lines perpendicular to each other that we call the axes, 𝐷1, 𝐷2 and 𝐷3. Any point 𝑀 in 𝐸 can then
be described uniquely by a triplet of real numbers (𝑥, 𝑦, 𝑧) corresponding to the distances of the
orthogonal projections of 𝑀 on each axis to the origin 𝑂. (𝑥, 𝑦, 𝑧) are then called the coordinates
of 𝑀 in the frame R. The set (𝑂, 𝐷1, 𝐷2, 𝐷3) is a (Cartesian) frame of reference. Let us call it

¹Actually the centre of mass of the Solar System which differs slightly from the centre of the Sun.
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R. If we change the origin and consider a new point, 𝑂′ as the origin, we can still define three
perpendicular lines 𝐷 ′

1, 𝐷
′
2 and 𝐷 ′

3 through 𝑂′ parallel to 𝐷1, 𝐷2 and 𝐷3 respectively. Hence, we
obtain a new frame of reference, R ′ . If the coordinates of 𝑂′ in R are (𝑎, 𝑏, 𝑐), and the coordinates
of 𝑀 in R are (𝑥, 𝑦, 𝑧), it is easy to show that the coordinates of 𝑀 in R ′ are given by:

𝑥
′

= 𝑥 − 𝑎
𝑦
′

= 𝑦 − 𝑏
𝑧
′

= 𝑧 − 𝑐 .
(2.10)

Of course, we can change from R to R ′ using the vector
−−−→
𝑂𝑂

′
= (𝑎, 𝑏, 𝑐) simply by writing the

standard vectorial relation:
∀𝑀 ∈ 𝐸 ,

−−−→
𝑂

′
𝑀 =

−−−→
𝑂𝑀 −

−−−→
𝑂𝑂

′
. (2.11)

This is a particular transformation called translation. If we consider a vector that is not a position
vector, for example, a force ®𝐹 acting on a point ®𝑥, with a certain amplitude, the end point and the
starting point of ®𝐹 will be translated by the same amount, so that the force itself remains unaffected
by the translation.

One can also alter the axes of the frame while keeping the origin fixed. Consider the origin
𝑂. Instead of choosing 𝐷1, 𝐷2 and 𝐷3 as axes, we could choose three other lines Δ1, Δ2 and Δ3,
perpendicular to each other. To go from 𝐷1, 𝐷2 and 𝐷3 to Δ1, Δ2 and Δ3, we need to apply a
rotation, which is fully characterised by three real numbers, 𝜃, 𝜙 and 𝜉, called the Euler angles. We
have (𝜃, 𝜉) ∈] − 𝜋, 𝜋[2, and 𝜙 ∈ [−𝜋/2, 𝜋/2]. This can be represented by a matrix 𝑅(𝜃, 𝜙, 𝜉) acting
on vectors in 𝐸 . If we denote by (𝑥, 𝑦, 𝑧) the coordinates of a point 𝑀 ∈ 𝐸 in the frame R, and
(𝑥′, 𝑦′, 𝑧′) the coordinates of 𝑀 in the rotated frame RΔ, we have:

©­­­«
𝑥′

𝑦′

𝑧′

ª®®®¬ = 𝑅(𝜃, 𝜙, 𝜉)
©­­­«
𝑥

𝑦

𝑧

ª®®®¬ , (2.12)

where the matrix 𝑅(𝜃, 𝜙, 𝜉) is given by:

𝑅(𝜃, 𝜙, 𝜉) =


cos(𝜙) cos(𝜉) − cos(𝜃) sin(𝜉) + sin(𝜃) sin(𝜙) cos(𝜉) sin(𝜃) sin(𝜉) + cos(𝜃) sin(𝜙) cos(𝜉)
cos(𝜙) sin(𝜉) cos(𝜃) cos(𝜉) + sin(𝜃) sin(𝜙) sin(𝜉) − sin(𝜃) cos(𝜉) + cos(𝜃) sin(𝜙) sin(𝜉)

− sin(𝜙) sin(𝜃) cos(𝜙) cos(𝜃) cos(𝜙)

 .
(2.13)
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Actually, the set of all matrices 𝑅(𝜃, 𝜙, 𝜉) for all the possible values of 𝜃, 𝜙 and 𝜉, together with
the standard matrix multiplication forms a group (the group of rotations in three dimensions), and
the matrices are orthogonal:

∀(𝜃, 𝜙, 𝜉) ∈] − 𝜋, 𝜋[×[−𝜋/2, 𝜋/2]×] − 𝜋, 𝜋[, 𝑅(𝜃, 𝜙, 𝜉)𝑇 = 𝑅(𝜃, 𝜙, 𝜉)−1 . (2.14)

The principle of relativity states that Newtonian physics is invariant (i.e. to remain the same)
when going from one inertial frame to another. Mathematically, one can show that the equations
governingmechanics (Newton’s second law) keep the same form if we translate and rotate the spatial
coordinate system, as long as the rotations are independent on time and translations uniform. We
already saw that by construction, objects free of forces were in uniform translation with respect to
absolute space by definition. Thus, any of these objects and a set of three axes rotated with respect
to the fixed stars define an inertial frame in which Newton;’s law can be applied.
The transformations between inertial frames are given the name of Galilean transformations.

Galilean transformation

Consider a reference frame R = (𝑂, 𝑥, 𝑦, 𝑧, 𝑡) associated to an observer 𝑂. Let ®𝑣 be the
constant velocity of an observer 𝑂′ in motion with respect to 𝑂. Suppose that 𝑂 and 𝑂′

coincide at 𝑡 = 0. Then, the position (®𝑥′, 𝑡′) of a point particle in the reference frame R′ =

(𝑂′, 𝑥′, 𝑦′, 𝑧′, 𝑡′) associated with 𝑂′ can be deduced from position (®𝑥, 𝑡) of the same particle
in R by the Galilean transformation:{

®𝑥′ = 𝑅®𝑥 − 𝑡®𝑣
𝑡′ = 𝑡,

, (2.15)

where 𝑅 is an arbitrary time-independent rotation.

If R is inertial, then so is R′.

The last statement follows from the fact that Newton’s second law is invariant under Galilean
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transformations. Let us start with Newton’s second law is R’:

®𝐹′ = 𝑚
𝑑2®𝑥′
𝑑𝑡

′2 = 𝑚
𝑑

𝑑𝑡

𝑑

𝑑𝑡
(𝑅®𝑥 − 𝑡®𝑣) (2.16)

= 𝑚
𝑑

𝑑𝑡

(
𝑅
𝑑®𝑥
𝑑𝑡

− ®𝑣
)

(2.17)

= 𝑚𝑅
𝑑2®𝑥
𝑑𝑡2

= 𝑅 ®𝐹 . (2.18)

Note that the set of Galilean transformations is actually a group:

Galilean group

The set of Galilean transformations G, together with the standard composition of linear func-
tions, form a group, called the Galilean group. An element of this group will be denoted
(𝑅, ®𝑣), where 𝑅 ∈ 𝑂 (3), and ®𝑣 ∈ 𝐸

Frames that are linked via Galilean transformations are called sometimes called preferred in-
stead of inertial frames. They are very important, since they form the set of frames in which the
laws of mechanics keep an invariant form. As is well-known, in non-inertial frames, inertial forces
appear, which in Newtonian mechanics, are a trace of the motion of the frame relative to absolute
space, as argued by Newton in his famous bucket experiment.

2.2 Enters electrodynamics

This picture of mechanics, now known as Newtonian mechanics, remains a beautiful achievement,
certainly one of the most perfect scientific theory ever written, both for its aesthetic characteristics
and its observational successes; after all, most of the phenomena that occur around us at human
scales are accounted for in the framework of Newtonian mechanics with extremely high precision.
Therefore, the downfall of this theory did not come from a failure of it to account for one or several
observations and/or experiments; it came from the emergence of theoretical problems in the process
of unification of mechanics with electromagnetism. Unification, even though it existed before, is an
idea that has been central to physics since the beginning of the twentieth century and continue to be
one of the main motivation behind the work of most theoretical and mathematical physicists. It is
thus worth a few sentences in this course. Unification can roughly be described as the tentative to rid
science from the emergence of separate theories describing seemingly separate natural phenomena.
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Therefore, it relies on the idea that Nature is unique and should therefore obey a unified set of laws:
subsuming the motions of stones on earth and of planets in the sky by postulating that they are all
subject to a unique force, as Newton did, is clearly a process of unification. In a way unification as
always been a guiding principle for scientists, but in the past, only very religious and/or mystical
minds have made it a central ingredient of their approach to research; most scientists adopted a
more pragmatic approach based on a principle of efficiency. The work of Einstein on relativity
changed that. Suddenly, unification appeared as a very important guiding principle that could lead
to deep changes in the way to do science: according to that idea, a disparity in the theoretical ways
to treat separate physical phenomena is the sign that our theories must be amended to account for
all the phenomena at a time, in a single coherent framework. The biggest success of this approach
is clearly to be found in modern particle physics that accounts for the behaviour of all the matter
around us with simply 12 elementary particles, and three different interactions: particle physicists
have successfully unified the electromagnetic and weak interactions and work hard on integrating
the strong nuclear force in this unification. The unification of gravity with other forces seems more
out of reach for now, but string theorists, among others, have sought this dream for over four decades.
This should show that a principle of unification, whatever its philosophical justifications might be
for each individual adopting it, is indeed a powerful guideline for research. Special Relativity is the
first unambiguous situation in which such a principle has been applied with success, and this should
be an additional motivation to study its structure.

2.2.1 Maxwell’s theory

In the late 1860s, J.C. Maxwell formulated a final version of his theory of electromagnetism phe-
nomena. Electricity and magnetism had been studied for some time, but Maxwell’s theory was the
first complete theory to account for all the phenomenology of the time. In this setting, electricity
and magnetism are unified in the electromagnetic field, consisting of two vectors, ®𝐸 and ®𝐵, such
that, in vacuum:

div
(
®𝐸
)
= 0 (Gauss’s law) ®curl

(
®𝐸
)
= −𝜕

®𝐵
𝜕𝑡

(Faraday’s law) (2.19)

div
(
®𝐵
)
= 0 ®curl

(
®𝐵
)
=

1
𝑐2
𝜕 ®𝐸
𝜕𝑡

(Ampère’s law). (2.20)
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The operators divergence (div.) and curl ( ®curl) are defined, for a vector ®𝑓 = ( 𝑓𝑥 , 𝑓𝑦 , 𝑓𝑧). In a
Cartesian coordinate system (𝑥, 𝑦, 𝑧) by:

div ®𝑓 =
𝜕 𝑓𝑥
𝜕𝑥

+
𝜕 𝑓𝑦

𝜕𝑦
+ 𝜕 𝑓𝑧
𝜕𝑧

(2.21)

®curl ®𝑓 =
©­­­«
𝜕 𝑓𝑧
𝜕𝑦 − 𝜕 𝑓𝑦

𝜕𝑧
𝜕 𝑓𝑥
𝜕𝑧 − 𝜕 𝑓𝑧

𝜕𝑥
𝜕 𝑓𝑦
𝜕𝑥 − 𝜕 𝑓𝑥

𝜕𝑦

ª®®®¬ . (2.22)

These equations are known as Maxwell’s equations in vacuum. They can be generalized to
equations in a medium by introducing appropriate source terms. In vacuum, they lead to a system
of two, independent but second order equations for each field:

Δ ®𝐸 − 1
𝑐2
𝜕2 ®𝐸
𝜕𝑡2

= 0 (2.23)

Δ ®𝐵 − 1
𝑐2
𝜕2 ®𝐵
𝜕𝑡2

= 0 . (2.24)

One recognizes wave equations, and the description of standard electromagnetic waves, the state of
the electromagnetic field in vacuum (Δ is the usual vector Laplacian operator).

Finally, the electromagnetic force on a point particle of electric charge 𝑞 and velocity ®𝑣, due to
the electromagnetic field is given by Lorentz’s law:

®𝐹 = 𝑞
(
®𝐸 + ®𝑣 ∧ ®𝐵

)
. (2.25)

Lorentz’s law and Maxwell’s equations are the only five laws necessary to describe the behaviour
and the influence of the electromagnetic field. Maxwell’s theory and Newton’s mechanics together
allowed to describe the whole of physics at the time. So where did the problem was?

2.2.2 Incompatibility with Galilean invariance

The problem was actually in the compatibility of both systems of laws. We have seen that Newton’s
mechanics is deeply rooted in its invariance under Galilean transformations: the laws of Newtonian
mechanics keep identical forms in any two reference frames related by a Galilean transformation (i.e.
the composition of a translation and a rotation). This isn’t true ofMaxwell’s laws: their form changes
between the two frames. Indeed, consider the equation for ®𝐸 . Let 𝑅 = (0, 𝑡, ®𝑥) and 𝑅̂ =

(
0, 𝑡, ®̂𝑥

)
be
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two frames such that 𝑅̂ moves, relative to 𝑅 with a constant velocity ®𝑣. Then, if we postulate that
the law of invariance between frames is Galilean, we have that:

®̂𝑥 = ®𝑥 − 𝑡®𝑣 (2.26)

𝑡 = 𝑡 , (2.27)

where we assumed that the axes in both frames are aligned, for simplicity. Then, since it is a vector,
the electromagnetic field is invariant when going from one frame to the other:

®̂𝐸
(
𝑡, ®̂𝑥

)
= ®𝐸 (𝑡, ®𝑥) . (2.28)

Finally, for any function 𝐹 : R4 → R, noting as well 𝐹̂
(
𝑡, ®̂𝑥

)
= 𝐹 (𝑡, ®𝑥), we can write the differential

in two ways:

d𝐹 =
𝜕𝐹̂

𝜕𝑡
d𝑡 +

3∑
𝑖=1

𝜕𝐹̂

𝜕𝑥𝑖
d𝑥𝑖 (2.29)

=
𝜕𝐹

𝜕𝑡
d𝑡 +

3∑
𝑖=1

𝜕𝐹

𝜕𝑥𝑖
d𝑥𝑖 . (2.30)

Then, using the Galilean laws of invariance, we get:

𝜕2

𝜕𝑡2
· =

𝜕2

𝜕𝑡2
· −2

3∑
𝑖=1

𝑣𝑖
𝜕2

𝜕𝑡𝜕𝑥𝑖
· +

3∑
𝑖, 𝑗=1

𝑣𝑖𝑣 𝑗
𝜕2

𝜕𝑥𝑖𝜕𝑥 𝑗
· (2.31)

𝜕2

𝜕𝑥𝑖 2
· =

𝜕2

𝜕𝑥𝑖 2
. (2.32)

We see that the wave equation in the frame 𝑅̂ reads:

Δ ®̂𝑥
®̂𝐸 − 1

𝑐2
𝜕 ®̂𝐸
𝜕𝑡

=

2
3∑
𝑖=1

𝑣𝑖

𝑐2
𝜕2

𝜕𝑡𝜕𝑥𝑖
· +

3∑
𝑖, 𝑗=1

𝑣𝑖𝑣 𝑗

𝑐2
𝜕2

𝜕𝑥𝑖𝜕𝑥 𝑗
·
 ®̂𝐸 ≠ ®0. (2.33)

It is therefore not invariant under the group of Galilean transformations. This means that, in princi-
ple, by carrying experiments on the electromagnetic field, two observers in relative uniform motion
could tell which one is in which frame. In other words, electromagnetic phenomena would single
out preferred observers among the inertial ones. That is in gross contradiction with the principle
of inertial frames. Another, equivalent, way of formulating this problem is to consider the speed
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of electromagnetic waves. In Maxwell’s theory, it is 𝑐 in any frame, since Maxwell’s equations
can be written with respect to any coordinate system. If it were a true Newtonian velocity, then
it should follow the standard law of transformation of velocities. But it doesn’t. And repeated ex-
periments to check the effect have led to negative results: the speed of light remains the same in
any reference frame. The fact that the laws of electromagnetism are not invariant under Galilean
transformations thus introduced a big tension in the formulation of 19th century theoretical physics:
mechanical phenomena had, associated to them, inertial, preferred frames in which the laws of me-
chanics remained invariant, whereas electromagnetic phenomena could tell the difference between
rest and uniform motion. Special Relativity was invented to circumvent this particular, un-æsthetic,
situation. Einstein solved the problem by identifying a new law to go from one inertial frame to
another one, a law that, in particular ’mixes’ space and time coordinates. Since this is not a course
on Special Relativity, we will simply remind the reader of the main properties and results of special
relativity, in a language adapted to the jump to General Relativity.

2.3 Minkowski spacetime

2.3.1 Constructing Minkowski spacetime

The basic building block of the theory is the concept of event: it is a physical occurrence that has no
spatial extension and no duration in time. The permanence of a material particle, in this framework
is then simply the existence of a continuous sequence of events called the worldline of the particle.
We will denote by M the (abstract) set of all the events, called Minkowski spacetime and in the
following, we will give a certain number of physical principles that will be used in the remainder
of the text to provide a mathematical structure to M.
The correct way to begin is to postulate that events are observables. In particular, we will select a
particular class of observers that we will call admissible:

Admissible observers

To each admissible observer, on can attach a 3-dimensional, right-handed, Cartesian spatial
coordinate system based on an agreed unit of space relative to which photons propagate rec-
tilinearly in any direction.

The key point here is the isotropy of the light propagation. Notice that the rectilinearity of the
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propagation is relative to a Cartesian coordinate system: in a rotating coordinate system, light might
not follow straight lines.
This first definition gives a notion of space around each observer. We can now introduce a notion
of time:

Local time

Each admissible observer is given an ideal standard clock based on an agreed unit of time
according to which one can provide a quantitative temporal order to the events along the
observer’s worldline.

Here, the main point is that temporal order is only given along the observer’s worldline: observer’s
cannot, yet, decide of the temporal order of events that are spatially separated from their own po-
sition. In order for them to do that, we will need a procedure to allow observers to compare their
respective clocks; this is often called synchronisation. It turns out that this is a real problem, and
that most of the effects of Special Relativity come from there. The idea to establish a way to syn-
chronise clocks is to find a way for observers to communicate the results of reading their respective
clocks. Light signals are most reliable communication signals because of the following experimen-
tal result:

Constancy of the speed of light

For an arbitrary admissible observer, the speed of light in vacuum as determined by the Fizeau
procedure is independent of when the experiment is performed, the arrangement of the appa-
ratus, the frequency of the signal and has the same numerical value 𝑐 for all such observers.

The Fizeau procedure is a specific way of measuring the speed of light. It is described in any good
physics book on Special Relativity. For the purpose of this course, we will only retain the fact
that there exists a phenomenon that is characterised by its constant speed in any admissible frame
of reference. As a matter of fact, in the remainder of this course, unless necessary for numerical
evaluations, we will choose units of space and time such that 𝑐 = 1 (geometrised units). In its own
Cartesian spatial frame, an (admissible) observer determines time by synchronizing clocks using
the following procedure:

• It has its own clock at the centre 𝑂 of its frame.
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• At each point 𝑃 of its spatial coordinate system, it places a clock identical to the one at the
origin.

• At a given time 𝑡 ∈ R as read at 𝑂, it emits a spherical light signal.

• As the wave front encounters 𝑃, the clock placed at 𝑃 is set at the time 𝑡 + ‖−−→𝑂𝑃‖ and set
ticking, where ‖−−→𝑂𝑃‖ is the Euclidean distance between 𝑂 and 𝑃 in the 3-dimensional space.

Let us consider an observer 𝑂 with its coordinate frame
(
𝑥0, 𝑥1, 𝑥2, 𝑥3) , where 𝑥0 is the time

as measured by the observer using his clock (procedure above), and
(
𝑥1, 𝑥2, 𝑥3) are the Cartesian,

spatial coordinates. Let 𝑂̂ with coordinate frame
(
𝑥0, 𝑥1, 𝑥2, 𝑥3) be another observer. Consider an

event E. It has coordinates in both frames. How are they related? In other words, what can we say
about the mapping:

F :

{
R4 → R4(

𝑥0, 𝑥1, 𝑥2, 𝑥3) ↦→ F
(
𝑥0, 𝑥1, 𝑥2, 𝑥3) = (

𝑥0, 𝑥1, 𝑥2, 𝑥3) ? (2.34)

First it must be bijective, so that one can go unambiguously from any admissible observer to the
other one. Moreover, we will require an additional causality condition:

Causality condition

Any two (admissible) observers agree on the temporal order of any two events on the worldline
of a photon. In other words, if two events along the worldline of a photons have coordinates(
𝑥0, 𝑥1, 𝑥2, 𝑥3) and

(
𝑦0, 𝑦1, 𝑦2, 𝑦3) for 𝑂 and

(
𝑥0, 𝑥1, 𝑥2, 𝑥3) and

(
𝑦̂0, 𝑦̂1, 𝑦̂2, 𝑦̂3) for 𝑂̂, then

𝑦0 − 𝑥0 and 𝑦̂0 − 𝑥0 have the same sign.

We have not assumed which sign it should be, just that it should remain invariant by a transformation
from one admissible coordinate system to another one. This means that F preserves order in the
temporal coordinate.
Since photons propagate rectilinearly with constant speed 1, according to the principles stated above,
two events on the worldline of a photon have coordinates with respect to 𝑂 which satisfy:

∀𝑖 ∈ {1, 2, 3}, 𝑦𝑖 − 𝑥𝑖 = 𝑣𝑖
(
𝑦0 − 𝑥0

)
, (2.35)

for some constants 𝑣𝑖 such that
(
𝑣1)2 +

(
𝑣2)2 +

(
𝑣3)2

= 1. This results in the following equation:(
𝑦1 − 𝑥1

)2
+

(
𝑦2 − 𝑥2

)2
+

(
𝑦3 − 𝑥3

)2
−

(
𝑦0 − 𝑥0

)2
= 0 . (2.36)
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This is the equation of a cone in R4 with vertex at
(
𝑥0, 𝑥1, 𝑥2, 𝑥3) . Of course, this short calculation

must be valid in any admissible frame of reference, so that F must preserve the cone defined by
Eq.(2.36), and map it into the cone:(

𝑦̂1 − 𝑥1
)2

+
(
𝑦̂2 − 𝑥2

)2
+

(
𝑦̂3 − 𝑥3

)2
−

(
𝑦̂0 − 𝑥0

)2
= 0. (2.37)

Remarkably, this is all that is needed in order to fully characterise all the possible transforma-
tions F , and the geometric structure of Special Relativity.

2.3.2 Metric structure on Minkowski spacetime

The few principles listed above and the conical structure of the set of photon paths are enough to
formalise the structure of spacetime in Special Relativity.

Minkowski spacetime

Mikowski spacetime M is a set of points called events. It can be given the structure of a
4-dimensional vector space over R whose vectors are the directed pairs of eventsa. On this
vector space, is defined an inner product 𝜼 of index 1, i.e. with signature (−1, 1, 1, 1).
and 𝜼 is usually called a Lorentzian inner product on M.
There exists an (𝜂-)orthonormal basis {𝒆 (0) , 𝒆 (1) , 𝒆 (2) , 𝒆 (3) } ofM such that, for any (𝒗, 𝒘) ∈
M2, with 𝒗 = 𝑣𝜇𝒆 (𝝁) and 𝒘 = 𝑤𝜇𝒆 (𝝁) :

𝜼(𝒗, 𝒘) = −𝑣0𝑤0 + 𝑣1𝑤1 + 𝑣2𝑤2 + 𝑣3𝑤3 . (2.38)

aStrictly speaking, this would give us an affine space. It would be a vector space only after identifying arrows
with the same direction and length. We will not worry about this subtleties here.

The basis{𝒆 (0) , 𝒆 (1) , 𝒆 (2) , 𝒆 (3) } is to be regarded as a frame of reference, and the coordinates of
the vectors, 𝒗 = 𝑣𝜇𝒆 (𝝁) are then identified with the time (𝑣0) and spatial position (𝑣1, 𝑣2, 𝑣3) of the
events corresponding to the vector 𝑣, according to the principles above, i.e. they have to be attached
to an observer carrying the frame of reference. This identification will become clear as we proceed
further. Given the orthonormal basis {𝒆 (0) , 𝒆 (1) , 𝒆 (2) , 𝒆 (3) }, we know that, by definition:

∀(𝜇, 𝜈) ∈ {0, 1, 2, 3}2, 𝜼
(
𝒆 (𝝁) , 𝒆 (𝝂)

)
= 𝜂𝜇𝜈 , (2.39)
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where:

𝜂𝜇𝜈 =


−1 if 𝜇 = 𝜈 = 0;
1 if 𝜇 = 𝜈 ≠ 0
0 otherwise .

(2.40)

The 𝜂𝜇𝜈’s can be seen as the components of the (0, 2) tensor associated with 𝜼, in the basis {𝒆 (𝝁) },
and we have:

∀(𝒗, 𝒘) ∈ M, 𝒗 = 𝑣𝜇𝒆 (𝝁) , 𝒘 = 𝑤𝜇𝒆 (𝝁) ⇒ 𝜼(𝒗, 𝒘) = 𝜂𝜇𝜈𝑣𝜇𝑤𝜈 . (2.41)

Moreover, for any 𝒗 ∈ M, the function 𝜼(𝒗, ·) : M → R belongs to the dual of M, M∗. In
particular, for any 𝜇 ∈ {0, 1, 2, 3}, we have that 𝒆 (𝝁) = 𝜼(𝒆 (𝝁) , .) ∈ M∗, and, by definition of the
orthonormal basis {𝒆 (0) , 𝒆 (1) , 𝒆 (2) , 𝒆 (3) }, this leads to:

∀(𝜇, 𝜈) ∈ {0, 1, 2, 3}2, 𝒆 (𝝁)
(
𝒆 (𝝂)

)
=


−1 if 𝜇 = 𝜈 = 0
1 if 𝜇 = 𝜈 ≠ 0
0 otherwise.

(2.42)

Therefore, if we define𝝎(0) = −𝜼(𝒆 (0) , ·), and∀𝑖 ∈ {1, 2, 3},𝝎(𝒊) = 𝜼(𝒆 (𝒊) , ·), then {𝝎(0) ,𝝎(1) ,𝝎(2) ,𝝎(3) }
is exactly the dual basis of {𝒆 (0) , 𝒆 (1) , 𝒆 (2) , 𝒆 (3) }. In that case, we can write:

𝜼 = 𝜂𝜇𝜈𝝎
(𝝁) ⊗ 𝝎(𝝂) . (2.43)

SinceM∗ is in bijection withM, the structure present onM via the inner product 𝜼 is inherited
by the dualM∗: there is an inner product on the space of linear functions that is exactly like the one
on the space M. Actually, physicists give it the same name, 𝜼 in our case. But it is now seen as a
(2, 0) tensor acting on linear functions with components 𝜂𝜇𝜈 on the basis

{
𝒆 (𝝁) ⊗ 𝒆 (𝝂)

}
of doubly

contravariant tensors: ∀(𝒂, 𝒃) ∈ M∗ ×M∗, 𝒂 = 𝑎𝜇𝝎(𝝁) , 𝒃 = 𝑏𝜇𝝎(𝝁) , 𝜼(𝒂, 𝒃) = 𝜂𝜇𝜈𝑎𝜇𝑏𝜈 . The
components 𝜂𝜇𝜈 are exactly the same as the components 𝜂𝜇𝜈 . All this justifies the ’lowering’ and
’raising’ of indices practised by physicists: to any vector 𝒗 ∈ M with components 𝑣𝜇’s such that
𝒗 = 𝑣𝜇𝒆 (𝝁) , we can associate a linear function, let us say 𝒗̃ ∈ M∗ with components 𝑣𝜇’s on the dual
basis: 𝒗̃ = 𝑣𝜇𝝎(𝝁) , and one has that the ’covariant components’ of the vector are given, in terms of
the ’contravariant ones’ by: 𝑣𝜇 = 𝜂𝜇𝜈𝑣𝜈 .
Very often, the coordinates (𝑥0, 𝑥1, 𝑥2, 𝑥3) associated to an orthonormal basis are renamed (𝑡, 𝑥, 𝑦, 𝑧).
Let us consider an infinitesimal displacement in Minkowski spacetime, defined by the vector:

d 𝒑 = d𝑥𝜇𝒆 (𝝁) = d𝑡𝒆 (0) + d𝑥𝒆 (1) + d𝑦𝒆 (2) + d𝑧𝒆 (3) . (2.44)
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We can define the infinitesimal ’length’ of this vector as the spacetime interval d𝑠 such that:

d𝑠2 =𝜼 (𝒅𝒑, 𝒅𝒑)

= − d𝑡2 + d𝑥2 + d𝑦2 + d𝑧2 .

(2.45)

(2.46)

2.3.3 Non-orthonormal bases

So far, we have defined orthonormal basis
{
𝒆 (𝜇)

}
canonically associated with Cartesian coordinates

{𝑥𝜇} = {𝑡, 𝑥, 𝑦, 𝑧}, but there are other sets of coordinates one can use, e.g. spherical coordinates
{𝑡, 𝑟, 𝜃, 𝜙}. In this coordinate system, we have:


𝑥 =𝑟 sin 𝜃 cos 𝜙

𝑦 =𝑟 sin 𝜃 sin 𝜙

𝑧 =𝑟 cos 𝜃 .

(2.47)

(2.48)

(2.49)

The canonical vectors associated with these coordinates
{
𝒆 (0) , 𝒆 (1) , 𝒆 (2) , 𝒆 (3)

}
are such that an

infinitesimal displacement reads:

d 𝒑 = d𝑡𝒆0 + d𝑥𝒆1 + d𝑦𝒆2 + d𝑧𝒆 (3) = d𝑡𝒆0 + d𝑟𝒆1 + d𝜃𝒆2 + d𝜙𝒆 (3) . (2.50)

Therefore, using the relationship between coordinates, we get the interval:

d𝑠2 = −d𝑡2 + d𝑟2 + 𝑟2d𝜃2 + 𝑟2 sin2 𝜃d𝜙2 , (2.51)

Thus, although the basis remains orthogonal, we have that:

{
𝜼

(
𝒆 (2) , 𝒆 (2)

)
=𝑟2 ≠ 0

𝜼
(
𝒆 (3) , 𝒆 (3)

)
=𝑟2 sin2 𝜃 ≠ 0 ,

(2.52)

(2.53)

so the coordinate basis associated to spherical coordinates is not orthonormal. It can be turned into
an orthonormal basis by normalising each vector, giving the usual spherical basis, but this is not a
coordinate basis; see subsection 2.5.1. Of course, we can also construct non-orthogonal bases in
which the metric is not diagonal any more.
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2.3.4 Classes of vectors in Minkowski spacetime

In the following, we will denote by 𝒒 the quadratic form associated with 𝜼 to simplify notations:
∀𝒗 ∈ M, 𝒒(𝒗) = 𝜼(𝒗, 𝒗) ∈ R. The fact that 𝜼 is not positive definite implies that there are non-zero
vectors 𝒏 ∈ M such that 𝒒(𝒏) = 0.

Lightlike vectors

𝒏 ∈ M is called a non-zero null, or lightlike vector iff 𝒏 ≠ 0 and 𝒒(𝒏) = 𝜼(𝒏, 𝒏) = 0.

Lightlike vectors are often called null. For example, the vector 𝒗 = 𝒆 (0) + 𝒆 (1) is null:

𝒒(𝒗) = 𝒒
(
𝒆 (0)

)
+ 2𝜼

(
𝒆 (0) , 𝒆 (1)

)
+ 𝒒(𝒆 (1) ) = −1 + 0 + 1 = 0. (2.54)

Let us recall an important result of the standard dot product in R3:

Cauchy-Schwartz inequality

Consider the vector space R3 and the standard dot product on R3. Let ®𝑢 and ®𝑣 be two non-zero
vectors of R3. Then:

( ®𝑢 · ®𝑣)2 ≤ (®𝑢 · ®𝑢)(®𝑣 · ®𝑣), (2.55)

where the equality holds iff ®𝑢 and ®𝑣 are linearly dependent.

The proof goes as follows. Consider:

®𝑧 = ®𝑢 − ®𝑢 · ®𝑣
®𝑣 · ®𝑣 ®𝑣 . (2.56)

Then:

®𝑧 · ®𝑣 = 0 , (2.57)

and therefore, by writing:

®𝑢 =
®𝑢 · ®𝑣
®𝑣 · ®𝑣 ®𝑣 + ®𝑧 , (2.58)

we get:

®𝑢 · ®𝑢 =
( ®𝑢. · ®𝑣)2

®𝑣 · ®𝑣 + ®𝑧 · ®𝑧 ≥ (®𝑢 · ®𝑣)2

®𝑣 · ®𝑣 . (2.59)
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Multiplying by ®𝑣 · ®𝑣, we get the result. Besides, if ∃𝑡 ∈ R, ®𝑢 = 𝑡®𝑣, we clearly have: ( ®𝑢 · ®𝑣)2 = 𝑡2®𝑣 · ®𝑣 =
( ®𝑢 · ®𝑢)(®𝑣 · ®𝑣). Conversely, if we have equality, then, we get:

®𝑢 ·
(
®𝑢 · ®𝑣
®𝑣 · ®𝑣 ®𝑣

)
= ®𝑢 · ®𝑢, (2.60)

and therefore ®𝑢 = ®𝑢· ®𝑣
®𝑣 · ®𝑣 ®𝑣, because the dot product is non-degenerate.

Let us now consider two lightlike vectors 𝒗 ∈ M and 𝒘 ∈ M that are also 𝜂-orthogonal:
𝜼(𝒗, 𝒘) = 0. Then: (

𝑣0
)2

=
(
𝑣1

)2
+

(
𝑣2

)2
+

(
𝑣3

)2
(2.61)(

𝑤0
)2

=
(
𝑤1

)2
+

(
𝑤2

)2
+

(
𝑤3

)2
. (2.62)

This means that:(
𝑣0

)2 (
𝑤0

)2
=

((
𝑣1

)2
+

(
𝑣2

)2
+

(
𝑣3

)2
) ((

𝑤1
)2

+
(
𝑤2

)2
+

(
𝑤3

)2
)
. (2.63)

On the other hand, because 𝜼(𝒗, 𝒘) = 0, we have:(
𝑣0𝑤0

)2
=

(
𝑣0

)2 (
𝑤0

)2
=

(
𝑣1𝑤1 + 𝑣2𝑤2 + 𝑣3𝑤3

)2
. (2.64)

This proves that the Cauchy-Schwartz inequality in the subspace R3 orthogonal to 𝒆 (0) and spanned
by

{
𝒆 (1) , 𝒆 (2) , 𝒆 (3)

}
is saturated, and therefore: ∃𝑡 ∈ R, 𝑣1𝒆 (1)+𝑣2𝒆 (2)+𝑣3𝒆 (3) = 𝑡

(
𝑤1𝒆 (1) + 𝑤2𝒆 (2) + 𝑤3𝒆 (3)

)
,

or, equivalently, ∀𝑖 ∈ {1, 2, 3}, 𝑣𝑖 = 𝑡𝑤𝑖 .
Finally, that leads to:

𝑣0𝑤0 = 𝑡

((
𝑤1

)2
+

(
𝑤2

)2
+

(
𝑤3

)2
)

= 𝑡
(
𝑤0

)2
, (2.65)

so that we have: 𝑣0 = 𝑡𝑤0. This shows that, necessarily, 𝒗 = 𝑡𝒘 for some 𝑡 ∈ R. Thus, we see that
orthogonal lightlike vectors are also parallel: if 𝒗 ∈ M and 𝒘 ∈ M are non-zero null vectors, then
𝒗 and 𝒘 are orthogonal ⇔ ∃𝑡 ∈ R, 𝒗 = 𝑡𝒘.

What is the link between this inner product and Special Relativity? Events in spacetime are
points but since M is a vector space, once an observer has been chosen in the form of an origin 𝑂
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for the frame
{
𝒆 (𝝁)

}
, two events 𝑥 and 𝑥0 define a vector 𝒗 = 𝑶𝒙 −𝑶𝒙0 ∈ M. In the following, we

will often identify points and vectors starting at the origin. We will even omit to mention the origin
when necessary and write 𝒙 = 𝑶𝒙. If we write: 𝑶𝒙 = 𝑥𝜇𝒆 (𝝁) and 𝑶𝒙0 = 𝑥𝜇0 𝒆𝝁. then 𝒗 is lightlike
if we have:

𝒒(𝒗) = −
(
𝑥0 − 𝑥0

0

)2
+

(
𝑥1 − 𝑥1

0

)2
+

(
𝑥2 − 𝑥2

0

)2
+

(
𝑥3 − 𝑥3

0

)2
= 0. (2.66)

We know this equation. It is the condition for two events to be on the worldline of the same photon,
and it is the equation of a cone in R4. We also saw that this implied that this condition must be
invariant when changing the inertial frame. In our context, that means that the inner product of two
vectors must be invariant by changing orthonormal bases. We will see the importance of that later.
For the moment, we will therefore define the nullcone (or lightcone) at 𝒙0 in M by:

𝐶 (𝒙0) = {𝒙 ∈ M, 𝒒 (𝒙 − 𝒙0) = 0} . (2.67)

Physically, it consists of all the events in M that can be connected to 𝒙0 via a light ray. For any
to such events 𝒙 and 𝒙0 we can therefore further define a light ray, or null worldline:

𝑅𝒙0,𝒙 = {𝒗 ∈ M, ∃𝑡 ∈ R, 𝒗 = 𝒙0 + 𝑡 (𝒙 − 𝒙0)} . (2.68)

We see that, clearly, 𝑅𝒙0,𝒙 = 𝑅𝒙,𝒙0 . Moreover, we also clearly have that𝐶 (𝒙0) is the (infinite) union
of all the light rays through 𝒙0. So far, we have centred our attention on null vectors, i.e. vectors
𝒗 ∈ M for which 𝒒(𝒗) = 0. We can also define two other type of vectors:

Timelike and spacelike vectors

Let 𝒗 ∈ M. We say that:

(i) 𝒗 is timelike iff 𝒒(𝒗) = 𝜼(𝒗, 𝒗) < 0;

(ii) 𝒗 is spacelike iff 𝒒(𝒗) = 𝜼(𝒗, 𝒗) > 0.

Note that, for 𝒗 ∈ M, if 𝒗 is timelike, we have that:
(
𝑣1)2+

(
𝑣2)2+

(
𝑣3)2

<
(
𝑣0)2, this corresponds

to vectors inside the lightcone. Physically, that means that the distance (in R3) covered along the
vector is less than the distance covered by a light ray in the same time lapse.
In the same way, for a spacelike vector, we have:

(
𝑣1)2 +

(
𝑣2)2 +

(
𝑣3)2

>
(
𝑣0)2, and this corresponds

to vectors outside the lightcone. In that case, the distance (in R3) covered along the vector is more
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than the distance covered by a light ray in the same period of time.
Now, we have to show the following important result:

Time components of timelike and lightlike vectors

Let (𝒗, 𝒘) ∈ M2, both non-zero, with 𝒗 timelike, and 𝒘 timelike or lightlike. Let
{
𝒆 (𝝁)

}
be

an orthonormal basis of M, such that: 𝒗 = 𝑣𝜇𝒆 (𝝁) and 𝒘 = 𝑤𝜇𝒆 (𝝁) . Then:

(i) 𝑣0𝑤0 > 0, and we have 𝜼(𝒗, 𝒘) < 0, or

(ii) 𝑣0𝑤0 < 0, and we have 𝜼(𝒗, 𝒘) > 0.

Indeed, by definition:

𝜼(𝒗, 𝒗) = −
(
𝑣0

)2
+

(
𝑣1

)2
+

(
𝑣2

)2
+

(
𝑣3

)2
< 0 (2.69)

𝜼(𝒘, 𝒘) = −
(
𝑤0

)2
+

(
𝑤1

)2
+

(
𝑤2

)2
+

(
𝑤3

)2
≤ 0 . (2.70)

Hence: (
𝑣0𝑤0

)2
>

((
𝑣1

)2
+

(
𝑣2

)2
+

(
𝑣3

)2
) ((

𝑤1
)2

+
(
𝑤2

)2
+

(
𝑤3

)2
)
. (2.71)

Or, using the Cauchy-Schwartz inequality in R3:(
𝑣0𝑤0

)2
>

(
𝑣1𝑤1 + 𝑣2𝑤2 + 𝑣3𝑤3

)2
, (2.72)

which implies that: ��𝑣0𝑤0�� > ��𝑣1𝑤1 + 𝑣2𝑤2 + 𝑣3𝑤3�� . (2.73)

Therefore, we clearly have: 𝑣0𝑤0 ≠ 0, and 𝜼(𝒗, 𝒘) ≠ 0.
If 𝑣0𝑤0 > 0, then:

𝑣0𝑤0 =
��𝑣0𝑤0�� > ��𝑣1𝑤1 + 𝑣2𝑤2 + 𝑣3𝑤3�� ≥ 𝑣1𝑤1 + 𝑣2𝑤2 + 𝑣3𝑤3 . (2.74)

This leads to 𝜼(𝒗, 𝒘) = −𝑣0𝑤0 + 𝑣1𝑤1 + 𝑣2𝑤2 + 𝑣3𝑤3 < 0. Similarly, if 𝑣0𝑤0 < 0, one finds that:
𝜼(𝒗, 𝒘) > 0.

We have a simple corollary to this result: if a non-zero vector of M is orthogonal to a timelike
vector, then it must be spacelike.

This result tells us that if two vectors, one timelike, 𝒗, and the other timelike or null, 𝒘, point
in the same direction along the ’time axis’, then we have 𝜼(𝒗, 𝒘) < 0. Then we can define an
equivalence relation ∼ as follow:
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• We call 𝜏 = {𝒗 ∈ M, 𝒒(𝒗) < 0} the set of all the timelike vectors of M.

• Let (𝒗, 𝒘) ∈ 𝜏2, Then: 𝜼(𝒗, 𝒘) < 0 ⇒ 𝒗 ∼ 𝒘.

You can check, as an exercise that ∼ is an equivalence relation on 𝜏, i.e. that ∼ is:

• reflexive: ∀𝒗 ∈ 𝜏, 𝒗 ∼ 𝒗;

• symmetric: ∀(𝒗, 𝒘) ∈ 𝜏2, 𝒗 ∼ 𝒘 ⇒ 𝒘 ∼ 𝒗;

• transitive: ∀(𝒗, 𝒘, 𝒙) ∈ 𝜏3, (𝒗 ∼ 𝒘 and 𝒘 ∼ 𝒙) ⇒ 𝒗 ∼ 𝒙.

Moreover, this equivalence relation has exactly two classes, called 𝜏+ and 𝜏−, where 𝜏+ =
{
𝒗 ∈ 𝜏, 𝑣0 > 0

}
and 𝜏− =

{
𝒗 ∈ 𝜏, 𝑣0 < 0

}
. We clearly have: 𝜏 = 𝜏+ ∪ 𝜏−. Elements of 𝜏+ all have the same time-

orientation, and points toward positive values of the time coordinate. They are thus called future-
directed. Elements of 𝜏− point toward negative values of the time coordinate and are therefore
called past-directed. For each event 𝒙0 ∈ M, we can define the time cone, C𝑇 (𝒙0), the future time
cone, C+

𝑇 (𝒙0) and the the past time cone, C−
𝑇 (𝒙0) by:

C𝑇 (𝒙0) = {𝒙 ∈ M, 𝒒 (𝒙 − 𝒙0) < 0} (2.75)

C+
𝑇 (𝒙0) =

{
𝒙 ∈ M, 𝒙 − 𝒙0 ∈ 𝜏+

}
(2.76)

C−
𝑇 (𝒙0) = {𝒙 ∈ M, 𝒙 − 𝒙0 ∈ 𝜏−} . (2.77)

Clearly, C𝑇 (𝒙0) is the interior of the null cone 𝐶 (𝒙0). It is made of two disjoint parts, C+
𝑇 (𝒙0)

and C−
𝑇 (𝒙0) representing the timelike future and past of 𝒙0, respectively.

Now, we would like to extend these notions of future and past to lighlike vectors as well. Let us
pick a non-zero lightlike vector 𝒏 ∈ 𝐶 (𝒙0). We have that:

∀𝒗 ∈ 𝜏+, 𝜼(𝒏, 𝒗) > 0 or 𝜼(𝒏, 𝒗) < 0 . (2.78)

Indeed, let us suppose that we have two timelike vectors (𝒗1, 𝒗2) ∈ 𝜏+ such that:

𝜼 (𝒗1, 𝒏) < 0 and 𝜼 (𝒗2, 𝒏) > 0 . (2.79)

Then, we have seen that, necessarily, 𝑣0
1𝑛

0 > 0 and 𝑣0
2𝑛

0 < 0. But, we also have that 𝑣1 ∼ 𝑣2, and
therefore, 𝑣0

1𝑣
0
2 > 0. This trivially leads to a contradiction. Therefore, we can say that a lightlike

vector 𝒏 is future-directed iff ∀𝒗 ∈ 𝜏+, 𝜼(𝒏, 𝒗) < 0 and past-directed iff ∀𝒗 ∈ 𝜏+, 𝜼(𝒏, 𝒗) > 0.
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One can then prove that two non-zero lightlike vectors 𝒏1 and 𝒏2 have the same time orientation iff
𝑛0

1𝑛
0
2 > 0. This allows us to define the future and past null cones at 𝒙0 ∈ M as the sets:

C+ (𝒙0) = {𝒙 ∈ C (𝑥0) , 𝒙 − 𝒙0 future-directed } (2.80)

C− (𝒙0) = {𝒙 ∈ C (𝒙0) , 𝒙 − 𝒙0 past-directed } . (2.81)

These sets define the causal structure of spacetime around 𝑥0. The cone itself is the set of event
connected to 𝑥0 by light rays as we have seen, We will understand its interior as the set of events
connected to 𝑥0 bymassive particles a bit later. The overall geometry formalised here is summarised
and depicted on Fig. 2.1.

2.4 Lorentz transformations

In Special Relativity, the principle of relativity that we quoted in Newtonian physics still holds and
inertial frames have not changed their nature: they are still frames in which an object free of forces
is at rest on in uniform motion. Since the laws of physics must not change when we go from one
inertial frame to another, the geometry of spacetimemust not be altered by a transformation between
inertial frame. In Special Relativity, these transformations are known as Lorentz transformations.
Because we work on a vector space, we will also look for transformations between frames that are
linear. Therefore, Lorentz transformations are linear mappings of M onto itself that preserve the
metric (or inner product) 𝜼, i.e. they are the 𝜼-isometries of Minkowski spacetime. In particular,
this implies that they preserve the causal structure described in the previous section and depicted
in Fig. 2.1. From the passive viewpoint, they are the transformations that allow one to go from one
inertial frame to another in Special Relativity, as we will see later.
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Figure 2.1: Minkowski spacetime in the orthogonal reference frame
{
𝒆 (𝜇)

}
of an observer 𝑂. One

spatial dimension has been suppressed. The causal structure around an event 𝑥0 has been represented
by its lightcone in green. It represents the events connected to 𝑥0 by light rays. 𝑥′1 is in the future
of 𝑥0since it is connected to it by a future-directed null vector, 𝒗′1. On the other hand, 𝑥′2 is in the
past of 𝑥0 and the null vector 𝒗′2 is past-directed. Timelike vectors are also separated into future
directed (like 𝒗1) and past-directed (like 𝒗2) connecting 𝑥0 to events that lie in its causal, timelike
future (like 𝑥1) or past (like 𝑥2). Events like 𝑥3 are connected to 𝑥0 by spacelike vectors, like 𝒗3 and
are not causally connected to 𝑥0.
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2.4.1 Characterisation of the Lorentz group

First, we need to characterise Lorentz transformations in a few equivalent ways.

Isometries of Minkowski spacetime

Let 𝑳 : M → M be a linear mapping. Then, the following propositions are equivalent:

(i) 𝑳 preserves the inner product 𝜼, i.e.:

∀(𝒗, 𝒘) ∈ M2, 𝜼 (𝑳(𝒗), 𝑳(𝒘)) = 𝜼(𝒗, 𝒘) . (2.82)

(ii) 𝑳 preserves the quadratic form 𝒒 associated with 𝜼:

∀𝒗 ∈ M, 𝒒 (𝑳(𝒗)) = 𝒒(𝒗) . (2.83)

(iii) For any
{
𝒆 (0) , 𝒆 (1) , 𝒆 (2) , 𝒆 (3)

}
orthonormal basis of M, there exists another orthonor-

mal basis of M,
{
𝝐 (0) , 𝝐 (1) , 𝝐 (2) , 𝝐 (3)

}
such that:

∀𝜇 ∈ {0, 1, 2, 3}, 𝑳
(
𝒆 (𝝁)

)
= 𝝐 (𝝁) . (2.84)

We will prove each equivalence separately.

(i)⇒(ii) Let (𝒗, 𝒘) ∈ M2. Let us suppose that we have: 𝜼 (𝑳(𝒗), 𝑳(𝒘)) = 𝜼(𝒗, 𝒘) for all 𝒗 and 𝒘.
Then, of course, because 𝒒(𝒗) = 𝜼(𝒗, 𝒗), we have: 𝒒 (𝑳(𝒗)) = 𝒒(𝒗).

(ii)⇒(i) Here, we use the fact that:

∀(𝒗, 𝒘) ∈ M2, 𝜼(𝒗, 𝒘) = 1
2
[𝒒(𝒗 + 𝒘) − 𝒒(𝒗) − 𝒒(𝒘)] . (2.85)

The invariance of 𝒒 then implies the invariance of 𝜼.

(i)⇒(iii) We know that:

∀(𝜇, 𝜈) ∈ {0, 1, 2, 3}2, 𝜼
(
𝒆 (𝝁) , 𝒆 (𝝂)

)
= 𝜂𝜇𝜈 . (2.86)

Now:

𝜼
(
𝑳

(
𝒆 (𝝁)

)
, 𝑳

(
𝒆 (𝝂)

) )
= 𝜼

(
𝒆 (𝝁) , 𝒆 (𝝂)

)
= 𝜂𝜇𝜈 . (2.87)
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This proves that that set
{
𝑳

(
𝒆 (𝝁)

)}
𝜇∈{0,1,2,3} is orthonormal. We just have to prove that it is

linearly independent to prove that it is an orthonormal basis.{
𝒆 (𝝁)

}
being a basis, we have that:

𝑣𝜇𝒆 (𝝁) = 0 ⇒ ∀𝜇 ∈ {0, 1, 2, 3}, 𝑣𝜇 = 0 . (2.88)

Thus:

𝑣𝜇𝑳
(
𝒆 (𝝁)

)
= 0 ⇒ 𝑳

(
𝑣𝜇𝒆 (𝝁)

)
= 0 (2.89)

⇒ 𝑣𝜇𝒆 (𝝁) = 0 (injectivity of 𝑳) (2.90)

⇒ ∀𝜇 ∈ {0, 1, 2, 3}, 𝑣𝜇 = 0 (linear independence of
{
𝒆 (𝝁)

}
). (2.91)

The set
{
𝑳(𝒆 (𝝁) )

}
=

{
𝝐 (𝝁)

}
is therefore linearly independent.

(iii)⇒(i) We have:

∀(𝒗, 𝒘) ∈ M2, 𝜼 (𝑳(𝒗), 𝑳(𝒘)) = 𝜼
(
𝑣𝜇𝝐 (𝝁) , 𝑤

𝜈𝝐 (𝝂)
)
= 𝜼

(
𝝐 (𝝁) , 𝝐 (𝝂)

)
𝑣𝜇𝑤𝜈 , (2.92)

which is exactly 𝜼 (𝑳(𝒗), 𝑳(𝒘)) = 𝜼(𝒗, 𝒘).

Consider two orthonormal bases ofM,
{
𝒆 (𝝁)

}
and

{
𝒆 (𝝁)

}
and a linear mapping 𝑳 : M → M

such that ∀𝜇 ∈ {0, 1, 2, 3}, 𝑳
(
𝒆 (𝝁)

)
= 𝒆 (𝝁) . We know that there exists constants Λ𝜇𝜈 ∈ R for any

(𝜇, 𝜈) ∈ {0, 1, 2, 3}2, such that:

∀𝜈 ∈ {0, 1, 2, 3}, 𝒆 (𝝂) = Λ𝜇𝜈𝒆 (𝝁) . (2.93)

These are, by definition, the components of the linear mapping 𝑳−1 in the basis
{
𝒆 (𝜇)

}
². If the

coordinates of a vector 𝒗 ∈ M are such that: 𝒗 = 𝑣𝜇𝒆 (𝝁) = 𝑣̂𝜇𝒆 (𝝁) , then we have the law of
transformation for vector components under Lorentz transformations:

∀𝜇 ∈ {0, 1, 2, 3}, 𝑣̂𝜈 = Λ𝜈𝜇𝑣
𝜇 , (2.94)

²The fact that we study the matrix representation of 𝑳−1 instead of 𝑳 is of course irrelevant and one could have
studied the matrix representation of 𝑳 instead, but we stick here to the usual notations that one finds in standard physics
and applied mathematics books. Note that, strictly speaking we have not even proved the existence of an inverse for a
mapping 𝑳 but it should be clear that such an inverse must exist if the orthonormal bases are to be treated on an equal
ground.
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Using the orthonormality of
{
𝒆 (𝝁)

}
, ∀(𝜇, 𝜈) ∈ {0, 1, 2, 3}2, 𝜼

(
𝒆 (𝝁) , 𝒆 (𝝂)

)
= 𝜂𝜇𝜈 , we have:

𝜼
(
Λ𝜌𝜇𝒆 (𝝆) ,Λ

𝜆
𝜈𝒆 (𝝂)

)
= 𝜂𝜇𝜈 , (2.95)

which leads to:
Λ𝜌𝜇Λ

𝜆
𝜈𝜼

(
𝒆 (𝝆) , 𝒆 (𝝀)

)
= 𝜂𝜇𝜈 . (2.96)

Using the orthonormality of
{
𝒆 (𝝁)

}
, we thus have:

𝜂𝜌𝜆Λ
𝜌
𝜇Λ

𝜆
𝜈 = 𝜂𝜇𝜈 . (2.97)

This relation must be satisfied by any linear mapping that preserves the inner product 𝜼. Therefore,
it defines such mappings. If we define the matrix:

𝜂 =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


, (2.98)

then Eq.(2.97) takes the simple form:

Λ𝑇𝜂Λ = 𝜂 , (2.99)

where the superscript 𝑇 denotes the usual matrix transposition. This can be taken as an operational
definition of Lorentz transformations.

The matrix 𝜂 has components 𝜂𝜇𝜈 or 𝜂𝜇𝜈 , depending on the summation required. This is rem-
iniscent of the equivalence between M and M∗ introduced by the inner product. For example, we
see that 𝜂−1 = 𝜂 becomes simply: 𝜂𝜇𝜌𝜂𝜈𝜌 = 𝛿𝜇𝜈 .

Note that we could have used the matrix L associated with the transformation 𝑳 instead of 𝑳−1.
It obeys the same relation:

𝜂𝜌𝜆L𝜌𝜇L𝜆𝜈 = 𝜂𝜇𝜈 , (2.100)

and we have: L = Λ−1. These matrices are related by the relation:

L = Λ−1 = 𝜂Λ𝑡𝜂 , (2.101)

where we have used the fact that 𝜂𝑡 = 𝜂−1 = 𝜂. Usually, the components of L are denoted
Λ𝜇𝜈 .
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Lorentz transformations

Any linear mapping 𝑳 : M → M which preserves the inner product 𝜼 is such that:

𝜂𝜌𝜆𝐿
𝜌
𝜇𝐿

𝜆
𝜈 = 𝜂𝜇𝜈 . (2.102)

It is called a general, homogeneous Lorentz transformation.

This set actually forms a group called the general (homogeneous) Lorentz group and denoted
L𝐺𝐻 .

In fact, the Lorentz group we usually study in physics is the one we looked at first here, and it
is a special representation of L𝐺𝐻 :

Lorentz transformations: Matrix representation

Let
{
𝒆 (𝝁)

}
be an orthonormal basis of M. Given 𝑳 ∈ L𝐺𝐻 a Lorentz transformation, we

have a second orthonormal basis
{
𝒆 (𝝁)

}
such that: ∀𝜇 ∈ {0, 1, 2, 3}, 𝑳

(
𝒆 (𝝁)

)
= 𝒆 (𝝁) . We

define an associated matrix Λ with components Λ𝜇𝜈 with respect to the basis
{
𝒆 (𝝁)

}
such

that ∀𝜇 ∈ {0, 1, 2, 3}, 𝒆 (𝝁) = Λ𝜈𝜇𝒆 (𝝂) ; Λ𝜈𝜇 is actually the matrix associated with the Lorentz
transformation L−1.
It verifies:

Λ𝜌𝜇Λ
𝜆
𝜈𝜂𝜌𝜆 = 𝜂𝜇𝜈 . (2.103)

These matrices have 16 components.
The set 𝐿𝐺𝐻 of all these matrices, given a specific basis

{
𝒆 (𝝁)

}
, forms a group, called the

general homogeneous Lorentz group. It has the same name as the group of transformations,
even though, strictly speaking, it is just a representation of it. In the rest of these lecture notes,
the Lorentz group will denote this set of matrices, with a fixed basis

{
𝒆 (𝝁)

}
, rather than the set

of transformations themselves. The results would be unchanged, but a bit more complicated
to obtain.

The Lorentz group 𝐿𝐺𝐻 as defined here is the group of passive Lorentz transformations, i.e. of
transformations that leave vectors invariant but change the orthonormal basis of M. The linear
mapping 𝑳 whose inverse is represented by a matrix of 𝐿𝐺𝐻 , on the contrary, is an active transfor-
mation that keeps the coordinates of vectors fixed in both basis. Indeed, consider two orthonormal
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bases,
{
𝒆 (𝝁)

}
and

{
𝒆 (𝝁)

}
and an active Lorentz transformation 𝑳 : M → M such that:

∀𝜇 ∈ {0, 1, 2, 3}, 𝑳
(
𝒆 (𝜇)

)
= 𝒆 (𝝁) , (2.104)

i.e.:
𝒆 (𝝁) = Λ𝜈𝜇𝒆 (𝝂) . (2.105)

where we denote by Λ the matrix associated to 𝑳 in the basis
{
𝒆 (𝝁)

}
. Then, for any vector 𝒗 ∈ M,

we can write:
𝒗 = 𝑣𝜇𝒆𝝁 = 𝑣̂𝜈𝒆 (𝝂) = 𝑣̂

𝜈Λ𝜈
𝜇𝒆 (𝝁) , (2.106)

and indeed, keeping 𝒗 fixed and changing
{
𝒆 (𝝁)

}
into

{
𝒆 (𝝂)

}
via Λ, we get the old coordinates of

𝒗, in
{
𝒆 (𝝁)

}
, in terms of the new ones, in

{
𝒆 (𝝁)

}
:

∀𝜇 ∈ {0, 1, 2, 3}, 𝑣𝜇 = Λ𝜈
𝜇 𝑣̂𝜈 . (2.107)

On the other hand, we have that:

𝑳(𝒗) = 𝑳
(
𝑣̂𝜇𝒆 (𝝁)

)
= 𝑣̂𝜇𝑳

(
𝒆 (𝝁)

)
= 𝑣̂𝜇Λ𝜇

𝜈𝑳
(
𝒆 (𝝂)

)
= 𝑣̂𝜇Λ𝜇

𝜈𝒆 (𝝂) = 𝑣
𝜈𝒆 (𝝂) . (2.108)

Therefore, the new vector 𝑳(𝒗) has the same coordinates in
{
𝒆 (𝝁)

}
than the old vector 𝒗 in

{
𝒆 (𝝁)

}
.

These two types of transformations are completely equivalent; they only correspond to two different
viewpoints.

Consider now a general Lorentz transformation Λ𝜇𝜈 . It must verify:

Λ𝜌𝜇Λ
𝜆
𝜈𝜂𝜌𝜆 = 𝜂𝜇𝜈 . (2.109)

Putting 𝜇 = 𝜈 = 0 in this expression, we find that:(
Λ0

0

)2
= 1 +

(
Λ1

0

)2
+

(
Λ2

0

)2
+

(
Λ3

0

)2
. (2.110)

In particular, we must have: (
Λ0

0

)2
≥ 1, (2.111)

so that Λ0
0 ≥ 1 or Λ0

0 ≤ −1. A Λ with Λ0
0 ≥ 1 is said to be orthochronous while it is said to be

non-orthochronous if Λ0
0 ≤ −1.

These names are justified by the following result. LetΛ be a Lorentz transformation and
{
𝒆 (𝝁)

}
an orthonormal basis of M. Then, the following propositions are equivalent:
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(i) Λ is orthochronous;

(ii) Λ preserves the time orientation of null vectors, i.e., for any 𝒗 ∈ M with 𝒗 = 𝑣𝜇𝒆 (𝝁) such
that 𝜼(𝒗, 𝒗) = 0, we have that: 𝑣0 and Λ0

𝜇𝑣
𝜇 have the same sign;

(iii) Λ preserves the time orientation of timelike vectors.

Indeed, consider a non-zero vector 𝒗 = 𝑣𝜇𝒆 (𝝁) ∈ M that is either null or timelike. Using the
Cauchy-Schwartz inequality of R3, we can write that:(

Λ0
1𝑣

1 + Λ0
2𝑣

2 + Λ0
3𝑣

3
)2

≤
((
Λ0

1

)2
+

(
Λ0

2

)2
+

(
Λ0

3

)2
) ((

𝑣1
)2

+
(
𝑣2

)2
+

(
𝑣3

)2
)
. (2.112)

Now, we have seen that Λ𝜌𝜇Λ𝜆𝜈𝜂𝜌𝜆 = 𝜂𝜇𝜈 , which can be rewritten:

Λ𝜇𝜌Λ
𝜈
𝜆𝜂
𝜌𝜆 = 𝜂𝜇𝜈 . (2.113)

This is a simple consequence of the fact that this expression is equivalent to Λ𝜂Λ𝑇 = 𝜂. Therefore,
we have:

−
(
Λ0

0

)2
+

(
Λ0

1

)2
+

(
Λ0

2

)2
+

(
Λ0

3

)2
= −1 . (2.114)

This implies that:
(
Λ0

0
)2
>

(
Λ0

1
)2 +

(
Λ0

2
)2 +

(
Λ0

3
)2. Now, since 𝒗 ≠ 0 and it is timelike or null:(

𝑣0
)2

≥
(
𝑣1

)2
+

(
𝑣2

)2
+

(
𝑣3

)2
, (2.115)

so that, using the inequalities, we get:(
Λ0

0𝑣
0
)2
>

(
Λ0

1𝑣
1 + Λ0

2𝑣
2 + Λ0

3𝑣
3
)2
. (2.116)

Let 𝒘 ∈ M such that 𝒘 = Λ0
0𝒆 (0) + Λ0

1𝒆 (1) + Λ0
2𝒆 (2) + Λ0

3𝒆 (3) . We know, because:

−
(
Λ0

0

)2
+

(
Λ0

1

)2
+

(
Λ0

2

)2
+

(
Λ0

3

)2
= −1 , (2.117)

that 𝒘 is timelike. In addition,(
Λ0

0𝑣
0
)2
>

(
Λ0

1𝑣
1 + Λ0

2𝑣
2 + Λ0

3𝑣
3
)2

(2.118)

can be rewritten:
𝜼(𝒗, 𝒘)Λ0

𝜇𝑣
𝜇 < 0 , (2.119)
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which shows that 𝜼(𝒗, 𝒘) and Λ0
𝜇𝑣
𝜇 have opposite signs.

Now, suppose that 𝑤0 = Λ0
0 ≥ 1. Then, if 𝑣0 > 0, we have 𝑣0𝑤0 > 0, and therefore, we know that

𝜼(𝒗, 𝒘) < 0. But, then, necessarily, Λ0
𝜇𝑣
𝜇 > 0. On the other hand, if 𝑣0 < 0, we have 𝑣0𝑤0 < 0.

which implies 𝜼(𝒗, 𝒘) > 0, so that Λ0
𝜇𝑣
𝜇 < 0. Thus, we see that 𝑣0 and Λ0

𝜇𝑣
𝜇 have the same sign.

Following the same line of reasoning, if Λ0
0 ≤ −1, we can show that 𝑣0 and Λ0

𝜇𝑣
𝜇 have opposite

sign.
This shows that non-orthochronous Lorentz transformation have the unpleasant property of re-

versing the time orientation of all timelike and non-zero null vectors. This means that they transform
’forward clocks’ into ’backward clocks’. Physically, this is not very attractive, and that is the reason
why we choose to restrict the Lorentz group further. In the following, the Lorentz group will be the
sub-group of L𝐺𝐻 made of orthochronous transformations only.
Finally, we need to introduce a further restriction. Consider the matrix relation:

Λ𝑇𝜂Λ = 𝜂 . (2.120)

By taking its determinant and remembering that det Λ𝑇 = det Λ, we get, straightforwardly:

(det Λ)2 = 1 , (2.121)

and therefore, det Λ = ±1. A Lorentz transformation Λ is said to be proper iff det Λ = 1. Oth-
erwise, it is improper. If we restrict our attention to orthochronous transformations, an improper
orthochronous transformation is simply the composition of a proper orthochronous one with a trans-
formation that changes the orientation of the spatial basis, from right-handed to left-handed and
vice-versa (Can you prove it?). Such a change is quite arbitrary and does not contain any physical
meaning whatsoever. Therefore, we choose to consider only orthochronous proper transformations,
and we restrict ourselves to admissible orthonormal bases such that:

(i) 𝒆 (0) is timelike and future oriented;

(ii)
{
𝒆 (1) , 𝒆 (2) , 𝒆 (3)

}
is right-handed.

Then, the set L of orthochronous proper Lorentz transformation forms a subgroup of L𝐺𝐻 . We
will call it the Lorentz group in the remainder of this course.
This Lorentz group contains a very important subgroup, R, consisting of all the matrices of the
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form: 
1 0 0 0
0
0 𝑂

0


, (2.122)

where 𝑂 is an orthogonal matrix of determinant 1.
R is called the rotation subgroup of L, and its elements are called rotations. For Λ ∈ L, the

following propositions are equivalent:

(i) Λ is a rotation;

(ii) Λ1
0 = Λ2

0 = Λ3
0 = 0;

(iii) Λ0
1 = Λ0

2 = Λ0
3 = 0;

(iv) Λ0
0 = 1.

In the literature, L is often denoted 𝐿↑+. This comes from the classification of Lorentz trans-
formations hinted at above. Indeed, depending on the signs of det Λ and of whether Λ0

0 ≥ 1
or Λ0

0 ≤ −1, we have four different subsets of L𝐺𝐻 , as illustrated in Table 2.1. Of course

Λ0
0 ≥ 1 Λ0

0 ≤ 1

det Λ = 1
L = 𝐿↑+

Proper orthochronous
𝐿↓+

Proper non-orthochronous

det Λ = −1
𝐿↑−

Improper orthochronous
𝐿↓−

Improper non-orthochronous

Table 2.1: The four different subsets of L𝐺𝐻 .

L𝐺𝐻 = 𝐿↑+ ∪ 𝐿↑− ∪ 𝐿↓+ ∪ 𝐿↓−, and these subsets are disjoint from each other.
Consider the following three mappings:

𝑇 = 𝜂 , 𝑃 = −𝜂 and 𝑌 = 𝑇𝑃 = 𝑃𝑇 = −𝐼4.

Clearly, 𝑇 ∈ 𝐿↓−, 𝑃 ∈ 𝐿↑− and𝑌 ∈ 𝐿↓+, showing that all the subsets previously defined are non-empty.
Geometrically, 𝑇 corresponds to a time-reversal, 𝑃 to an inversion of the orientation of space (called
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parity), and 𝑌 is the combination of both transformations, i.e. an inversion of spacetime. Note
that, among these four sets, only 𝐿↑+ forms a group, since the other three are not stable by matrix
multiplications: 𝑇2 = 𝑃2 = 𝑌2 = 𝐼4 ∈ 𝐿↑+.
Consider Λ ∈ 𝐿↑+ = L. Each of the transformations 𝑇 , 𝑃 and 𝑌 induces a mapping of L into one of
the other subsets of L𝐺𝐻 via the composition of linear applications. Indeed, for example, we have:

det (𝑇Λ) = det 𝑇det Λ = −1 (2.123)

(𝑇Λ)0
0 = 𝑇0

𝑖 Λ
𝑖
0 = −Λ0

0 ≤ −1 . (2.124)

Therefore, 𝑇Λ ∈ 𝐿↓−. Conversely, for any 𝑈 ∈ 𝐿↓−, 𝑇𝑈 ∈ 𝐿↑+. Hence, the time reversal, 𝑇 induces a
mapping between 𝐿↑+ and 𝐿↓−; it is easily checked that this mapping is bijective. Similarly, 𝑃 indices
a bijective mapping between 𝐿↑+ and 𝐿↑− and 𝑌 induces a bijective mapping between 𝐿↑+ and 𝐿↓+.
Therefore, the study of the entire Lorentz group L𝐺𝐻 can be reduced to the study of L = 𝐿↑+: it is
the only one which has the nice group structure, and the elements of the other parts of L𝐺𝐻 can be
deduced from the ones of 𝐿↑+. Nevertheless, one must not forget the other parts of the group: the
time reversal and parity symmetries, as well as their composition do not play any role in classical
physics where all the phenomena are invariant under these symmetries, but they are essential in
Quantum Mechanics since some aspects of the theory turn out to be affected by the change in time
orientation and/or space orientation.

2.4.2 Back to physics: interpretation of the components of a Lorentz transformation

Elements of L have 4 × 4 = 16 components. Nevertheless, because of Eq. (2.97) they are not all
independent, and the orthochronous and proper characters also restrict the number of free parame-
ters. Some of the remaining components have interesting physical interpretations that we will try
to investigate now.
Let us start with two admissible bases

{
𝒆 (𝝁)

}
and

{
𝒆 (𝝂)

}
corresponding, physically, to two frames

of reference, 𝐹1 and 𝐹2. Consider the Lorentz transformation Λ such that: ∀𝜇 ∈ {0, 1, 2, 3}, 𝒆 (𝝁) =
Λ𝜈𝜇𝒆 (𝝂) ; it corresponds to the change of frame 𝐹2 → 𝐹1, in which the components of a vector 𝒗
change as:

𝑣𝜈 = Λ𝜈𝜇 𝑣̂
𝜇 . (2.125)

Be careful that the role of the hatted and non-hatted coordinates are reversed compared to the
previous section. First, let us consider a given worldline on which two events, 𝑥 and 𝑥 + 𝛿𝑥 are at
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rest in 𝐹2. This means that the spatial point represented by 𝑥 and 𝑥 + 𝛿𝑥 is a single spatial point, at
rest with respect to 𝐹2. This could be the worldline of a particle at rest in 𝐹2. Write, in each basis:
𝜹𝒙 = 𝛿𝑥𝜇𝒆 (𝝁) = 𝛿𝑥𝜈𝒆 (𝝂) , the separation vector between the two events. The fact that the two events
are at rest in 𝐹2 simply means that: 𝛿𝑥1 = 𝛿𝑥2 = 𝛿𝑥3 = 0. 𝛿𝑥0 then is the time separation between
the two events, as measured in 𝐹2. We have that:

𝛿𝑥𝜈 = Λ𝜈0𝛿𝑥
0 . (2.126)

Therefore:
∀𝑖 ∈ {1, 2, 3}, 𝛿𝑥

𝑖

𝛿𝑥0 =
Λ𝑖0
Λ00

. (2.127)

These ratios are constant and independent on the particular point at rest in 𝐹2 that we consider.
Physically, they correspond to the components of the standard 3−velocity of 𝐹2 with respect to 𝐹1:

®𝑢 = 𝑢1𝒆 (1) + 𝑢2𝒆 (2) + 𝑢3𝒆 (3) , (2.128)

with:
∀𝑖 ∈ {1, 2, 3}, 𝑢𝑖 = Λ𝑖0

Λ00
. (2.129)

Conversely, if we consider two events at rest in 𝐹1, we find that the 3-velocity of 𝐹1 w.r.t. 𝐹2 is given
by:

®̂𝑢 = 𝑢̂1𝒆 (1) + 𝑢̂2𝒆 (2) + 𝑢̂3𝒆 (3) , (2.130)

where:

∀𝑖 ∈ {1, 2, 3}, 𝑢̂𝑖 =
(
Λ−1) 𝑖

0(
Λ−1)0

0
= −Λ0

𝑖

Λ00
. (2.131)

To carry on a bit further, let us observe that:

3∑
𝑖=1

(
𝑢𝑖

)2
=

3∑
𝑖=1

(
𝑢̂𝑖

)2 (2.132)

=

(
Λ0

0
)2 − 1(

Λ00
)2 . (2.133)

This shows that: ‖ ®𝑢‖ =



 ®̂𝑢


 = 𝛽, i.e. that the magnitude of the 3-velocity of one frame relative to

the other is the same in both cases, and is equal to³:

³Remember that we restrict our analysis to orthochronous transformations, for which Λ0
0 ≥ 1.
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𝛽 =

√
1 − 1(

Λ00
)2 . (2.134)

Equivalently:
Λ0

0 =
1√

1 − 𝛽2
= 𝛾 , (2.135)

is known as the Lorentz factor of the transformation. Note that we have: 0 ≤ 𝛽2 < 1. Since Λ0
0 = 1

iff Λ is a rotation, we have that, for a rotation, 𝛽 = 0, as expected physically. If we concentrate on
Lorentz transformations Λ that are not rotations, 𝛽 ≠ 0, and we can write:

®𝑢 = 𝛽 ®𝑑 , (2.136)

with ®𝑑 = 𝑑𝑖𝒆 (𝒊) and ∀𝑖 ∈ {1, 2, 3}, 𝑑𝑖 = 𝑢𝑖/𝛽. Since 𝛽 = ‖ ®𝑢‖, ®𝑑 is the direction 3-vector of 𝐹2

relative to 𝐹1, and its components, 𝑑𝑖 , are the direction cosines of the line along which an observer
in 𝐹1 sees the fixed events in 𝐹2 moving. Similarly, we can write:

®̂𝑢 = 𝛽 ®̂𝑑 , (2.137)

with ®̂𝑑 = 𝑑𝑖𝒆 (𝒊) and ∀𝑖 ∈ {1, 2, 3}, 𝑑𝑖 = 𝑢̂𝑖/𝛽. The 𝑑𝑖’s are the direction cosines of the line along
which an observer in 𝐹2 sees the fixed events in 𝐹1 moving. Using all these relations, we find that:

∀𝑖 ∈ {1, 2, 3},


Λ𝑖0 = 𝛽√
1−𝛽2

𝑑𝑖 = 𝛽𝛾𝑑𝑖

Λ0
𝑖 = − 𝛽√

1−𝛽2
𝑑𝑖 = −𝛽𝛾𝑑𝑖 .

. (2.138)

We have fixed 7 components of the Lorentz transformation by using physically measurable quanti-
ties. This allows us to get some insight on the physics, already. Indeed, since for an event at rest
in 𝐹2, we have: 𝛿𝑥𝜇 = Λ𝜇0𝛿𝑥

0, we see that the time interval between the two events in 𝐹1, 𝛿𝑥0, is
given, in terms of the time interval in 𝐹2, 𝛿𝑥0, by:

𝛿𝑥0 =
1√

1 − 𝛽2
𝛿𝑥0 = 𝛾𝛿𝑥0 . (2.139)

Therefore, 𝛿𝑥0 > 𝛿𝑥0, because 1/
√

1 − 𝛽2 > 1, which means that, considered in 𝐹1, there is a time
dilation between the two events, as compared to the same events considered in 𝐹2: for an observer
in 𝐹2, the clocks in 𝐹1 are running slow. Please note that in the limit 𝛽 → 1, the effect becomes
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infinite: this is reminiscent of the fact that the speed of light (chosen equal to 1 in these lecture
notes) is an unattainable limit for massive particles (such as clocks) in the theory.
Now that we have seen what happens to two events at rest in 𝐹2, we can analyse the complementary
situation of two events that are simultaneous in 𝐹2, such that 𝛿𝑥0 = 0 and a priori, 𝛿𝑥𝑖 ≠ 0 for
𝑖 ∈ {1, 2, 3} (they are not at the same spatial location). Then:

𝛿𝑥0 = Λ0
𝑖𝛿𝑥

𝑖 = −𝛽𝛾
(
𝑑1𝛿𝑥1 + 𝑑2𝛿𝑥2 + 𝑑3𝛿𝑥3

)
. (2.140)

This means that, when the Lorentz transformation is not a rotation (𝛽 ≠ 0), the time difference be-
tween two events in 𝐹1 will not be zero in general: the two events will not be considered simultaneous
in 𝐹1. This illustrates the relativity of simultaneity. The two events will be seen as simultaneous iff:

𝑑1𝛿𝑥1 + 𝑑2𝛿𝑥2 + 𝑑3𝛿𝑥3 = 0 , (2.141)

which means iff the line joining the two events is perpendicular to the direction of relative motion
between 𝐹1 and 𝐹2. It is not hard to see that the previous equation characterises a plane in 𝐹2, known
as the plane of simultaneity of 𝑥.

We see that the Lorentz group is vast. In particular, because it contains all the spatial rotations,
the spatial axes

{
𝒆 (1) , 𝒆 (2) , 𝒆 (3)

}
and

{
𝒆 (1) , 𝒆 (2) , 𝒆 (3)

}
can have any relative position as long as the

orientation is preserved. This is reassuring because it is in line with the isotropy of space that we
would like for physics, but it cloaks a lot of simple relations that appear much clearer if we restrain
our study to a smaller subset of Lorentz transformations. Specifically, we will concentrate of bases
that are such that their spatial axes have a definite, simple relationship: for any 𝑖 ∈ {1, 2, 3}, we will
align 𝒆 (𝒊) and 𝒆 (𝒊) . This is what we called a translation in the Galilean context. To start this process,
let us first suppose that: 𝑑1 = 1 = −𝑑1 and 𝑑2 = 𝑑3 = 0 = 𝑑2 = 𝑑3. Then the direction vector is
®𝑑 = 𝒆 (1) = − ®̂𝑑. That means that 𝐹2 moves, relative to 𝐹1 along the axis 𝒆 (1) , with a velocity in the
direction of the positive values of 𝑥1. The form of the Lorentz transformation is then:

Λ =


𝛾 𝛽𝛾 0 0
𝛽𝛾 Λ1

1 Λ1
2 Λ1

3

0 Λ2
1 Λ2

2 Λ2
3

0 Λ3
1 Λ3

2 Λ3
3


. (2.142)
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Further, using the condition Eq. (2.97), we get:

Λ =


𝛾 𝛽𝛾 0 0
𝛽𝛾 𝛾 0 0
0 0 Λ2

2 Λ2
3

0 0 Λ3
2 Λ3

3


, (2.143)

and the matrix:

𝑂 =

[
Λ2

2 Λ2
3

Λ3
2 Λ3

3

]
. (2.144)

is an orthogonal transformation of R2 with determinant 1: it is a rotation of R2. Its effect is to rotate
the axes 𝒆 (2) and 𝒆 (3) , keeping 𝒆 (1) fixed. We will therefore define the standard configuration to be
the one in which 𝒆 (2) = 𝒆 (2) and 𝒆 (3) = 𝒆 (3) , i.e. with this rotation of R2 being simply the identity
map:

Λ =


𝛾 𝛽𝛾 0 0
𝛽𝛾 𝛾 0 0
0 0 1 0
0 0 0 1


. (2.145)

The transformation of coordinates of an event 𝒙 = 𝑥𝜇𝒆 (𝝁) = 𝑥𝜇𝒆 (𝝁) , with 𝑥𝜇 = Λ𝜇𝜈𝑥𝜈 is therefore
simply: 

𝑥0 =𝛾𝑥0 + 𝛽𝛾𝑥1

𝑥1 =𝛾𝑥1 + 𝛽𝛾𝑥0

𝑥2 =𝑥2

𝑥3 =𝑥3 .

(2.146)

(2.147)

(2.148)

(2.149)

The inverse transformation is then given by:

Λ−1 =


𝛾 −𝛽𝛾 0 0

−𝛽𝛾 𝛾 0 0
0 0 1 0
0 0 0 1


, (2.150)
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so that we have also: 

𝑥0 =𝛾𝑥0 − 𝛽𝛾𝑥1

𝑥1 =𝛾𝑥1 − 𝛽𝛾𝑥0

𝑥2 =𝑥2

𝑥3 =𝑥3 .

(2.151)

(2.152)

(2.153)

(2.154)

Such transformations are called special Lorentz transformations. Strictly speaking, the velocity 𝛽
is positive or zero, but because a special Lorentz transformation and its inverse only differ by a sign
in front of 𝛽, it is customary to allow 𝛽 ∈] − 1, 1[. Then, by choosing 𝛽 > 0 when the motion is
positive along the 𝒆 (1) axis and 𝛽 < 0 when it occurs in the negative direction, we can write any
special Lorentz transformation as:

∀𝛽 ∈] − 1, 1[, Λ (𝛽) =


𝛾 −𝛽𝛾 0 0

−𝛽𝛾 𝛾 0 0
0 0 1 0
0 0 0 1


, (2.155)

with 𝛾(𝛽) = 1/
√

1 − 𝛽2. Usually, such a matrix Λ(𝛽) is called a boost in the 𝒆 (1) -direction. Then
the set of special Lorentz transformations is a subgroup of L. The composition of two boosts in the
𝒆 (1) -direction, Λ (𝛽1) and Λ (𝛽2) is a boost Λ(𝛽), with:

𝛽 =
𝛽1 + 𝛽2

1 + 𝛽1𝛽2
. (2.156)

One should note that the composition of boosts along different directions is generally not a boost
in any specific direction. The composition of boosts has a simple physical interpretation. Consider
three frames, 𝐹1, 𝐹2 and 𝐹3 related by boosts along the 𝒆 (1) direction. If the speed of 𝐹2 relative to
𝐹1 is 𝛽1, and the speed of 𝐹3 relative to 𝐹2 is 𝛽2, then the speed of 𝐹3 relative to 𝐹1 is not 𝛽1 + 𝛽2,
as one would have expected from Galilean invariance, but:

𝛽 =
𝛽1 + 𝛽2

1 + 𝛽1𝛽2
. (2.157)

This law is the relativistic addition of velocities. It is actually a law of non-additivity of the
velocities. One can notice that if 𝛽1 and 𝛽2 have the same sign, i.e. if the motions of 𝐹2 relative to
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𝐹1 and 𝐹3 relative to 𝐹2 happens in the same direction, then 𝛽 is always smaller than 𝛽1 + 𝛽2. Also,
one sees that when 𝛽1 → 1 and 𝛽2 → 1, 𝛽 → 1: the speed of light indeed acts as a limit speed.
The non-additivity of velocities is quite an inconvenient fact. We would like to define a ’velocity
parameter’, 𝜃, that is additive when we compose special Lorentz transformations. Let us therefore
suppose that we have two special Lorentz transformations with speeds 𝛽1 and 𝛽2 along the 𝒆 (1) direc-
tion. We associate 𝜃1 and 𝜃2 respectively to each transformation, and we must have relations of the
form: 𝛽1 = 𝑓 (𝜃1), 𝛽2 = 𝑓 (𝜃2), where 𝑓 : R → R is a function. Now, 𝛽 = (𝛽1 + 𝛽2) /(1 + 𝛽1𝛽2),
and we must have an associated 𝜃 with 𝛽 = 𝑓 (𝜃) and 𝜃 = 𝜃1 + 𝜃2 (additivity). This means that the
function 𝑓 must verify:

𝑓 (𝜃1 + 𝜃2) =
𝑓 (𝜃1) + 𝑓 (𝜃2)

1 + 𝑓 (𝜃1) 𝑓 (𝜃2)
. (2.158)

This functional equation as at least one solution: 𝑓 = tanh. Therefore, we can choose our parameter
𝜃 to be: 𝜃 = atanh (𝛽). Because the function atanh is bijective from ] − 1, 1[ onto R, the speed of
light, 𝛽 = ±1 corresponds to 𝜃 = ±∞.

Using this velocity parameter, 𝜃, the hyperbolic form of a special Lorentz transformation is, for
any 𝜃 ∈ R:

Λ (𝜃) =


cosh(𝜃) − sinh(𝜃) 0 0
− sinh(𝜃) cosh(𝜃) 0 0

0 0 1 0
0 0 0 1


. (2.159)

Using this form of the special Lorentz transformations, we can get a very important result, namely
the fact that any proper, orthochronous Lorentz transformation can be written as the composition of
two rotations and a boost:

Decomposition of a Lorentz transformation

Let Λ ∈ L. Then, there exists a real number 𝜃 and two rotations 𝑅1 and 𝑅2 in R such that:

Λ = 𝑅1Λ(𝜃)𝑅2 . (2.160)

2.4.3 Spacetime diagrams

Thanks to the decomposition (2.160), we know that by applying the correct spatial rotations, we
can always bring a physical situation to its description in terms of boosts only; that means that the
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Figure 2.2: A spacetime diagram. The lightcone is represented by the two red lines, 𝑥0 = ±𝑥1.

physical content of special relativity is almost entirely contained in the properties of special Lorentz
transformations. This is very convenient, since when considering these transformations, two spatial
coordinates are left unchanged. Therefore, we can easily picture the effects of a boost on a piece of
paper by simply suppressing the two dimensions that are not affected by the boost. Then, we have
a 2-dimensional space spanned by

{
𝒆 (0) , 𝒆 (1)

}
that we can represent on paper. This leads to the

construction of spacetime diagrams; see Fig. 2.2. The procedure is as follow:

• We draw two perpendicular axes along two unit vectors 𝒆 (0) and 𝒆 (1) that we label 𝑥0 and 𝑥1.
Note that the perpendicularity is just convenient, it does not, in principle, correspond to the
orthogonality inM. The labels 𝑥0 and 𝑥1 are then the coordinates of the event 𝑥 in the frame{
𝒆 (0) , 𝒆 (1)

}
. The intersection of the two axes is the origin of the frame, 𝑂.

• When there is a boost with parameter 𝛽 (or equivalently, 𝜃 = atanh (𝛽)) relating
{
𝒆 (0) , 𝒆 (1)

}
to another orthonormal basis

{
𝒆 (0) , 𝒆 (1)

}
, in which an event 𝒙 = 𝑥𝜇𝒆 (𝝁) , the axis labelled

𝑥0 is to be understood as the set corresponding to events with 𝑥1 = 0, i.e., 𝑥1 = 𝛽𝑥0, with
𝛽 ∈] − 1, 1[; in other words, this is a line passing through 𝑂 with a slope 1/𝛽. Similarly, the
axis labelled 𝑥1 is taken to be at 𝑥0 = 0, and therefore, 𝑥0 = 𝛽𝑥1. This is therefore the line
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through 𝑂 with slope 𝛽. The lightcone corresponds to the two lines 𝑥0 = ±𝑥1.

The set of unit timelike (resp. spacelike) vectors corresponds then to the branches of hyperbolæ
−

(
𝑥0)1 +

(
𝑥1)2

= −1 (resp. −
(
𝑥0)1 +

(
𝑥1)2

= 1). Since a boost leave the quadratic form 𝒒 invariant,
these hyperbolæ also correspond to the ’hyperbolæ’ −

(
𝑥0)1 +

(
𝑥1)2

= −1 and −
(
𝑥0)1 +

(
𝑥1)2

= 1.
This shows that by plotting the axes 𝑥0 and 𝑥1 as lines, we have distorted figures in the

(
𝑥0, 𝑥1)

coordinate system. Indeed −
(
𝑥0)1 +

(
𝑥1)2

= ±1 should intersect the axes 𝑥0 and 𝑥1 at 𝑥1 = ±1 and
𝑥0 = ±1 respectively. But they don’t on the graph; rather, because we have:

𝑥0 = −𝛽𝛾𝑥1 + 𝛾𝑥0 (2.161)

𝑥1 = 𝛾𝑥1 − 𝛽𝛾𝑥0 , (2.162)

the points of intersection between the hyperbola −
(
𝑥0)1 +

(
𝑥1)2

= −1 and the axis 𝑥0, which should
be at 𝑥0 = ±1, are actually, in the un-hatted coordinate system, at: 𝑥0 = ±𝛾 and 𝑥1 = −(±)𝛽𝛾, i.e.,
at a distance from the origin 𝑂 given by: 𝛾

√
1 + 𝛽2. A similar factor applies on the other hyperbola.

That means that the ’true’ coordinates in the
(
𝑥0, 𝑥1) basis can be obtained by projecting parallely

along each axis and applying the scaling factor 𝛾
√

1 + 𝛽2.
The ’lines of simultaneity’ in 𝐹2 appear with a slope, parallel to the axis 𝑥1 on this graph. We see
immediately that they do not correspond to the line of simultaneity in 𝐹1, which are horizontal. That
illustrates clearly the relativity of simultaneity. Of course, since we have suppressed 2 dimensions
here, in fact these lines of simultaneity are 3-D spaces, and they intersect, not at a point, like on
the diagram, but on a plane: two observers in relative inertial motion agree on the simultaneity of
events in a single plane: we have proven that previously.
Finally, let us analyse a striking consequence of this relativity of simultaneity: the ’contraction of
length’. Consider two reference frames 𝐹1 and 𝐹2 with orthonormal bases

{
𝒆 (𝝁)

}
and

{
𝒆 (𝝁)

}
respec-

tively, in relative inertial motion and whose spatial axes are in standard configuration, so that the
Lorentz transformation between them is a boost of velocity 𝛽: ∀𝜇 ∈ {0, 1, 2, 3}, 𝒆 (𝝁) = Λ (𝛽)𝜈 𝜇𝒆 (𝝂) .
The situation is represented on a spacetime diagram on Fig. 2.3. Let us consider a rigid rod at rest
in 𝐹2, and put along the 𝑥1 axis, whose end points are located at 𝑥1 = 0 and 𝑥1 = 1. The length of
the rod has measured in 𝐹2 is therefore equal to 1. On the spacetime diagram, at any time 𝑥0 in 𝐹2,
it corresponds to the line segment [𝐴, 𝐵], parallel to the axis 𝑥1: the worldlines of each extremity of
the rod are the lines 𝑥1 = 0 and 𝑥1 = 1, respectively. On the other hand, in 𝐹1, the length of the rod
is the Euclidean length of the line segment joining these two worldlines at the same time coordinate
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Figure 2.3: A spacetime diagram for the contraction of length. See description in the text.

in 𝐹1, 𝑥0, which corresponds to an horizontal line segment like [𝐴′, 𝐵]: this is the value of the 𝑥1

coordinate of 𝑃 on the diagram. By construction, this is less than 1 and therefore, the rod appears
shorter in 𝐹1 than in 𝐹2. We can make that more precise via a calculation. Let us consider a rod
lying at rest along the 𝑥1-axis of 𝐹2 between 𝑥1

0 and 𝑥1
1, with 𝑥1

0 < 𝑥
1
1. The length of that rod in 𝐹2

is therefore Δ𝑥1 = 𝑥1
1 − 𝑥1

0. Consider first the left-hand end point of the rod. Its coordinates in 𝐹2

are
(
𝑥0, 𝑥1

0, 0, 0
)
with 𝑥0 ∈ R. Similarly, the right-hand end point has coordinates

(
𝑥0, 𝑥1

1, 0, 0
)
with

the same 𝑥0 ∈ R (simultaneity in 𝐹2).
In 𝐹1, the length of the rod will be determined by considering the position of its endpoints simul-
taneously, that is at the same value of 𝑥0 (and not 𝑥0, as in 𝐹2). But, for any fixed 𝑥0, the Lorentz
transformation reads: {

𝑥1
0 =𝛾𝑥1

0 − 𝛽𝛾𝑥0

𝑥1
1 =𝛾𝑥1

1 − 𝛽𝛾𝑥0 .

(2.163)

(2.164)

Hence, we see that the length of the rod in 𝐹1, Δ𝑥1 is linked to this length in 𝐹2 by: Δ𝑥1 = 𝛾Δ𝑥1.
Since 𝛾 > 1, that means that the length in 𝐹1 appears smaller than in 𝐹2: this is the relativistic
contraction of lengths. Note that all these relativistic effects, contraction of lengths, dilation of time
etc., are entirely symmetrical.
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2.5 Particles in Minkowski spacetime

2.5.1 Curves in spacetime

In this section, we are going to analyse the description of particles in Special Relativity. We will
start with photons and other massless particles and then turn to massive particles. First we need to
introduce the concept of parametrised curve:

Parametrised curve

A parametrised curve is a map 𝑐 : 𝐼 ⊆ R → M which to any value of a real parameter 𝜆 in
the interval 𝐼 associates an event 𝑐(𝜆) in M.
The image 𝑐(𝐼) = C is the (geometric) curve and does not depend on the specific parameter
𝜆 used to describe it.

Given a parametrised curve 𝑐(𝜆), we can define its tangent vector as follows:

𝑿(𝝀) = lim
𝛿𝜆→0

𝑐(𝜆 + 𝛿𝜆) − 𝑐(𝜆)
𝛿𝜆

, (2.165)

i.e. as the limit of the separation vector between events infinitely closed along the curve.
Let us consider a specific reference frame

{
𝒆 (𝝁)

}
. An event 𝑥(𝜆) along a curve C has compo-

nents (coordinates as a point) 𝑥𝜇 (𝜆) and another event 𝑥(𝜆 + 𝛿𝜆) has components (coordinates as a
point) 𝑥𝜇 (𝜆 + 𝛿𝜆) so that, at first order in 𝛿𝜆:

𝑥𝜇 (𝜆 + 𝛿𝜆) = 𝑥𝜆 + d𝑥𝜇

d𝜆
𝛿𝜆 . (2.166)

Therefore, at the limit, the tangent vector has components:

𝑋𝜇 (𝜆) = d𝑥𝜇

d𝜆
(𝜆) . (2.167)

Tangent vectors have a very useful interpretation in terms of directional derivatives along curves
that will be very useful in General Relativity. Let us consider a map 𝑓 : M → R; then, we get, at
first order in 𝛿𝜆:

𝑓 (𝑥𝜇 (𝜆 + 𝛿𝜆)) = 𝑓 (𝑥𝜇 (𝜆)) + d𝑥𝜈

d𝜆
𝜕 𝑓

𝜕𝑥𝜈
(𝜆)𝛿𝜆 . (2.168)
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Therefore, we see that we can write:

d 𝑓
d𝜆

(𝜆) = 𝑋𝜇 (𝜆) 𝜕 𝑓
𝜕𝑥𝜇

(𝜆) , (2.169)

Therefore, we can formally write:
d
d𝜆

= 𝑋𝜇
𝜕

𝜕𝑥𝜇
. (2.170)

This looks exactly like 𝑿 = 𝑋𝜇𝒆 (𝝁) provided we identify the basis vectors 𝒆 (𝝁) with the partial
derivative operators 𝜕

𝜕𝑥𝜇 . This leads us to:

Tangent vectors as derivative operators

The tangent vector to a curve parametrised by 𝜆 ∈ R is a differential operator acting on
functions 𝑓 : M → R as:

𝑋 ( 𝑓 ) = d 𝑓
d𝜆

. (2.171)

Given a frame {𝒆 (𝝁) } and the associated coordinates, 𝑥𝜇, we have:

𝒆 (𝝁) =
𝜕

𝜕𝑥𝜇
, (2.172)

and:
𝑿 = 𝑋𝜇

𝜕

𝜕𝑥𝜇
. (2.173)

We will say that a curve inM is timelike iff its tangent vector 𝒗 is timelike, 𝜼(𝒗, 𝒗) < 0, at every
event along the curve. Similarly, we will say that a curve in M is lightlike or null iff its tangent
vector 𝒌 is lightlike, 𝜼(𝒌, 𝒌) = 0, at every event along the curve. Timelike and lightlike curves are
often called worldlines of the associated particles travelling along them.

Non-coordinate bases

Aswe have seen in subsection 2.3.3, we can construct non-orthonormal coordinate bases such
as the one for spherical coordinates, {𝑥𝜇} = {𝑡, 𝑟, 𝜃, 𝜙} which we now know that we can write:

𝒆 (0) =
𝜕

𝜕𝑡
, 𝒆 (1) =

𝜕

𝜕𝑟

𝒆 (2) =
𝜕

𝜕𝜃
, 𝒆 (3) =

𝜕

𝜕𝜙
.

(2.174)

(2.175)
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Clearly, since, for any function 𝑓 , we have:

𝜕 𝑓

𝜕𝑥𝑖
=
𝜕𝑥 𝑗

𝜕𝑥𝑖
𝜕 𝑓

𝜕𝑥 𝑗
, (2.176)

we can express the new basis in terms of the old one:

𝒆 (1) =
𝜕

𝜕𝑟
= sin 𝜃 cos 𝜙

𝜕

𝜕𝑥
+ sin 𝜃 sin 𝜙

𝜕

𝜕𝑦
+ cos 𝜃

𝜕

𝜕𝑧

𝒆 (2) =
𝜕

𝜕𝜃
= 𝑟 cos 𝜃 cos 𝜙

𝜕

𝜕𝑥
+ 𝑟 cos 𝜃 sin 𝜙

𝜕

𝜕𝑦
− 𝑟 sin 𝜃

𝜕

𝜕𝑧

𝒆 (3) =
𝜕

𝜕𝜙
= −𝑟 sin 𝜃 sin 𝜙

𝜕

𝜕𝑥
+ 𝑟 sin 𝜃 cos 𝜙

𝜕

𝜕𝑦
.

(2.177)

(2.178)

(2.179)

Again we see immediately that the vectors are not unit vectors. We can of course define an
orthonormal basis: 

𝒆 (1) =𝒆 (1)

𝒆 (2) =
1
𝑟
𝒆 (2)

𝒆 (3) =
1

𝑟 sin 𝜃
𝒆 (3) ,

(2.180)

(2.181)

(2.182)

but there is no coordinate system
{
𝑥𝑖

}
such that 𝒆 (𝒊) = 𝜕

𝜕𝑥̂𝑖
. Therefore, this orthonormal basis

(the usual moving basis of spherical coordinates) is not a coordinate basis. An easy way to
see that is to realise that partial derivatives ought to commute on smooth functions. Clearly,
these 𝒆 (𝒊) do not commute.

2.5.2 Massless particles

Massless particles such as photons move along lightlike curves. Let us pick up such a curve with
parameter 𝜆 and the associated tangent vector 𝒌 such that, in a frame

{
𝒆 (𝝁)

}
, with 𝒌 = 𝑘𝜇𝒆 (𝝁) :

𝜼 (𝒌, 𝒌) = 0 ⇒ 𝑘0 = ±‖®𝑘 ‖ , (2.183)

where we defined ®𝑘 = 𝑘1𝒆 (1) + 𝑘2𝒆 (2) + 𝑘3𝒆 (3) the 3-vector corresponding to the direction of
propagation of the photon at 𝜆. 𝒌 is called the 4-momentum of the photon.
In classical field theory, the propagation of light is actually described by electromagnetism, which is
a theory of waves. However, we are interested in the geometric optics limit of this theory, for which
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the wavelengths of the waves are much smaller than other typical scales involved in the problems
and for which it can be shown that the vector 𝒌 is actually the wavevector, so that 𝑘𝜇 = 𝜕Φ

𝜕𝑥𝜇 is the
variation of the wave’s phase. In that case, if we choose 𝒌, it can be shown that (see [6] for details):

𝑘0 = ±~𝜔 = ±𝐸 , (2.184)

where 𝐸 (𝜆) is the energy of the photon measured by the observer attached to the frame
{
𝒆 (𝜇)

}
and

± stands for future and past directed vectors respectively. Thus, we see that: ‖ ®𝑘 ‖ = 𝐸 , so we can
write:

𝒌 = 𝐸
[
±𝒆 (0) + ®̂𝑘

]
, (2.185)

where ®̂𝑘 is the instantaneous direction of propagation of the photon and is orthogonal to 𝒆 (0) . It is
thus a unit spacelike vector. ®𝑘 = 𝐸 ®̂𝑘 is the 3-momentum of the photon. If the photons propagate
freely (which in the geometric optics limit means that they do not encounter mirrors or a dioptre),
according to the principle of inertia, they propagate in straight lines, i.e. that ®̂𝑘 (𝜆) is a constant and,
then 𝐸 is also a constant.
To illustrate how Lorentz boosts act on photons consider a source 𝑆 emitting photons of energy 𝐸
isotropically in all directions in its rest frame (reference frame inwhich it is at rest)

{
𝒆 (𝝁)

}
associated

with coordinates 𝑥𝜇. The photons have 4-momentum 𝒌 = 𝐸
[
±𝒆 (0) + ®̂𝑘

]
. An observer 𝑂 moves at

constant speed 𝛽 along the 𝑥1-axis and carries its own rest frame
{
𝒆 (𝝁)

}
. The components of the

4-momentum of the photons transform under a Lorentz boost as⁴:

𝑘𝜇 = Λ𝜇𝜈 𝑘̃
𝜈 , (2.186)

so that we get: 

𝐸 = 𝑘0 =𝛾
[
𝑘̃0 − 𝛽𝑘̃1] = 𝛾𝐸̃ [1 − 𝛽 cos 𝛼̃]

𝐸 cos𝛼 = 𝑘1 =𝛾
[
𝑘̃1 − 𝛽𝑘̃0] = 𝛾𝐸̃ [cos 𝛼̃ − 𝛽]

𝑘2 =𝑘̃2

𝑘3 =𝑘̃3 ,

(2.187)

(2.188)

(2.189)

(2.190)

where we have introduced the angle 𝛼 between the direction of propagation of the photons and the
𝑥1 axis in the frame of the source, the energy of the photons measured by 𝑂 in its rest frame, 𝐸̃ and

⁴Remember that components of vectors change with the inverse matrix, compared to the basis vectors.
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the angle 𝛼̃ between the direction of propagation of the photons and the 𝑥1-axis as measured by 𝑂.
Using the pulsation 𝜔 = 𝐸/~ instead of the energy, we get immediately:

𝜔̃ =
𝜔
√

1 − 𝛽2

1 − 𝛽 cos 𝛼̃

cos 𝛼̃ =
cos𝛼 + 𝛽

1 + 𝛽 cos𝛼
.

(2.191)

(2.192)

Eq. (2.191) shows that the frequency of photons observed by 𝑂 is shifted with respect to its value
in the source frame. This is the relativistic Doppler shift. For small velocities, 𝛽 � 1, we have:

𝜔̃ ' 𝜔 (1 + 𝛽 cos 𝛼̃) . (2.193)

Photons emitted in the same direction that the source is moving (𝛼̃ = 0) are blueshifted by an amount
Δ𝜔̃ = 𝛽𝜔, while those emitted in the opposite direction (𝛼̃ = 𝜋) are redshifted by Δ𝜔̃ = −𝛽𝜔. Note
that, contrary to the usual Doppler effect, photons emitted in the direction transverse to the motion
of the source (𝛼̃ = 𝜋/2) are redshifted; for small velocities, this transverse shift is of higher order
though as it is given by:

Δ𝜔̃⊥ ' −1
2
𝛽2𝜔 . (2.194)

Eq. (2.192) describes the aberration effect: photons emitted in the source rest frame within a cone
of opening angle 𝛼 < 𝜋/2 are seen by the observer to form a cone with opening angle 𝛼′ < 𝛼: the
beam is collimated in the direction of motion of the source relative to the observer. The effect is
plotted on Fig. 2.4 for a few values of the velocity 𝛽. We see that, at the limit of ultrarelativistic
motion, 𝛽 → 1, the beam is completely closed.

2.5.3 Massive particles

Massive particles move along timelike worldlines, i.e. curves in spacetime that are everywhere
timelike. Let us consider such a particle of mass 𝑚 and whose worldline, parametrised by a pa-
rameter 𝜆, has a tangent vector 𝑼, with 𝜂 (𝑼,𝑼) < 0. In a given frame

{
𝒆 (𝝁)

}
with coordinates

{𝑥𝜇} =
{
𝑡, 𝑥1, 𝑥2, 𝑥3} where we used 𝑡 = 𝑥0, the curve is given parametrically by 𝑥𝜇 (𝜆) and we

have 𝑈𝜇 = d𝑥𝜇
d𝜆 . At each event 𝑥 ∈ M along the curve, the tangent vector 𝑼 points inside the local

lightcone. For timelike curves, there is a favoured choice of parameter, namely, the proper time 𝜏
measured by the observer attached to the massive particle, and given by:

d𝜏2 = −d𝑠2 = d𝑡2 − 𝛿𝑖 𝑗d𝑥𝑖d𝑥 𝑗 . (2.195)
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Figure 2.4: The relativistic aberration effect changes the observed emission angle 𝛼′ with respect
to the one in the source frame.

One can check straightforwardly that it is invariant by a change of inertial frames: it is a true scalar
and only depends on the particle’s motion, not on the frame in which it is evaluated. It is related to
the time coordinate by:

d𝜏 = d𝑡
√

1 − ‖®𝑣‖2 = 𝛾−1d𝑡 , (2.196)

where we introduced the 3-velocity of the particle in the coordinate frame:

®𝑣 = d𝑥𝑖

d𝑡
𝒆 (𝒊) , (2.197)

and the (time dependent) Lorentz factor of the particle with respect to the frame:

𝛾 =
1√

1 − ‖®𝑣‖2
. (2.198)
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The 4-velocity the particle is then defined as:

𝒖 =
d𝑥𝜇

d𝜏
𝒆 (𝝁) (2.199)

=𝛾
d𝑥𝜇

d𝑡
𝒆 (𝝁) (2.200)

=𝛾
[
𝒆 (0) + ®𝑣

]
. (2.201)

One sees immediately that:

𝜼 (𝒖, 𝒖) = 𝜂𝜇𝜈𝑢𝜇𝑢𝜈 = 𝑢𝜇𝑢𝜇 = −1 . (2.202)

Note that, according to our previous discussion, for any function 𝑓 , we can always write:

d 𝑓
d𝜏

= 𝒖( 𝑓 ) = 𝑢𝜇 𝜕 𝑓
𝜕𝑥𝜇

. (2.203)

Fig. 2.5 shows a typical timelike worldline with a spacelike dimension suppressed.
We can also define the particle’s 4-momentum:

𝒑 =𝑚𝒖 (2.204)

=𝑚𝛾𝒆 (0) + ®𝑝 (2.205)

=𝐸𝒆 (0) + ®𝑝 , (2.206)

with 𝐸 the energy of the particle in the given frame, and ®𝑝 = 𝑚𝛾®𝑣 the 3-momentum in the same
frame. Note that:

𝜼 ( 𝒑, 𝒑) = −𝑚2 , (2.207)

so that we get:
𝐸 =

√
𝑚2 + ‖ ®𝑝‖2 . (2.208)

If the particle is not submitted to a net force, according to the principle of relativity, it should move
along a straight line:

d®𝑣
d𝑡

= ®0 . (2.209)

Clearly, this is satisfied if:
d𝒖
d𝜏

= 0 , (2.210)

or equivalently:
d 𝒑

d𝜏
= 0 . (2.211)
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Figure 2.5: A timelike worldline (red) with 4-velocity 𝒖. Some local lightcones along the worldline
are represented in green.

Finally, we can define the 4-acceleration:

𝑨 =
d𝒖
d𝜏

, (2.212)

which, in components, becomes:

𝑨 =𝛾
d𝛾
d𝑡

(
𝒆 (0) + ®𝑣

)
+ 𝛾2®𝔞 (2.213)

=
d𝛾
d𝑡

𝒖 + 𝛾2®𝔞 , (2.214)

where we have defined the 3-acceleration:

®𝔞 =
d𝑣𝑖

d𝑡
𝒆 (𝒊) =

d2𝑥𝑖

d𝑡2
𝒆 (𝒊) . (2.215)

Let us note that Eq. (2.202) implies that:

𝜼 (𝑨, 𝒖) = 0 , (2.216)
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which is equivalent to:
d𝛾
d𝑡

= 𝛾3®𝔞 · ®𝑣 , (2.217)

and implies that the 4-acceleration is always a spacelike vector.
What would be the equivalent to Newton’s second law? We need a law that transforms correctly
when going from one inertial frame to another, which means that it must only involve 4-vectors and
proper scalars (invariant under a change of of inertial frame). We can write:

d 𝒑

d𝜏
= 𝒇 , (2.218)

where 𝒇 is the 4-force. Note that Eq. (2.218) sums up 4 scalar equations, but they are not all
independent because of Eq.(2.216) which adds a scalar constraint on the components of the 4-force:

𝜼 ( 𝒇 , 𝒖) = 0 . (2.219)

In order to get Newton’s law:
d ®𝑝
d𝑡

= ®𝐹 , (2.220)

where ®𝐹 = 𝐹𝑖𝒆 (𝒊) is the usual force, we need:

𝒇 = 𝑓 0𝒆 (0) + 𝛾 ®𝐹 . (2.221)

Then, using Eq. (2.219), we get:
𝑓 0 = 𝛾 ®𝐹 · ®𝑣 . (2.222)

Thus:
𝒇 = 𝛾

(
®𝐹 · ®𝑣

)
+ 𝛾 ®𝐹 , (2.223)

and Eq. (2.218) is equivalent to: 
d𝐸
d𝑡

= ®𝐹 · ®𝑣

d ®𝑝
d𝑡

= ®𝐹 .

(2.224)

(2.225)

The first equation is simply the equation giving the rate of variation of energy in terms of the power
of the force and the second equation is Newton’s law (be careful that ®𝑝 contains a Lorentz factor⁵).

⁵Since ®𝑝 = 𝑚𝛾®𝑣, one finds in many old textbooks (and a few modern ones too, unfortunately), a notion of relativistic
varying mass 𝑚𝛾. This is misguided. The mass of a particle is a scalar invariant. Technically, together with the spin,
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A variational principle for the free motion of particles

We can obtain the free motion of a massive particle from a variational principle by imposing
that the worldline of a free particle travelling between two events separated by a timelike
interval extremises the proper time taken by the particle to connect them.
Indeed, let us work in a given inertial frame and consider two events 𝐴 and 𝐵 and all possible
timelike worldlines connecting them. Along each curve, we will have a proper time elapsed:

𝜏𝐴𝐵 =
ˆ 𝐵

𝐴
d𝜏 =

ˆ 𝐵

𝐴

[
d𝑡2 − 𝛿𝑖 𝑗d𝑥𝑖d𝑥 𝑗

]1/2
. (2.226)

We cannot use 𝜏 as a parameter along the curves since this is the parameter we want to extrem-
ise on. Let us therefore introduce another parameter 𝜎 with 𝑥𝜇 (𝜎) the parametric equation
of the worldline and such that 𝜎 = 0 corresponds to 𝐴 and 𝜎 = 1 for 𝐵. Then:

𝜏𝐴𝐵 =
ˆ 1

0
d𝜎

[(
d𝑡
d𝜎

)2
− 𝛿𝑖 𝑗

d𝑥𝑖

d𝜎
d𝑥 𝑗

d𝜎

]1/2

. (2.227)

Along a path with 𝑡 + 𝛿𝑡 and 𝑥𝑖 + 𝛿𝑥𝑖 , we get:

𝜏𝐴𝐵 + 𝛿𝜏 =
ˆ 1

0
d𝜎

[(
d𝑡 + 𝛿𝑡

d𝜎

)2
− 𝛿𝑖 𝑗

d
(
𝑥𝑖 + 𝛿𝑥𝑖

)
d𝜎

d
(
𝑥 𝑗 + 𝛿𝑥 𝑗

)
d𝜎

]1/2

. (2.228)

Expanding at first order, integrating by parts and setting 𝛿𝜏 = 0 for every possible variation,
we get, after a bit of work, that:

d2𝑥𝛼

d𝜏2 = 0 , (2.229)

which is exactly Eq. (2.210), as claimed.
This variational principle to determine the equations of force-free motion will be very impor-
tant in General Relativity.

it labels irreducible representations of the Poincaré group. It has absolutely no reason to depend on the instantaneous
velocity of the particle in a frame. In this course, the mass is 𝑚, period. the Lorentz factor enters the definition of the
relativistic momentum when expressed in terms of the coordinate velocity ®𝑣, in the same way it enters the relativistic
velocity, because we use 𝑡 as a parameter along worldlines instead of 𝜏.
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2.6 Electrodynamics: classical field theory

As mentioned in Section 2.2, special relativity was built to try and reconcile Maxwell’s formulation
of electrodynamics with mechanics, in other words, the description of electromagnetic fields and in-
teractions with the framework of Newtonian mechanics. How does electrodynamics look like in the
framework of special relativity? This section will be a good preparation to the relativistic treatment
of gravitation that will be the main focus of these notes. Indeed, as a classical relativistic, linear
theory of a vector field, it is the simpler prototype of the classical, relativistic, non-linear theory of
a tensor field that is general relativity.

2.6.1 Maxwell’s equations

Let us start with Maxwell’s equations written in some coordinate system {𝑥𝜇} associated to an
admissible observer, in presence of some charge density 𝜌 (𝑥𝜇) and some charge current ®𝑗 (𝑥𝜇) =
𝑗 𝑘𝒆 (𝒌 ) . The electric field ®𝐸 = 𝐸 𝑖𝒆 (𝒊) and the magnetic field ®𝐵 = 𝐵𝑖𝒆 (𝒊) obey two sets of equations,
the source-less constraints: { ®curl ®𝐸 + 𝜕𝑡 ®𝐵 = ®0 ⇔ 𝜖 𝑖 𝑗𝑘𝜕 𝑗𝐸𝑘 + 𝜕𝑡𝐵𝑖 = 0

div ®𝐵 = 0 ⇔ 𝜕𝑖𝐵
𝑖 = 0 ,

(2.230)

(2.231)

and the sourced equations:


div ®𝐸 = 𝜖−1

0 𝜌 ⇔ 𝜕𝑖𝐸
𝑖 = 𝜖1

0 𝜌

®curl ®𝐵 − 𝜇0𝜖0𝜕𝑡 ®𝐸 = 𝜇0 ®𝑗 ⇔ 𝜖 𝑖 𝑗𝑘𝜕 𝑗𝐵𝑘 − 𝜇0𝜖0𝜕𝑡𝐸
𝑖 = 𝜇0 𝑗

𝑖 .

(2.232)

(2.233)

The constants 𝜖0 and 𝜇0 are called the vacuumpermittivity and the vacuumpermeability respectively.
They quantify how electric and magnetic fields react to the presence of charges and currents. We
used the convenient notation: 𝜕𝜇 = 𝜕

𝜕𝑥𝜇 , and we introduced the totally antisymmetric tensor 𝜖𝑖 𝑗𝑘 ,
which changes sign under the permutation of any two indices, with 𝜖123 = 1. A simple calculation
shows that: 

𝜇0𝜖0𝜕
2
𝑡
®𝐸 − Δ ®𝐸 = −𝜖−1

0
®∇𝜌 − 𝜇0𝜕𝑡 ®𝑗

𝜇0𝜖0𝜕
2
𝑡
®𝐵 − Δ ®𝐵 = 𝜇0 ®curl ®𝑗 .

(2.234)

(2.235)
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Thus ®𝐸 and ®𝐵 follow wave equations with a speed (𝜇0𝜖0)−2, and we can conclude that:

𝜇0𝜖0 = 𝑐−2 . (2.236)

From Eq. (2.231), we can directly see that the field ®𝐵 is divergence-less and is thus a pure curl; there
exists a vector potential ®𝐴 such that:

®𝐵 = ®curl ®𝐴 ⇔ 𝐵𝑖 = 𝜖 𝑖 𝑗𝑘𝜕 𝑗𝐴𝑘 . (2.237)

Hence, we can rewrite Eq. (2.230):

𝜖 𝑖 𝑗𝑘𝜕 𝑗 [𝐸𝑘 + 𝜕𝑡𝐴𝑘] = 0 , (2.238)

so that the field ®𝐸 + 𝜕𝑡 ®𝐴 is curl-free and is thus a pure gradient. There exists a scalar potential 𝜙
such that:

®𝐸 + 𝜕𝑡 ®𝐴 = −®∇𝜙 ⇔ 𝐸𝑘 = −𝜕𝑘𝜙 − 𝜕𝑡𝐴𝑘 . (2.239)

2.6.2 Covariant formulation of Maxwell’s equations

Let us now try and make this theory manifestly compatible with special relativity? In this section,
we keep 𝑐 ≠ 1 and, in order to retain all the formalism developed so far, this amounts to writing
𝑥0 = 𝑐𝑡.
First, let us introduce the 4-potential 𝑨 = 𝐴𝜇𝒆 (𝝁) , also called the electromagnetic field:

𝐴𝜇 =
𝜙

𝑐
𝛿𝜇0 + 𝐴𝑘𝛿𝜇𝑘 , (2.240)

as well as the Maxwell tensor 𝑭 = 𝐹𝜇𝜈𝝎(𝝁) ⊗ 𝝎(𝝂) , with:

𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 = 2𝜕[𝜇𝐴𝜈 ] . (2.241)

Clearly, 𝑭 is antisymmetric and is introduced because Eqs. (2.237)-(2.239) imply that:
𝐹0𝑖 = − 𝐸𝑖

𝑐

𝐹12 =𝐵3 , 𝐹13 = −𝐵2

𝐹23 =𝐵1 .

(2.242)

(2.243)

(2.244)
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Equivalently, for 𝐹𝜇𝜈 = 𝜂𝜇𝜌𝜂𝜈𝜎𝐹𝜌𝜎 , the components of the tensor 𝑭∗ = 𝐹𝜇𝜈𝒆(𝝁) ⊗ 𝒆 (𝝂) dual to
Maxwell’s tensor 𝑭, we get: 

𝐹0𝑖 =𝜂00𝜂𝑖 𝑗𝐹0 𝑗 =
𝐸𝑖
𝑐

𝐹12 =𝐵3 , 𝐹
13 = −𝐵2

𝐹23 =𝐵1 .

(2.245)

(2.246)

(2.247)

If we introduce the charge 4-current, 𝒋 = 𝑗 𝜇𝒆 (𝝁) :

𝑗 𝜇 = −𝑐𝜌𝛿𝜇0 + 𝑗 𝑖𝛿𝑖 𝜇 , (2.248)

then Maxwell’s equations can be unified into two simple 4-dimensional equations:{
𝜕𝜇𝐹𝜈𝜌 + 𝜕𝜌𝐹𝜇𝜈 + 𝜕𝜈𝐹𝜌𝜇 =0

𝜕𝜇𝐹
𝜇𝜈 = − 𝜇0 𝑗

𝜇 .

(2.249)

(2.250)

Note that, by antisymmetry of 𝑭: 𝜕𝜇𝜕𝜈𝐹𝜇𝜈 = 0, so that Eq. (2.250) implies conservation of the
charge 4-current:

𝜕𝜇 𝑗
𝜇 = 0 . (2.251)

This form of Maxwell’s equations is called covariant because it is invariant under Lorentz trans-
formations: all admissible observers will write these equations in the same way in their respective
reference frame. In that sense, we recover that Maxwell’s electrodynamics is invariant under the
symmetries of special relativity. Indeed, let us consider a Lorentz transformation connecting the
coordinates 𝑥𝜇 used above to another set of admissible coordinates 𝑥𝜇:

𝑥𝜇 = Λ𝜈
𝜇𝑥𝜈 . (2.252)

Since 𝜕𝜇 = 𝒆 (𝜇) = Λ𝜈𝜇𝒆 (𝝂) = Λ𝜈𝜇𝜕𝜈 (with a slightly ridiculous but clear notation), we get for the
dual basis:

𝝎(𝝂) = Λ𝜇
𝜈𝝎̃𝝁 . (2.253)

Hence, some short calculations lead to the components on Maxwell’s tensor in the new coordinate
system:

𝐹̃𝜇𝜈 = Λ𝜇
𝜌Λ𝜈

𝜎𝐹𝜌𝜎 . (2.254)

Similarly, for the dual tensor 𝑭∗:
𝐹̃𝜇𝜈 = Λ𝜇𝜌Λ

𝜈
𝜎𝐹

𝜌𝜎 . (2.255)
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Plugging these into Eqs (2.249)-(2.250) and remembering that Lorentz transformations are invert-
ible with constant matrix elements, we get, in the new coordinate system:{

𝜕𝜇 𝐹̃𝜈𝜌 + 𝜕𝜌𝐹̃𝜇𝜈 + 𝜕𝜈 𝐹̃𝜌𝜇 =0

𝜕𝜇 𝐹̃
𝜇𝜈 = − 𝜇0 𝑗

𝜇 ,

(2.256)

(2.257)

confirming their invariance under Lorentz transformations.

Note that in terms of the vector potential, Eq. (2.249) is trivially satisfied, while Eq. (2.250)
gives the wave equation:

2𝐴𝜈 − 𝜂𝜈𝜌𝜕𝜌 (
𝜕𝜇𝐴

𝜇 ) = −𝜇0 𝑗
𝜈 . (2.258)

As is well known, this theory of the electromagnetic field is actually redundant as it presents
some gauge freedom. Indeed, given a vector 4-potential 𝐴𝜇, any other 4-vector 𝐴̃𝜇 related to it via:

𝐴̂𝜇 = 𝐴𝜇 + 𝜂𝜇𝜈𝜕𝜈𝜓 , (2.259)

for an arbitrary function 𝜓 : M → R, is itself a 4-potential satisfying Maxwell’s equations, since:

𝐹̂𝜇𝜈 = 𝜕𝜇 𝐴̂𝜈 − 𝜕𝜈 𝐴̂𝜇 = 𝐹𝜇𝜈 . (2.260)

This gauge invariance means that we have some freedom in choosing the vector 4-potential. Since it
can always be changed by a scalar function, we can impose any scalar constraint on it. For example,
we could choose the Lorenz gauge:

𝜕𝜇𝐴
𝜇 = 0 , (2.261)

for which the wave equation (2.258) is standard:

2𝐴𝜈 = −𝜇0 𝑗
𝜈 . (2.262)

Finally, let us emphasize the importance of using the 4-potential as the fundamental relativistic ob-
ject to describe the electromagnetic field. Since it is a true 4-vector, under a Lorentz transformation
𝒆 (𝝁) = Λ𝜈𝜇𝒆 (𝝂) , its components become:

𝐴̃𝜇 = Λ𝜇𝜈𝐴
𝜈 , (2.263)

so that, if an admissible observer measures 𝑨 = 0, so will any other. One the other hand, if any
one of them measures a non-zero 4-potential, others may measure different components but they
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will all agree that it is non-zero (because Lorentz transformations are invertible). As is well known,
this is not the case for the electric and magnetic field. Indeed, Maxwell’s dual tensor components
transform as in Eq. (2.255), so that the electric field measured in the 𝑥𝜇 coordinate system will be
given by:

𝐸̃𝑖 = 𝑐𝐹̃
0𝑖 = 𝑐Λ0

𝜌Λ
𝑖
𝜎𝐹

𝜌𝜎 , (2.264)

and thus for a boost, given by Eq. (2.145):


𝐸̃1 =𝐸1

𝐸̃2 =𝛾 (𝐸2 − 𝛽𝑐𝐵3)

𝐸̃3 =𝛾 (𝐸3 + 𝛽𝑐𝐵2) .

(2.265)

(2.266)

(2.267)

Similarly, the magnetic field measured in the 𝑥𝜇 coordinate system is obtained from the 𝐹̃𝑖 𝑗 compo-
nents: 

𝐵̃1 =𝐵1

𝐵̃2 =𝛾

(
𝐵2 + 𝛽𝛾

𝐸3

𝑐

)
𝐵̃3 =𝛾

(
𝐵3 − 𝛽𝛾

𝐸2

𝑐

)
.

(2.268)

(2.269)

(2.270)

Therefore, if the first observer sees no magnetic field, the second one generally will: magnetic and
electric fields are not covariant objects. This is best seen if we consider the case of a point charge 𝑞.
An observer at rest with respect to this charge will measure a spherically symmetric, static electric
field centred on the charge, and no magnetic field. Another observer, moving with respect to the
charge at constant velocity ®𝑣 will however measure both an electric and a magnetic field.
As for the point particle, it is possible to arrive at an action principle for the electromagnetic field.
Since the field equations are linear in 𝐹𝜇 𝑛𝑢, the action ought to be quadratic in this tensor. It must
also contain a term that is linear in the charge current. The only possibility is thus:

𝑆 = −1
4

ˆ
d4𝑥𝐹𝜇𝜈𝐹𝜇𝜈 +

ˆ
𝐴𝜇 𝑗

𝜇𝑑4𝑥 . (2.271)

Varying this action with respect to 𝐴𝜇 and integrating by part, one recovers Eq. (2.250).
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2.7 Accelerated frames

2.7.1 Local rest frame

So far, we have used inertial frames to study the motion of particles. However, as we have seen,
massive particles subjected to external forces will not generally remain at constant speed in a given
inertial frame:

𝑨 =
d𝒖
d𝜏

≠ 0 . (2.272)

An observer O attached to such a worldline will not be inertial, but we might still be interested in
knowing how she sees the world, i.e. how she makes measurements. This means that we would
like to know how to construct its orthonormal rest frame

{
𝒆 (0) , 𝒆 (1) , 𝒆 (2) , 𝒆 (3)

}
. For the timelike

direction, we must use its 4-velocity:
𝒆 (0) = 𝒖 . (2.273)

This ensures that the time coordinate in this frame is the proper time 𝜏 as measured by the observer
O along her worldline, i.e. that the observer is indeed at rest in this frame. For the spacelike part of
the frame, the observer can pick any 3 orthonormal spacelike vectors 𝒆 (𝒊) , as long as they satisfy:

∀𝑖 ∈ {1, 2, 3}, 𝜼
(
𝒖, 𝒆 (𝒊)

)
= 0 , (2.274)

so they remain orthogonal to the timelike direction at every point along the observer’s worldline.
Clearly,

{
𝒆 (0) , 𝒆 (1) , 𝒆 (2) , 𝒆 (3)

}
is not an inertial frame so it is not related to

{
𝒆 (0) , 𝒆 (1) , 𝒆 (2) , 𝒆 (3)

}
via a Lorentz transformation. Generically however, at fixed 𝜏, we can write that the original inertial
frame is given in terms of the non-inertial one at 𝑥𝜇 (𝜏) via:

𝒆 (𝝁) = Λ𝜈𝜇 (𝜏)𝒆 (𝝂) , (2.275)

where Λ𝜈𝜇 (𝜏) are the components of the map between frames at the specific point 𝑥𝜇 (𝜏) along the
accelerated observer’s worldline. It is a Lorentz transformation at fixed 𝜏 but varies from point to
point. Imposing that 𝒆 (0) = 𝒖 implies:

Λ𝜇0(𝜏) = 𝑢𝜇 (𝜏) = 𝛾(𝜏)
[
𝛿𝜇0 + 𝑣 𝑗𝛿𝜇𝑗

]
, (2.276)

where 𝛾(𝜏) = d𝑡/d𝜏 is the instantaneaous Lorentz factor of O with respect to the inertial frame.
The other components of the transformation are fixed by determining how the spacelike vectors
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change from one event to another along the worldline of the observer. Since the frames at 𝜏 and
𝜏 + d𝜏 are both locally inertial, they must be related by a Lorentz transformation that maps 𝒆 (0) (𝜏)
into 𝒆 (0) (𝜏 + 𝛿𝜏). Such an infinitesimal Lorentz transformation is fully charaterised by a matrix
Λ̂𝜈𝜇 (𝜏) such that:

Λ̂𝜌𝜇Λ̂
𝜎
𝜈𝜂𝜌𝜎 = 𝜂𝜇𝜈 . (2.277)

By developing at first order in d𝜏:

Λ̂𝜈𝜇 (𝜏) = 𝛿𝜈𝜇 + Ω̂𝜈𝜇d𝜏 , (2.278)

we find that:

Ω̂𝜈𝜇 = −Ω̂𝜇𝜈 . (2.279)

Thus, the infinitesimal Lorentz transformation is fully characterised by an antisymmetric rank two
tensor:

𝛀 = Ω̂𝜇𝜈𝒆 (𝝁) ⊗ 𝒆 (𝝂) . (2.280)

This tensor is arbitrary since it is a prescription the observer gives herself to transport her coordinate
system along her trajectory in spacetime. If we demand that spatial vectors of the frames do not
rotate (mix with each other), so that the transformation only affects the plane spanned by 𝒖 and 𝑨:

d𝒆 (0)
d𝜏

=𝑨

d𝒆 (𝒊)
d𝜏

=𝛼𝑖𝒖 ,

(2.281)

(2.282)

for some constant 𝛼𝑖 , we see that the only possibility for Ω̂𝜇𝜈 is:{
Ω̂0𝑖 = − Ω̂𝑖0 = 𝛼𝑖 = 𝐴̂

𝑖

Ω̂00 =Ω̂𝑖 𝑗 = 0 .

(2.283)

(2.284)

In an arbitrary coordinate system, this gives:

Ω𝜇𝜈 = 𝑢𝜇𝐴𝜈 − 𝐴𝜇𝑢𝜈 , (2.285)

i.e.:

𝛀 = 𝒖 ⊗ 𝑨 − 𝑨 ⊗ 𝒖 . (2.286)
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The basis
{
𝒆 (𝝁)

}
thus defined is called a Fermi-Walker transported basis. The associated coordi-

nates, {𝑥𝜇} are called Fermi coordinates. Physically, it amounts to fixing spatial directions using
gyroscopes so as to cancel the Coriolis forces in the local frame while keeping the other non-inertial
forces: the spatial frames are in relative translation but not in relative rotation.
Let us now consider a particle P, of mass 𝑚 and proper time 𝑇 , in motion under the influence of
some forces. Let us call its trajectory 𝑋𝜇 (𝑇) in the inertial frame In the inertial frame. Then, its
4-velocity has components𝑈𝜇 = d𝑋𝜇

d𝑇 in that frame and since Newton’s law apply, we get:

𝑚
d𝑈𝜇

d𝑇
= 𝑓 𝜇 , (2.287)

where 𝒇 = 𝑓 𝜇𝒆 (𝝁) is the 4-force acting on P. If we now examine the motion of P as seen by the
accelerated observer O, we must write:

𝑚
d𝑼
d𝑇

=𝑚
d𝑈̂𝜇

d𝑇
𝒆 (𝝁) + 𝑚𝑈̂𝜇

d𝒆𝝁
d𝑇

(2.288)

=

[
𝑚

d𝑈̂𝜈

d𝑇
+ 𝑚 d𝜏

d𝑇
Ω̂𝜈𝜇𝑈̂

𝜇

]
𝒆 (𝝂) (2.289)

= 𝑓 𝜇𝒆 (𝝂) . (2.290)

Therefore, the dynamics obeys:

𝑚
d𝑈̂𝜈

d𝑇
= 𝑓 𝜈 + 𝑓 𝜈inertial , (2.291)

where:
𝑓 𝜈inertial = −𝑚Γ̂Ω̂𝜈𝜇𝑈̂𝜇 (2.292)

represents the inertial forces in the Fermi-Walker accelerated frame. Here Γ = d𝜏
d𝑇 is the instan-

taneous Lorentz factor between the inertial frame of O and the one of P. Clearly, as expected,
Newton’s law is not invariant when going from an admissible observer to a non-admissible, accel-
erating one. The lack of invariance is manifested by the appearance of non-intertial forces, as is the
case in Newtonian physics when going from Galilean to non-Galilean frames.
Note that Maxwell’s equations (2.249)-(2.250) are also affected by going to an accelerated frame.
For example, Eq. (2.250) becomes:

𝜕𝜇 𝐹̃
𝜇𝜈 + 1

𝑢𝛼
dΛ𝛽𝜆

d𝜏
[
Λ𝜈𝜆𝐹̃

𝛼𝛽 + Λ𝛼𝜆𝐹̃
𝛽𝜈

]
= −𝜇0 𝑗

𝜈 . (2.293)

Therefore, the laws of electrodynamics would have to be modified to remain covariant in general
frames.
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2.7.2 Example: Rindler observers

To illustrate this, let us imagine that an observer O travels in an inertial frame
{
𝒆 (0)

}
with coordi-

nates (𝑡, 𝑥, 𝑦, 𝑧), along the 𝑥-axis, and with the norm of the 4-acceleration constant equal to 𝑔. Thus,
we have:

𝜼 (𝑨, 𝑨) = 𝑔2 , (2.294)

and using the normalisation of the 4-velocity and Eq. (2.216), we get:
−

(
𝑢0

)2
+

(
𝑢1

)2
= − 1

−𝑢0𝐴0 + 𝑢1𝐴1 =0

−
(
𝐴0

)2
+

(
𝐴1

)2
=𝑔2 .

(2.295)

(2.296)

(2.297)

This implies that: {
𝐴0 = ± 𝑔𝑢1

𝐴1 = ± 𝑔𝑢0 .

(2.298)

(2.299)

This leads to:

d2𝑢1

d𝜏2 = 𝑔2𝑢1 , (2.300)

Solving this equation and plugging the solution back in 𝐴0 = ±𝑔𝑢1, we get the solution:{
𝑢0(𝜏) = cosh(𝑔𝜏)

𝑢1(𝜏) = sinh(𝑔𝜏) .

(2.301)

(2.302)

Choosing 𝑡 (0) = 0 and 𝑥(0) = 𝑥0, we get:


𝑡 (𝜏) =1

𝑔
sinh(𝑔𝜏)

𝑥(𝜏) =𝑥0 +
1
𝑔

cosh(𝑔𝜏) .

(2.303)

(2.304)

The worldline is a branch of the hyperbola given by:

(𝑥 − 𝑥0)2 − 𝑡2 =
1
𝑔2 . (2.305)
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For small velocities, 𝑢1 ' 𝑔𝜏 � 1 and we recover the Newtonian parabola. The trajectory is
represented on a spacetime diagram in the inertial frame on Fig. 2.6. Notice that observer’s velocity
asymptotically tends to 𝑐 = 1 both in the past and future. This is a particle coming from infinity at
a speed close to the speed of light, approaching the origin before turning back and going to infinity
at a speed approaching the speed of light.

Figure 2.6: Spacetime diagram in the inertial frame of the motion of an observer with constant
4-acceleration. The dashed grey lines are the lightcone of the observer at the origin of the inertial
frame.

Now, to build the orthonormal rest frame of the observer, we set:

𝒆 (0) = 𝒖 = cosh(𝑔𝜏)𝒆 (0) + sinh(𝑔𝜏)𝒆 (1) . (2.306)

Then, we pick 𝒆 (2) = 𝒆 (2) and 𝒆 (3) = 𝒆 (3) . This choice is completely arbitrary; any other pairs
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of orthonormal spacelike vectors, even if they rotate with respect to the inertial frame as 𝜏 changes
would have been acceptable. To fix 𝒆 (1) , we require that it remains orthogonal to all the other ones.
Clearly:

𝒆 (1) = 𝑎(𝜏)𝒆 (0) + 𝑏(𝜏)𝒆 (1) (2.307)

will work provided: {
−𝑎(𝜏) cosh(𝑔𝜏) + 𝑏 sinh(𝑔𝜏) = 0

[
𝜼

(
𝒆 (1) , ˆ𝒆 (0)

)
= 0

]
−𝑎2(𝜏) + 𝑏2(𝜏) = 1

[
𝜼

(
𝒆 (1) , ˆ𝒆 (1)

)
= 1

]
.

(2.308)

(2.309)

We can thus set:

𝑎(𝜏) = sinh(𝑔𝜏) and 𝑏(𝜏) = cosh(𝑔𝜏) , (2.310)

and we get:
𝒆 (1) = sinh(𝑔𝜏)𝒆 (0) + cosh(𝑔𝜏)𝒆 (1) (2.311){

𝒆 (𝝁)
}
constructed this way provides a local rest frame for the observer along her worldline. A

cursory look at the various expressions give the frame rotation tensor:

Ω̂0𝑖 = ∓𝑔𝛿𝑖1 , (2.312)

as well as the inertial forces present in that frame:

 𝑓
0
inertial = ± 𝑚Γ̂𝑔𝑈̂1

𝑓 1
inertial = ± 𝑚Γ̂𝑔𝑈̂0 .

(2.313)

(2.314)

For example, a particle at rest in the accelerated frame experiences the inertial force along the 𝒆 (1)
axis only:

𝑓 1
inertial,rest = ±𝑚𝑔 , (2.315)

as expected.
Let us assume that the observer starts at 𝑡 = 0 at the surface of the Earth and travels out with the
acceleration 𝑔 = 10 m · s−2. After 40 years elapsed on its ship (𝜏 = 40 years, so that 𝑔𝜏/𝑐 ' 42),
3 × 109 years will have elapsed in the inertial frame (𝑡 = 3 × 109 years)! This is the twin paradox,
which is not a paradox at all. After that much time, it will be infinitesimally close to the speed of
light (in the inertial frame): 𝑣 ' tanh(42).
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To conclude, let us imagine that a physicist is at rest in the inertial frame at the origin and emits
light isotropically with pulsation 𝜔∗ in the direction ®𝑘∗. The wavevector of the photons reaching
the observer at proper time 𝜏 is thus:

𝒌 = ~𝜔∗
[
𝒆 (0) + ®𝑘∗(𝜏)

]
, (2.316)

with (straight line between emitter and observer in the inertial frame):

®𝑘∗(𝜏) = 𝒆 (1) . (2.317)

In its rest frame, the observer receiving the photons would project this wavevector on its attached
basis to get its observed pulsation 𝜔(𝜏) and observed direction of arrival ®̂𝑘:

{
~𝜔(𝜏) = − 𝜼

(
𝒌, 𝒆 (0)

)
~𝜔(𝜏) 𝑘̂ 𝑖 =𝛿𝑖 𝑗𝜼

(
𝒌, 𝒆 ( 𝒋 )

)
.

(2.318)

(2.319)

Here this gives simply: {
𝜔(𝜏) =𝜔∗e−𝑔𝜏

𝑘̂ 𝑖 = − 𝛿𝑖1 .

(2.320)

(2.321)

Photons arrive to the observer in its direction of motion, with spectral shift corresponding to a
blueshift when the observer approaches the source and a redshift when it goes away; see Fig 2.7.

2.8 Gravitation: the equivalence principle

So far, Special Relativity sets a generic framework to formulate the kinematics of particles and fields
like the electromagnetic field in inertial frames. We have seen how to include accelerated observers
in this framework but, for those observers, like in Newtonian mechanics, the laws of physics need
to be amended by the introduction of inertial forces. As the classical exercise about zero gravity in
the space station orbiting Earth at constant height shows, as long as a gravitational field is constant,
it can always be compensated by applying a constant acceleration and defining a local accelerated
frame in which gravitation is absent. This is a manifestation of the equivalence principle, the first
step in establishing General Relativity by noticing the tight relationship between accelerations and
gravitational fields.
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Figure 2.7: Spacetime diagram in the inertial frame of the motion of an observer with constant
4-acceleration. The color along the trajectory represent the spectral shift (in a log scale).

2.8.1 Einstein’s equivalence principle

The notion of equivalence is intimately related to the universality of free fall formassive bodies. This
universality was ’discovered’ by Galileo and set as a fundamental principle by Newton in casting
his law of gravitation. Let us consider a body of inertial mass 𝑚𝑖 , in free fall in a gravitational field
Φ, In Newtonian mechanics, in an inertial frame, its trajectory obeys:

𝑚𝑖 ®𝑎 = −𝑚𝑔 ®∇Φ , (2.322)

where 𝑚𝑔 is the gravitational mass of the body. While the inertial mass tells us how the object
opposes the impulse received by a given arbitrary force ®𝐹, the gravitational mass tells us how the
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object reacts to a gravitational field; it is the gravitational charge. There is no a priori reason for
these two numbers to coincide. However, it is an empirical fact that for any object, independently
of its internal constituents, its shape and any other intrinsic properties, the two masses coincide:

𝑚𝑖 ' 𝑚𝑔 . (2.323)

Nowadays, this is one of the best empirically tested statement about the physical world. Using
torsion balances to measure the differential of accelerations between two masses of different com-
position, one can form the Eötvös parameter:

𝜂 = 2
𝑎2 − 𝑎1

𝑎2 + 𝑎1
= 2

𝑚2,𝑔/𝑚2,𝑖 − 𝑚1,𝑔/𝑚1,𝑖

𝑚2,𝑔/𝑚2,𝑖 + 𝑚1,𝑔/𝑚1,𝑖
. (2.324)

If the equivalence principle is valid, we must have 𝜂 = 0. The most recent precision measurement
of this parameter was made by the MICROSCOPE satellite and returned [20]:

𝑚2,𝑔

𝑚2,𝑖
−
𝑚1,𝑔

𝑚1,𝑖
= [−1 ± 9 (stat) ± 9 (sys)] × 10−15 (2.325)

between a pair of masses in titanium and platinum. This equivalence has now been extensively
tested between different types of materials, but also for big objects such as the Moon and Earth in
the field of the Sun and it is now also being tested for antimatter at CERN.
Given this level of accuracy it is thus reasonable to assume, with Newton and Einstein, that, at least
up to the precision currently necessary to describe gravitational phenomena:

𝑚𝑖 = 𝑚𝑔 . (2.326)

As a direct consequence of this equivalence, we obtain:

Universality of free-fall

®𝑎𝑖 = −®∇Φ (2.327)

for any object 𝑖, irrespective of its mass, internal composition etc.

In other words, everything ’falls the same way in a given gravitational field.’ This leads to:
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Galilean equivalence principle

It is not possible to distinguish, locally, between a uniform gravitational field ®𝑔 and a uniform
acceleration ®𝑎 = −®𝑔 in absence of gravitation.

The situation is best illustrated in the thought experiment of the lift; see Fig. 2.8. We are in an

Figure 2.8: (a) The lift, materialised by the red box and to which we attach a reference frame R′, is
at rest in the inertial frame R. In that inertial frame, a uniform gravitational field ®𝑔 is present and
𝐴 and 𝐵 are in free fall in R and in R′. (b) The lift is now uniformly accelerated with acceleration
®𝑎 = −®𝑔 with respect to the inertial frame R in which gravitation has been turned off. 𝐴 and 𝐵 are
now free in R′ and therefore uniformly accelerated in the frame of the lift R′. An observer in the
lift cannot distinguish between the two situations.

inertial frame R, in which we consider two massive objects 𝐴 and 𝐵 contained in a lift. An observer
is attached to the lift in the form of a reference frame R′. In the first instance, (a) on Fig. 2.8, a
uniform gravitational field ®𝑔 = −®∇Φ is present in R and R′ is at rest with respect to R and is thus
itself inertial. Then, Newton’s law applies and:

®𝑎𝐴/R′ = ®𝑎𝐵/R′ = ®𝑔 , (2.328)

so that both objects are in free fall in the lift.
In the other set-up, (b) on Fig. 2.8, there is no gravitational field or any other force acting on 𝐴
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and 𝐵. They are at rest (or in uniform translation but it is irrelevant here) in R. But now, the lift
accelerates in R, with an acceleration exactly equal to −®𝑔, where ®𝑔 is the gravitational field present
in setting (a). Then, once again:

®𝑎𝐴/R′ = ®𝑎𝐵/R′ = −®𝑎R′/R = ®𝑔 . (2.329)

Therefore, from the point of view of the observer in the lift, there is absolutely nothing distinguishing
the two situations, from a dynamical point of view. By conducting experiments with objects free of
forces, she cannot say if she is at rest in a uniform gravitational field or accelerated in an environment
free of gravitation. Note that this could be formulated in a slightly different way by saying that one
can always cancel a gravitational field ®𝑔 applied in an inertial frame locally by choosing the local
non-inertial frame with acceleration ®𝑔 with respect to the inertial frame. Then, the inertial forces
generated by this acceleration exactly cancel the gravitational field, and in the accelerated frame, free
falling particles actually appear free of force. This is zero-gravity. Why did we insist on the local
restriction to the equivalence principle? Because it is absolutely crucial that the gravitational field
be uniform. Indeed, if the field varies appreciably over the scales involved, e.g. the distance between
𝐴 and 𝐵 in the lift, then we cannot define a unique accelerated frame in which bothmasses accelerate
the same way; see Fig. 2.9. In other words, acceleration can cancel the value of the gravitational
field at a point but it cannot get rid of tidal effects at that point. This will have a striking implication
in General Relativity. Einstein’s decisive step was to generalise the equivalence principle to any
experiment an observer could carry, not just free-fall ones:

Einstein’s equivalence principle

No physics experiment can distinguish, locally, between a uniform gravitational field acting
in the local inertial frame and a uniform acceleration with respect to that local inertial frame.
The local inertial frame is the frame in which the laws of Special Relativity must hold.

In other words, the equivalence principle as understood by Einstein tells us that locally, spacetime
ought to be Minkowski spacetime and the laws of physics ought to be written as the ones of Special
Relativity. However, as the example in Fig. 2.9 illustrates, because of tidal effects, these local inertial
frames will in general vary from point to point and one will have to find ways to ”glue” them together
if one wants a more global picture of spacetime. This is why the concept of manifold introduced in
chapter 3 will become crucial in General Relativity.
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Figure 2.9: The gravitational field generated by a spherical distribution of mass is inhomogeneous
in space. If two points 𝐴 and 𝐵 are separated by a distance large compared to the typical distance of
variation of the field, then one cannot cancel the effects of the field by choosing a single appropriate
accelerated frame. Rather, one needs to define accelerated frames around both points.

2.8.2 Gravitational redshift

We can already obtain a genuine physical effect from Einstein’s equivalence principle, even in ab-
sence of a full theory: the gravitational spectral shift.
Consider two observers 𝑃 and 𝑄 sitting respectively at the top and bottom of a tall building at the
surface of the Earth, at rest in the terrestrial reference frame R𝑇 assumed inertial. We will assume
that the height of the building, ℎ, is much smaller than the Earth radius, 𝑅𝑇 , so that the gravitational
field of the Earth can be considered uniform on the scales of the problem. Each observer has an
atomic clock allowing them to measure their own proper time; see panel (a) on Fig. 2.10. At regular
intervals of their proper time 𝛿𝜏𝑃, 𝑃 sends light pulses towards 𝑄. Can we determine the interval
of their own proper time 𝛿𝜏𝑄 at which observer 𝑄 receives the signals? According to Einstein’s
equivalence principle, this situation is equivalent to the one represented on panel (b) of Fig. 2.10:
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Figure 2.10: (a) 𝑃 sends light signals towards 𝑄, in a tower at rest in the terrestrial rest frame R𝑇 .
The Earth’s gravitational field ®𝑔 is uniform on the scales involved. (b) 𝑃 and 𝑄 are embarked in
a rocket moving with a uniform acceleration −®𝑔 with respect to R𝑇 in which gravitation has been
turned off. According to the equivalence principle, both situations are equivalent.

the gravitational field is turned off and 𝑃 and 𝑄 are at rest in a rocket moving with respect to R𝑇
with a constant acceleration −®𝑔. This means that the reference frame R of the rocket is not inertial.
Note that Einstein’s version of the equivalence principle is required here to asssume that everything
can be translated in this equivalence, including the trajectory of light signals which do not follows
from Newton’s law. In any case, this means that we should be able to do calculations in configu-
ration (b) and translate the results to configuration (a). In order to simplify calculations, we will
assume that the speed of the rocket is much smaller than the speed of light, 𝑣 � 1, and that the
gravitational field/acceleration is also weak, 𝑔ℎ/𝑐2 = 𝑔ℎ � 1. This allows us to work at first order
in these quantities and neglect Lorentz factors. In particular, we can write that proper times along
the worldlines of 𝑃 and 𝑄 are simply given by the time coordinate in R𝑇 . In R𝑇 , the trajectories of
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𝑃 and 𝑄 are given by: 
𝑥𝑃 (𝑡) =ℎ +

1
2
𝑔𝑡2

𝑥𝑄 (𝑡) =
1
2
𝑔𝑡2 .

(2.330)

(2.331)

They are depicted on Fig. 2.11. Along light rays, we can write Δ𝑡 = ±Δ𝑥, so that along the ray

Figure 2.11: Trajectories of 𝑃 and 𝑄 in R𝑇 for 𝑔ℎ = 0.1 for illustration purposes. The red dashed
lines are the light signals emitted at 𝑡 = 0 and 𝑡 = 𝛿𝜏𝑃 by 𝑃.

emitted at 𝑡 = 0 and the one emitted at 𝑡 = 𝜏𝑃 we have:{
𝑥𝑃 (0) − 𝑥𝑄 (𝑡1) =𝑡1

𝑥𝑃 (Δ𝜏𝑃) − 𝑥𝑄 (𝑡1 + 𝛿𝜏𝑄) =𝑡1 + Δ𝜏𝑄 − Δ𝜏𝑃 .

(2.332)

(2.333)

At first order in Δ𝜏𝑃 and Δ𝜏𝑄, this gives:
1
2
𝑔𝑡21 + 𝑡1 − ℎ =0

ℎ − 1
2
𝑔𝑡21 − 𝑔𝑡1Δ𝜏𝑄 '𝑡1 + Δ𝜏𝑄 − Δ𝜏𝑃 .

(2.334)

(2.335)
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Solving for 𝑡1 and keeping only leading terms in 𝑔ℎ, we get:

𝑡1 ' ℎ , (2.336)

as expected, which then gives:
Δ𝜏𝑄 = (1 − 𝑔ℎ)︸    ︷︷    ︸

<1

Δ𝜏𝑃 . (2.337)

Therefore, Δ𝜏𝑄 < Δ𝜏𝑃 and light signals are received at shorter intervals at 𝑄 than they are emitted
at 𝑃.
According to the equivalence principle, this result must apply to the pair of observers at rest in the
gravitational field of the earth. Noting that, in that case, the field Φ is given by:

®∇Φ = ®𝑔 = −𝑔 ®𝑒𝑥 , (2.338)

we get Φ (𝑥𝑃) − Φ(𝑥𝑄) = −𝑔ℎ, so that choosing Φ
(
𝑥𝑄

)
= 0 as the reference, we get −𝑔ℎ = Φ(ℎ).

Thus:
Δ𝜏𝑄 = (1 +Φ(ℎ)) Δ𝜏𝑃 . (2.339)

The gravitational field affects local measurements of time: if 𝑄 knows the emission period by 𝑃,
Δ𝜏𝑃, and measures their reception period, Δ𝜏𝑄, they will conclude that they have measured fewer
ticks of their own clock than their were on 𝑃’s clock between the two emissions. If the two clocks
had been synchronised initially, they will then conclude that time slows down at the bottom of the
tower compared to its top. If Δ𝜏𝑃 and Δ𝜏𝑄 are the periods of an electromagnetic wave as emitted
by 𝑃 and received by 𝑄, then the result implies that the wave is received at 𝑄 with a frequency
𝜈𝑄 > 𝜈𝑃, i.e. that it is blueshifted. Of course, if the signal is sent from 𝑄 to 𝑃 , by symmetry of
light paths, the signal is redshifted. This was the first prediction Einstein made using his version
of the equivalence principle, before having obtained the full theory of General Relativity. It was
actually instrumental in his thoughts to arrive at this theory, although it was only experimentally
checked many years later [18].

2.8.3 Incompatibility of gravitation and Special Relativity

However, this picture is problematic, as it leads to some inconsistency with Special Relativity. A
way to see it is an argument originally due to Schild. Consider the set-up (a) in Fig. 2.10. 𝑃 and
𝑄 are at rest in the inertial frame R𝑇 . Therefore, their worldlines are straight, vertical lines; see
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Fig. 2.12 that shows a spacetime diagram drawns in R𝑇 . Light rays emitted by 𝑃 towards 𝑄 ought
to be straight lines with a slope of −𝜋/4 (red dashed lines in Fig. 2.12). The problem is that the

Figure 2.12: Spacetime diagram of situation (a) of Fig. 2.10, in R𝑇 .

parallelogram 𝑃(0)𝑃 (Δ𝜏𝑃)𝑄
(
𝑡1 + Δ𝜏𝑄

)
𝑄(𝑡1) has opposite sides of different lengths: Δ𝜏𝑃 ≠ Δ𝜏𝑄.

This is completely impossible in Special Relativity and signals that in presence of gravitational
fields, it is impossible to extend an inertial frame over and arbitrarily extended regions of spacetime.
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3.1 Introduction

This chapter is the central part of these notes. It sets the general stage in which the applications of
the next chapters will unfold. First, we define the concept of differentiable manifold and we formu-
late the concept of spacetime in this setting. We will see that the equivalence principle is naturally
embedded in the manifold framework. Then, we define vectors, forms and tensors on manifolds
and emphasize the link between vectors and derivatives. Via the introduction of a metric tensor, we
start to do geometry.
Then, limiting our discussion to the 4-dimensional spacetime manifold of General Relativity from
now on, we introduce parallel transport and geodesics and we show that geodesics are the worldlines
of free-falling particles in spacetime. This leads us to consider where gravitational manifests itself
and we see that it shows up in how neighbouring geodesics move relative to each other; this is the
concept of geodesic deviation which will lead us to Riemann curvature.
Finally, we see how this Riemann curvature is linked to the sources of the gravitational field via the
Einstein field equations.

The first section of this chapter contains some technical points that can be overlooked by the
reader with a physicist’s mind. Such a reader can concentrate on the big picture and assume that
all the technical, especially topological properties that objects need to satisfy for definitions and
results to make sense are satisfied in physics. Appendix A contains some definitions of many of
these concepts for a reader more inclined to follow the mathematics. From the section on calculus,
though, the concepts and methods presented are essential for the understanding of the course.

3.2 The concept of manifold

3.2.1 The basic ideas

Manifolds are an abstract generalisation to objects of arbitrary whole dimensions (this notion of
dimension will be made more precise later) of intuitive notions about curves and surfaces. Gener-
ically, a curve in the three dimensional Euclidean space 𝐸3 is a set of points that can be locally
parametrised by a single real number 𝑡, via a triplet of real-valued functions (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)), and
a surface can be locally parametrised by a pair of real numbers (𝑢, 𝑣) via the parametric equations
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(𝑥(𝑢, 𝑣), 𝑦(𝑢, 𝑣), 𝑧(𝑢, 𝑣)). This means that, by continuous deformations, a curve and a surface can
respectively be locally mapped into R and R2: they are locally homeomorphic to R and R2¹. A (real)
manifold is simply a topological space that is locally homeomorphic to R𝑛 for 𝑛 ∈ N. Here, the
subtle concept is locality: the homeomorphism that allows to parametrise a curve or a surface in
terms of coordinates usually depends on the point of the curve or the surface considered, it varies
from point to point. Therefore, manifolds, although locally homeomorphic to R𝑛, generally differ
from it globally. If this is the case, one may have to introduce several local coordinate systems.
Moreover, the same point of the manifold be described by different coordinate systems that are all
acceptable. These coordinate systems are inessential; they are just convenient ways to describe lo-
cally the manifold itself. Nevertheless, in these lecture notes we will focus on manifolds for which
the change of coordinates can be done smoothly; this will allow for the development of differential
calculus on manifolds.
In order to grasp the main ideas, let us focus on one of the simplest (for our every day life intuition)
manifold: the unit 2-sphere 𝑆2 embedded in 𝐸3. As an object embedded in R3, this is defined by:

𝑆2 =
{
(𝑥, 𝑦, 𝑧) ∈ R3, 𝑥2 + 𝑦2 + 𝑧2 = 1

}
. (3.1)

Of course, one can also introduce spherical coordinates (𝑟, 𝜃, 𝜙) ∈ R+ × [0, 𝜋] × [0, 2𝜋[ in 𝐸3. In
these coordinates, the 2-sphere is simply characterised by 𝑟 = 1; a very simple equation indeed.
That means that points on the sphere can be labelled by two real numbers (𝜃, 𝜙) ∈ [0, 𝜋] × [0, 2𝜋[,
in agreement with the intuition that a sphere is two-dimensional. Can any point be labelled like
that though? No! These coordinates cover the entire sphere except the poles (𝜃 = 0 and 𝜃 = 𝜋),
where 𝜙 is not even defined²! In essence, this is therefore a local mapping between the sphere and
R2, because it excludes two points. Besides this problem, spherical coordinates on the sphere also
suffer from another pitfall: imagine a point that describes a circle at 𝜃 = cst, starting from 𝜙 = 0.
The value of 𝜙 for this point increases gradually until it approaches 2𝜋, getting closer and closer
to the position where it started. That means that in a neighbourhood of the great circle 𝜙 = 0, the
coordinate system is discontinuous. Since we want to develop calculus on objects like the sphere,
and since calculus is essentially based on smoothness, this is a problem. To alleviate this problem,

¹A map 𝑓 : 𝑋1 → 𝑋2 between two topological spaces 𝑋1 and 𝑋2 is an homeomorphism if it is continuous and
its inverse 𝑓 −1 : 𝑋2 → 𝑋1 exists and is itself continuous. In these notes, all maps that need to be homeomorphic for
definitions to work, in particular charts, will be homeomorphic.

²Convince yourself of that by writing the transition from Cartesian coordinates to spherical coordinates
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we could decide to let 𝜙 run in R+, but then the same point on the sphere would correspond to an
infinite number of pairs of coordinates, (𝜃, 𝜙 + 2𝑘𝜋), for 𝑘 ∈ Z+.
Of course, there exists many ways (an infinite number actually) to label points on 𝑆2. Another
example are stereographic coordinates (𝑋,𝑌 ) ∈ R2, projected from the North pole 𝑁 , for example:

𝑋 =
𝑥

1 − 𝑧 ; 𝑌 =
𝑦

1 − 𝑧 , (3.2)

with 𝑧2 = 1 − 𝑥2 − 𝑦2. These coordinates are continuous and even smooth everywhere on 𝑆2\{𝑁},
but they are not defined at 𝑁 . So again, they can only represent the sphere locally, in the sense that
they cannot be extended to every point of the sphere. Therefore, one sees that, in order to label all
the points of the sphere by a set of two real numbers, one necessarily has to use several maps from
𝑆2 onto R2. This is a key idea that results from the locality condition mentioned earlier.
The arbitrariness in the coordinate system that allows one to describe the same point of a manifold
like 𝑆2 by different sets of coordinates is actually one of the reasons why manifolds are so important
in physics, since it is very similar to the principle of relativity of physics that states that the behaviour
of a physical system is independent from the frame used to describe it.
So, what is the key idea to remember? We have hinted at the fact that it is impossible to label all
the points of 𝑆2 with a single set of two real numbers such that both of the following conditions are
satisfied simultaneously:

(1) ’Close’ points on 𝑆2 have ’close’ values of their coordinates. Rigorously that means that any
neighbourhood of any point of 𝑆2 is mapped continuously to a connected open set of R2.

(2) Each point of 𝑆2 is represented by a unique set of coordinates.

Nevertheless, we can certainly require that these conditions (1) and (2) be satisfied locally, i.e. that,
around every point 𝑝 ∈ 𝑆2, we define an open set𝑈𝑝 that is mapped continuously onto an open set
of R2. But then, what happens if two open sets 𝑈𝑝 and 𝑈𝑞 for 𝑝 ∈ 𝑆2 and 𝑞 ∈ 𝑆2, 𝑝 ≠ 𝑞 intersect?
Then, in order to define a proper differential structure, we will impose a condition that requires that,
in the intersection 𝑈𝑝 ∩𝑈𝑞, the coordinate systems attached to 𝑈𝑝 and 𝑈𝑞 are linked by a smooth
transformation, ensuring that, on that part of the sphere, the two descriptions of the sphere in terms
of coordinates are compatible and can be interchanged smoothly.

3.2.2 Differential manifolds

We define differential manifolds as follows:
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Differentiable manifold

𝑀 is a differentiable manifold (also hereafter manifold) of dimension 𝑛 ∈ N∗ iff:

(1) 𝑀 is a Hausdorff topological space;

(2) there exists a family of open sets {𝑈𝑖}, with 𝑖 ∈ 𝐼 (set of indices) which covers 𝑀 , i.e.
such that

⋃
𝑖∈𝐼 𝑈𝑖 = 𝑀;

(3) for any 𝑖 ∈ 𝐼, there exists an homeomorphism 𝜙𝑖 : 𝑈𝑖 → 𝑈
′
𝑖 ⊆ R𝑛,𝑈

′
𝑖 being open;

(4) given𝑈𝑖 and𝑈 𝑗 such that𝑈𝑖 ∩𝑈 𝑗 ≠ ∅, the map 𝜓𝑖 𝑗 = 𝜙 𝑗 ◦ 𝜙−1
𝑖 from 𝜙𝑖

(
𝑈𝑖 ∩𝑈 𝑗

)
into

𝜙 𝑗
(
𝑈𝑖 ∩𝑈 𝑗

)
is infinitely differentiable.

The pair (𝑈𝑖 , 𝜙𝑖) is called a chart, and the collection {(𝑈𝑖 , 𝜙𝑖)} an atlas. An open set 𝑈𝑖 is called
a coordinate neighbourhood and 𝜙𝑖 a coordinate function, or coordinates in short. In R𝑛, 𝜙𝑖 is
represented by the set of functions

(
𝑥1(𝑝), ..., 𝑥𝑛 (𝑝)

)
∈ R𝑛 for any 𝑝 ∈ 𝑈𝑖 . This n-uples is also

called the coordinates of 𝑝 relative to 𝜙𝑖 . This is all illustrated on Fig. 3.1. Anticipating a bit on
our definition of curves on manifolds, we can also understand a local chart as the ”knitting” of the
manifold by ”threads” (curves) of constant values of the local coordinates; see Fig. 3.2. This image
is at the origin of the name ”curvilinear coordinates” that we find in old textbooks.

Let us emphasise that a point 𝑝 ∈ 𝑀 exists independently of any coordinate system used to
described the manifold locally around 𝑝. The choice of coordinates is arbitrary and is usually deter-
mined by convenience in a specific development. Note that, out of convenience, we will sometimes
use the incorrect notation 𝑥 =

(
𝑥1(𝑝), ..., 𝑥𝑛 (𝑝)

)
∈ R𝑛 to denote the point 𝑝 ∈ 𝑀 when a coordi-

nate system has been fixed and there is no ambiguity. Conditions (2) and (3) in the definition of a
manifold ensure that 𝑀 is locally Euclidean, i.e. in any local chart, 𝑀 looks like an open set of R𝑛.
But, we do not require this to be true globally.

If two neighbourhoods 𝑈𝑖 and 𝑈 𝑗 have a non-empty intersection, then each point of 𝑈𝑖 ∩ 𝑈 𝑗
is assigned two coordinate systems, 𝜙𝑖 and 𝜙 𝑗 . The fourth condition in the definition then ensures
that the transition between one coordinate system and the other be smooth (infinitely differentiable).
If 𝜙𝑖 (𝑝) =

(
𝑥1(𝑝), ..., 𝑥𝑛 (𝑝)

)
= 𝑥 and 𝜙 𝑗 (𝑝) =

(
𝑦1(𝑝), ..., 𝑦𝑛 (𝑝)

)
= 𝑦, the transition function

𝜓𝑖 𝑗 (𝑥) = 𝑦 and we have explicitly that, for any 𝑗 ∈ {1, 2, .., 𝑛}, 𝑦 𝑗 (𝑥) is a smooth function of



The geometry of spacetime 84

Figure 3.1: Schematic representation of local charts on a manifold.
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Figure 3.2: A local chart and the ”knitting” on the manifold by ”threads” at constant values of the
coordinates. The piece of surface 𝑈 is given local coordinates {𝑥1, 𝑥2} by the chart (𝑈, 𝜙). Each
point 𝑝 on the surface is at the intersection of two curves that are the pre-image of the line at constant
𝑥1 (blue dashed) and constant 𝑥2 (red dashed).
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(
𝑥1(𝑝), ..., 𝑥𝑛 (𝑝)

)
, that is, each 𝑦 𝑗 is infinitely differentiable with respect to any 𝑥𝑖³. Of course,

because both 𝜙𝑖 and 𝜙 𝑗 are homeomorphism, 𝜓𝑖 𝑗 is also an homeomorphism, and therefore 𝜓−1
𝑖 𝑗 is

continuous; this ensures that the change from 𝑥 to 𝑦 and the change from 𝑦 to 𝑥 are equally possible
and infinitely differentiable.
Given two atlases {(𝑈𝑖 , 𝜙𝑖)} and

{
(𝑉 𝑗 , 𝜓 𝑗)

}
of the same manifold𝑀 , if their union is still an atlas of

𝑀 , we say that the two atlases are compatible. Compatibility in that sense is an equivalence relation
and its the equivalence classes are called differentiable structures on 𝑀 . Whether or not a given
manifold 𝑀 has more than one differentiable structure is a very difficult question. For example, 𝑆7

has 28 inequivalent differential structures! Even more strikingly, a space like R4 turns out to have
a infinite number of differential structures!
We can now illustrate this definition by a few examples.

The vector space R𝑛 for 𝑛 ∈ N∗ is the most trivial example of a manifold. In that case, it is
enough to use a single chart covering the whole manifold, whose coordinate function is the identity.
Of course, one can rely on more complicated charts, according to the principle that a manifold is
independent on the chart used to describe it.

In one dimension, there are only two connected differential manifolds: a line (formally identical
to R; see diffeomorphism later) and the circle 𝑆1. R is a trivial sub-case of the previous example,
and we can concentrate on 𝑆1. If we want to satisfy our axioms, we need several charts, otherwise
we would have discontinuous maps at one point at least (remember our discussion on 𝑆2), which
would not be homeomorphisms. 𝑆1 is defined via: 𝑆1 =

{
(𝑥, 𝑦) ∈ R2, 𝑥2 + 𝑦2 = 1

}
. Let:

𝜙1 :

𝑈1 =

{
(𝑥,

√
1 − 𝑥2), 𝑥 ∈] − 1, 1[

}
→ ] − 1, 1[

𝑝 = (𝑥,
√

1 − 𝑥2) ↦→ 𝑥
, (3.3)

𝜙2 :

𝑈2 =

{
(𝑥,−

√
1 − 𝑥2), 𝑥 ∈] − 1, 1[

}
→ ] − 1, 1[

𝑝 = (𝑥,−
√

1 − 𝑥2) ↦→ 𝑥
, (3.4)

𝜙3 :

𝑈3 =

{
(
√

1 − 𝑦2, 𝑦), 𝑦 ∈] − 1, 1[
}

→ ] − 1, 1[
𝑝 = (

√
1 − 𝑦2, 𝑦) ↦→ 𝑦

, (3.5)

³The differentiability here is with respect to the usual partial differentiation of calculus on R𝑛
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Figure 3.3: Schematic representation of the atlas (3.3)-(3.6).

and:

𝜙4 :

𝑈4 =

{
(−

√
1 − 𝑦2, 𝑦), 𝑦 ∈] − 1, 1[

}
→ ] − 1, 1[

𝑝 = (−
√

1 − 𝑦2, 𝑦) ↦→ 𝑦
. (3.6)

The atlas is depicted on Fig. 3.3.
Then, 𝜙1, 𝜙2, 𝜙3 and 𝜙4 are continuous and invertible, and their inverses are also continuous.

Moreover, all the transition functions are infinitely differentiable homeomorphisms. For example:
𝑈1 and𝑈3 intersect and 𝜓13 = 𝜙3 ◦ 𝜙−1

1 :]0, 1[→]0, 1[ reads:

∀𝑥 ∈]0, 1[, 𝜓13(𝑥) = 𝜙3

(
(𝑥,

√
1 − 𝑥2)

)
=

√
1 − 𝑥2 , (3.7)

which is indeed infinitely differentiable. You can check the other transition functions as an exercise.
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Another atlas on the circle

Can you find another atlas for 𝑆1?

As another example, we can consider the n-dimensional sphere:

𝑆𝑛 =

{(
𝑥0, 𝑥1, ..., 𝑥𝑛

)
∈ R𝑛+1,

𝑛∑
𝑖=0

(
𝑥𝑖

)2
= 1

}
. (3.8)

We define 2(𝑛 + 1) coordinate neighbourhoods𝑈𝑖 as follows: for any 𝑖 ∈ {0, ..., 𝑛},

𝑈𝑖+ =
{(
𝑥0, 𝑥1, ..., 𝑥𝑛

)
∈ 𝑆2, 𝑥𝑖 > 0

}
(3.9)

𝑈𝑖− =
{(
𝑥0, 𝑥1, ..., 𝑥𝑛

)
∈ 𝑆2, 𝑥𝑖 < 0

}
. (3.10)

The corresponding coordinate maps, ∀𝑖 ∈ {0, 1, ..., 𝑛}, 𝜙𝑖+ : 𝑈𝑖+ → R𝑛 and 𝜙𝑖− : 𝑈𝑖− → R𝑛 are
defined via:

𝜙𝑖+
(
(𝑥0, ..., 𝑥𝑛)

)
= (𝑥0, ..., 𝑥𝑖−1, 𝑥𝑖+1, ..., 𝑥𝑛)

𝜙𝑖−
(
(𝑥0, ..., 𝑥𝑛)

)
= (𝑥0, ..., 𝑥𝑖−1, 𝑥𝑖+1, ..., 𝑥𝑛).

Geometrically, 𝜙𝑖± are the projections of the hemispheres𝑈𝑖± onto the plane 𝑥𝑖 = 0. Obtaining the
transition functions to verify that they are smooth is a bit cumbersome, but it can easily be done in
low dimensions (ex.: 𝑛 = 2).

Stereographic atlas on 𝑆2

Using stereographic projections, obtain an atlas for 𝑆2. Generalise to 𝑆𝑛.

As a last example, consider the torus:
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The torus

The torus is the set:

𝑇2 =

{
(𝑥, 𝑦, 𝑧) ∈ R3,

(√
𝑥2 + 𝑦2 − 1

)2
+ 𝑧2 =

1
4

}
. (3.11)

Show that one can define (𝜃, 𝜑) ∈ [0, 2𝜋[2 such that:

(𝑥, 𝑦, 𝑧) ∈ 𝑇2 ⇔ 𝑥 = (1 + 1
2

cos 𝜑) cos 𝜃 , 𝑦 = 𝑥 = (1 + 1
2

cos 𝜑) sin 𝜃 , 𝑧 =
1
2

sin 𝜑. (3.12)

Represent 𝑇2. Often 𝑇2 is presented as the Cartesian product 𝑆1 × 𝑆1, why?
Why can’t the induced map 𝑇2 → (𝜃, 𝜑) be an atlas? Propose an atlas.

3.2.3 The spacetime manifold of General Relativity

These general considerations on manifolds are quire useful, especially because in General Relativity
we often have to deal with parts of spacetime that are themselves manifolds, or with symmetry
Lie groups, so knowing about manifolds in general is quite useful. But the central feature of the
theory is that spacetime itself needs to be described as a generic 4 dimensional manifold equipped
with a metric tensor. As we saw in the previous chapter, the equivalence principle teaches us that
gravitation is geometry, and that it is a naturally local concept: we can always cancel a gravitational
field locally by choosing an appropriately accelerated reference frame, i.e. an appropriate coordinate
system in which physics is described by Special Relativity. In particular, this means that locally,
spacetime is homeomorphic to Minkowski spacetime: R4 equipped with the metric 𝜼; we will see
that it is not sufficient and that an extra condition needs to be imposed on the metric derivatives.
But, if we forget for a moment about the metric, this is exactly what a 4 dimensional manifold is: a
set of points locally homeomorphic to R4. So here it is.

Spacetime of General Relativity

The spacetime of General Relativity is a 4 dimensional differentiable manifold M. A point
of M is called an event.

What of the metric? It turns out to be the important part since it encodes the gravitational field.
But before we can make sense of it, we need to define vectors. Everything that will be defined
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afterwards will make sense for general manifolds. However, from now on, unless otherwise stated,
we will restrict our presentation to the 4 dimensional manifold of General Relativity. When the
word manifold is used without any further details, it will be assumed to be differentiable and 4
dimensional.
Finally, as we have seen, a striking feature of manifolds is that locally, their properties do not depend
on the coordinate systems chosen to cover them. Thus, if we formulate the laws of physics on a
manifold, we should expect them to be invariant under any permissible coordinate change. This is
known as general covariance and we will get back to it later.
Let us fix some notations. Given a point 𝑝 ∈ M and an open set 𝑈 around 𝑝, local charts (𝑈, 𝜙)
will define local coordinate systems which will be denoted 𝜙(𝑝) =

(
𝑥0, 𝑥1, 𝑥2, 𝑥3) = (𝑥𝜇). In other

words, spacetime indices will run from 0 to 3, like in the special relativistic case, and be referred to
by Greek letters. When restraining the range to {1, 2, 3}, we will use Latin indices instead, usually
from the second part of the alphabet.

3.3 Calculus on manifolds

In this section, we are going to introduce on manifolds the usual notions of calculus and geometry.
The tactics will essentially consists in ”localising” everything and, using charts to ”bring down”
objects in R4, where we can rely on our usual techniques. There is one conceptual exceptions
though. As we have seen in the context of Special Relativity, it is possible to think of vectors in R4

as derivative operators, associated with derivatives along curves. This is certainly a bit cumbersome
inR4. But on a generic manifold, this is the only possible way tomake sense of the concept of vector!
In a sense, calculus on manifolds ties together geometric concepts like vectors to analysis concepts
like derivatives. As it turns out, this is a deep connection that does not stop with vectors (although
we will only talk about these here).

3.3.1 Functions
Functions

A function on a manifold M is a smooth map 𝑓 : M → R, i.e. that to each point 𝑝 ∈ M, it
associates a real number 𝑓 (𝑝) ∈ R. In physics, it is often dubbed a scalar field.
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It is the simplest type of map we can define on a manifold. You can think of it as, for example,
the map that associates a temperature to a point at the surface of the Earth. Such an example is
displayed on Fig. 3.4 in colour: each point is coloured according to its temperature and the function
𝑇 : 𝑆2 → Rmaps points on the sphere to points on the real line, here represented by the colour bar
at the bottom. If we introduce coordinate charts then such functions on manifolds can be viewed,

Figure 3.4: A function associating temperature to the surface of a sphere.

locally, as usual functions on R4. Let (𝑈, 𝜑) be a chart around 𝑝 ∈ M and 𝑓 : M → R a function.
Then 𝑓 ◦𝜙−1 : R4 → R is a usual function onR4. If we call 𝑥𝜇 the coordinates of 𝑝 in the chart, then
𝑓 (𝑝) = 𝑓

(
𝜙−1 (𝑥𝜇)

)
= 𝑓

(
𝑥0, 𝑥1, 𝑥2, 𝑥3) , where we used the usual physicists’ abuse of notations to

write the last equality. Thus 𝑓 ◦ 𝜙−1 is just a regular function on R4 for which we can define partial
derivatives etc. The adjective ”smooth” in the definition above refers to the fact that in any local
chart, 𝑓 ◦ 𝜙−1 is smooth in the usual calculus sense (at least twice continuously differentiable for
us, more usually just infinitely differentiable). This will be the case throughout from now on.
Often, when the chart is not ambiguous, physicists tend yo forget about 𝜙−1 and simply write 𝑓 (𝑝) =
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𝑓 (𝑥𝜇). This is confusing and horrible but permitted as long as we keep inmindwhat we reallymean!
We will denote by F (M) the set of all smooth functions on the manifold M. One can check, as an
exercise, that functions are invariant under coordinate transformations.

3.3.2 Curves

The objects we need to understand next are, in a way the inverse of functions: curves.

Curves on a manifold

A parametrised curve on a manifoldM is a smooth map 𝑐 : 𝐼 ⊆ R → M which, to any real
number 𝜆 ∈ 𝐼, called a parameter, associates a point on M, 𝑐(𝜆) = 𝑝.
The image 𝑐(𝐼) is called the unparametrised curve or simply curve described by 𝑐.

The situation is represented on Fig. 3.5.
There is a bit of ambiguity here as we called the map 𝑐 between R and M the parametrised

curve while 𝑐(𝐼) is simply the curve or unparametrised curve. This is simply because one can
always choose a different parameter 𝜎 ∈ 𝐽 ⊆ R via a change of parameter, i.e. a bijective map
𝜓 : 𝐼 → 𝐽 such that 𝜎 = 𝜓(𝜆). Then, we obtain a new parametrised curve 𝑐′ = 𝑐 ◦ 𝜓−1 with
𝑐′(𝐽) = 𝑐(𝐼): both maps describe the same unparametrised, geometrical curve on M. This ability
to reparametrise curves will be important later.
Given a local chart (𝑈, 𝜙) assumed to cover the whole curve⁴ for each point on the curve, we have
coordinates: 𝜙 [𝑐(𝜆)] = 𝑥𝜇 (𝜆) so that the map 𝜙 ◦ 𝑐 : 𝐼 → R4 is the parametric equation of the
curve.

3.3.3 Vectors

Weare now ready to take the next step and define other geometrical objects such as vectors, covectors
and tensors. We already know the notion of a vector in 𝐸𝑛 as ’an arrow’ pointing from one point
to another, and, more generally, as the elements of a vector space. Of course, on manifolds, this

⁴If it were not the case, we could just study the part of the curve covered by the chart and move from chart to chart
along the curve in the appropriate way. This would introduce some complication involving transition maps between
charts but it would not affect the arguments here. As a matter of fact, this is a general remark in what follows: we will
liberally use purely local arguments, assuming that the extrapolation to global ones is made of straightforward algebraic
manipulations. This is not always true, but in this course, it will be.
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Figure 3.5: A curve 𝑐 defined on the manifold M.

is a bit trickier: how would one draw such a straight arrow on the surface of a sphere? One could
select two points on the sphere and join them by an oriented arc; but which one? That would be the
closest analogy, of course. But that is not how things are done in differential geometry, although
the two descriptions might prove equivalent if analysed carefully. Locally, spacetime manifolds are
homeomorphic to R4, which is a vector space, so that should provide the structure we want to define
vectors. And indeed, we shall define a vector at a point 𝑝 in a manifold as the tangent vector to a
curve on M that passes through 𝑝.
Let 𝑐 : 𝐼 ⊆ R → M be a curve on the manifold M, where 𝐼 =]𝑎, 𝑏[ is an open interval of R.
Let 𝑝 ∈ 𝑀 be on the curve and suppose, for simplicity, that 𝑝 = 𝑐(0). By definition, we can use a
given chart (𝑈, 𝜙) with 𝑝 ∈ 𝑈 such that, locally, any point of 𝑐(]𝑎, 𝑏[) that is in 𝑈 is mapped onto
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(𝑥0(𝜆), 𝑥1(𝜆), 𝑥2(𝜆), 𝑥3(𝜆)) where 𝜆 ∈ 𝐼 is the parameter along the curve. This defines the map
𝜙 ◦ 𝑐 : ]𝑎, 𝑏[→ R4. Now, for any smooth function 𝑓 : M → R such that 𝑐 is in the domain of
𝑓 , we can define the function 𝐹 = 𝑓 ◦ 𝜙−1 from R4 into R. The action of 𝑓 on points of the curve
𝑐(]𝑎, 𝑏[) is given by the map 𝑓 ◦ 𝑐 : R → R which is differentiable by construction. By writing
𝑓 ◦ 𝑐 = 𝑓 ◦ 𝜙−1 ◦ 𝜙 ◦ 𝑐 we see that:

∀𝜆 ∈]𝑎, 𝑏[, 𝑐(𝜆) ∈ 𝑈, 𝑓 (𝑐(𝜆)) = 𝐹
(
𝑥0(𝜆), 𝑥1(𝜆), 𝑥2(𝜆), 𝑥3(𝜆)

)
, (3.13)

and therefore:

d 𝑓 (𝑐(𝜆))
d𝜆

����
𝜆=0

=
3∑
𝜇=0

𝜕𝐹

𝜕𝑥𝜇

����(𝑥0 (0) ,𝑥1 (0) ,𝑥2 (0) ,𝑥3 (0))
d𝑥𝜇 (𝜆)

d𝜆

����
𝜆=0

. (3.14)

At this stage, it is convenient to introduce Einstein summation convention like we did in the chapter
on Special Relativity, so that we may write the previous relation:

d 𝑓 (𝑐(𝜆))
d𝜆

����
𝜆=0

=
𝜕𝐹

𝜕𝑥𝜇

����(𝑥0 (0) ,𝑥1 (0) ,𝑥2 (0) ,𝑥3 (0))
d𝑥𝜇 (𝑡)

d𝑡

����
𝜆=0

(3.15)

The right hand side of this formula defines a map:

X =
d𝑥𝜇

d𝜆

����
𝜆=0

𝜕.

𝜕𝑥𝜇

����
𝜙 (𝑐 (0) )

(3.16)

that acts on functions 𝑓 ◦ 𝜙−1 and returns a number. By ’lifting everything up’ on the manifold,
i.e. by defining the map Ψ𝜙 : F (M) → F (R𝑛) such that Ψ𝜙 ( 𝑓 ) = 𝑓 ◦ 𝜙−1, this defines a map
𝑿𝒑 = X ◦ Ψ𝜙 : F (M) → R defined on the set of functions on M and returning a number:

𝑿𝒑 ( 𝑓 ) =
d 𝑓 (𝑐(𝜆))

d𝜆

����
𝜆=0
, (3.17)

that is, the directional derivative of 𝑓 along the curve 𝑐 at 𝑝. In what follows we will not bother with
the difference between 𝑿𝒑 and X. Effectively, this amounts to identifying the tangent space (see
below) and the copy of R4 used to define the local chart. It is not quite correct, but it is sufficient
for our purpose. The map 𝑿𝒑 : F (M) → R thus defined is called the tangent vector to the
curve 𝑐 at 𝑝 associated with the parameter 𝜆. The previous relation shows that the expression of the

tangent vector in a given coordinate basis is 𝑿𝒑 = d𝑥𝜇
d𝜆

����
𝜆=0

𝜕.
𝜕𝑥𝜇

����
𝜙 (𝑐 (0) )

. Denoting 𝑋𝜇𝑝 = d𝑥𝜇
d𝜆

����
𝜆=0

, and

abusing notations once more (replacing 𝜙(𝑝) by 𝑝 in the partial derivatives), we get the expression
of a vector in a given chart:
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𝑿𝒑 [·] =
d·
d𝜆

����
𝑝

= 𝑋𝜇𝑝
𝜕·
𝜕𝑥𝜇

����
𝑝

. (3.18)

The 𝑋𝜇𝑝 ’s are the components of the vector 𝑿𝒑 in the coordinate chart chosen.
As one can see, tangent vectors are derivative operators acting locally on functions defined on

the manifolds. This is actually what we need to define vectors in general, irrespective to the curves
they are tangent to:

Vectors in general

Let M be a manifold. Let 𝑝 ∈ 𝑀 . A tangent vector at 𝑝 is a map: 𝑿𝒑 : F (𝑀) → R such
that:

(i) ∀( 𝑓 , 𝑔) ∈ F (𝑀)2, ∀(𝛼, 𝛽) ∈ R2, 𝑿𝒑 [𝛼 𝑓 + 𝛽𝑔] = 𝛼𝑿𝒑 [ 𝑓 ] + 𝛽𝑿𝒑 [𝑔];

(ii) ∀( 𝑓 , 𝑔) ∈ F (𝑀)2, 𝑿𝒑 [ 𝑓 𝑔] = 𝑿𝒑 [ 𝑓 ]𝑔(𝑝) + 𝑓 (𝑝)𝑿𝒑 [𝑔] (Leibniz rule).

Note that in (ii), the operations between functions is a standard product, not a composition. These
two conditions are the standard ones required to define differential operators. The set of tangent
vectors at 𝑝 is denoted 𝑇𝑝 (M). It is called the tangent space ofM at 𝑝. If one supplements 𝑇𝑝 (M)
by the addition of vectors and the multiplication of vectors by real numbers according to:

∀ 𝑓 ∈ F (M) , ∀(𝑿𝒑,𝒀𝒑) ∈ 𝑇𝑝 (M), (𝑿𝒑 + 𝒀𝒑)( 𝑓 ) = 𝑿𝒑 ( 𝑓 ) + 𝒀𝒑 ( 𝑓 ) (3.19)

∀ 𝑓 ∈ F (M) , ∀𝜆 ∈ R, ∀𝑿𝒑 ∈ 𝑇𝑝 (M), (𝜆𝑿𝒑)( 𝑓 ) = 𝜆𝑿𝒑 ( 𝑓 ), (3.20)

one simply constructs a vector space (show it), which, a posteriori, justifies the name of a vector
for elements of 𝑇𝑝 (M). It is simple to see that vectors defined as tangent to curves indeed obey the
definition of vectors we just gave (by linearity of the directional derivative). But, is the converse
true? That means, can one write any tangent vector at 𝑝, 𝑿𝒑, in coordinates as a derivative along a
curve:

𝑿𝒑 [·] = 𝑋𝜇𝑝
𝜕·
𝜕𝑥𝜇

����
𝑝

? (3.21)

The answer is yes, but it is quite tricky to prove so here we will admit it. This being the case, we
see that 𝑇𝑝 (M) is a vector space of dimension 4. Indeed, the vectors 𝜕

𝜕𝑥𝜇 are themselves tangent
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Figure 3.6: A curve parametrised by 𝜆 and its tangent vector at a point 𝑝 in red. The tangent space
is represented in grey and is identified to the copy of R2 used to define the chart. The subscript 𝑝
has been omitted for the canonical basis to ease notations.

to the coordinate axes by definition so they are clearly linearly independent (𝑎𝜇 𝜕 𝑓
𝜕𝑥𝜇 = 0 for all 𝑓

implies 𝑎𝜇 = 0; just take 𝑓 = 𝑥𝜌 varying 𝜌 to show it) and they generate 𝑇𝑝M according to what
we just said. Thus:
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Canonical basis of 𝑇𝑝𝑀

Once a local chart has been chosen, the vectors:

𝒆 (𝝁) ,𝒑 =
𝜕

𝜕𝑥𝜇

����
𝑝

, (3.22)

for 𝜇 ∈ {0, 1, 2, 3}, form a basis of 𝑇𝑝𝑀 called the canonical basis.
Note that the partial derivatives have to be understood as keeping all the other coordinate fixed
by definition:

𝜕 𝑓

𝜕𝑥0 =
𝜕 𝑓

𝜕𝑥0

����
(𝑥1,𝑥2,𝑥3 )

, (3.23)

etc.

The situation is illustrated on Fig. 3.6 in the two dimensional case. An important property of vectors
is the way their components are affected by a change of coordinates on the manifold:

Transformation of the components of vectors under coordinate changes

Let 𝑿𝒑 ∈ 𝑇𝑝 (𝑀). Since 𝑇𝑝𝑀 is a vector space, given two local charts 𝑥𝜇 and 𝑥𝜇, it has two

different bases,

{
𝜕
𝜕𝑥𝜇

����
𝑝

}
and

{
𝜕
𝜕𝑥̃𝜇

����
𝑝

}
, and we have:

𝑿𝒑 = 𝑋𝜇𝑝
𝜕

𝜕𝑥𝜇

����
𝑝

= 𝑋̃𝜈𝑝
𝜕

𝜕𝑥𝜈

����
𝑝

. (3.24)

Then:
∀𝜈 ∈ {0, 1, 2, 3}, 𝑋̃𝜈𝑝 =

𝜕𝑥𝜈

𝜕𝑥𝜇
𝑋
𝜇
𝑝 . (3.25)

Indeed, consider the curve 𝑐 :]𝑎, 𝑏[→ M that has for tangent vector at 𝑝 𝑿𝒑. We denote by
(𝑥0(𝜆), 𝑥1(𝜆), 𝑥2(𝜆), 𝑥3(𝜆)) = (𝜙◦𝑐)(𝑡𝜆), coordinates in the chart (𝑈, 𝜙) and (𝑥0(𝜆), 𝑥1(𝜆), 𝑥2(𝜆), 𝑥3(𝜆)) =
(𝜑 ◦ 𝑐)(𝑡), coordinates in the chart (𝑉, 𝜑) with 𝜙(𝑝) = (𝑥0(0), 𝑥1(0), 𝑥2(0), 𝑥3(0)) and 𝜑(𝑝) =

(𝑥0(0), 𝑥1(0), 𝑥2(0), 𝑥3(0)). Given any 𝑓 : M → R defined along the curve locally around 𝑝, we
have, by definition:

𝑿𝒑 [ 𝑓 ] = 𝑋𝜇𝑝
𝜕

𝜕𝑥𝜇

(
𝑓 ◦ 𝜙−1

)
(𝑥0, 𝑥1, 𝑥2, 𝑥3)

����
𝜙 (𝑝)

. (3.26)
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Since we have seen that: ( 𝑓 ◦ 𝜙−1)(𝑥0, 𝑥1, 𝑥2, 𝑥3) = ( 𝑓 ◦ 𝜑−1) (𝑥0, 𝑥1, 𝑥2, 𝑥3), we get:

𝑿𝒑 [ 𝑓 ] = 𝑋
𝜇
𝑝
𝜕

𝜕𝑥𝜇

(
𝑓 ◦ 𝜑−1

)
(𝑥0, 𝑥1, 𝑥2, 𝑥3)

����
𝜑 (𝑝)

(3.27)

= 𝑋
𝜇
𝑝
𝜕𝑥𝜈

𝜕𝑥𝜇
𝜕

𝜕𝑥𝜈

(
𝑓 ◦ 𝜑−1

)
(𝑥0, 𝑥1, 𝑥2, 𝑥3)

����
𝜑 (𝑝)

. (3.28)

But since in the (𝑉, 𝜑) chart, we have:

𝑿𝒑 [ 𝑓 ] = 𝑋̃𝜈𝑝
𝜕

𝜕𝑥𝜈

(
𝑓 ◦ 𝜑−1

)
(𝑥0, 𝑥1, 𝑥2, 𝑥3)

����
𝜑 (𝑝)

, (3.29)

and these equalities have to be true for any 𝑓 , the result follows:

𝑋̃𝜈𝑝 = 𝑋𝜇𝑝
𝜕𝑥𝜈

𝜕𝑥𝜇
. (3.30)

The union of the tangent spaces at every point of a manifold M is called the tangent bundle of
M, and is denoted 𝑇M:

𝑇M =
⋃
𝑝∈M

𝑇𝑝M . (3.31)

If a vector of 𝑇𝑝M is assigned to each point 𝑝 of the manifold M in a smooth way, the result is a
vector field:

Vector field

A vector field on a manifold M is a map:

𝑿 :

{
M → 𝑇M
𝑝 ↦→ 𝑿𝒑 ∈ 𝑇𝑝𝑀

, (3.32)

such that 𝑋 is smooth.

In other words, 𝑿 is a vector field on M iff 𝑿 ( 𝑓 ) ∈ F (M) for any 𝑓 ∈ F (M). Given an atlas,
one also speaks of the components 𝑋𝜇 of a vector field by identifying them to the components of
𝑿 (𝑝) = 𝑿𝒑 in the local chart for every 𝑝. Therefore, the components of 𝑿 are functions. In a
given coordinate system, the vector fields 𝒆 (𝝁) = 𝜕

𝜕𝑥𝜇 are to be understood as the fields of partial
derivatives at every point locally. Therefore, they are a basis of vector fields and we can write vector
fields in a chart:
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𝑿 = 𝑋𝜇𝒆 (𝝁) = 𝑋
𝜇 𝜕

𝜕𝑥𝜇
, (3.33)

where the 𝑋𝜇’s are functions on the spacetime called components of 𝑿 in the canonical basis asso-
ciated with the chart.

The set of vector fields on a manifold M will be denoted X(M).
In the notes, we will work with vector fields rather than vectors and, to simplify notations, we

will often omit the localisation ay 𝑝 unless stated otherwise.
Finally, let us note that it is sometimes useful to define bases of the tangent spaces and of the vector
fields that are not canonical, i.e. not associated with a coordinate system, {𝒆 (𝑎) } for 𝑎 ∈ {0, 1, 2, 3}.
Note that we use a Latin letter from the beginning of the alphabet to retain the possibility that these
vectors are not associated with coordinates. These vectors (fields) define a coordinate system iff:

∀(𝑎, 𝑏) ∈ {0, 1, 2, 3}2,
[
𝒆 (𝒂) , 𝒆 (𝒃)

]
= 𝒆 (𝒂) 𝒆 (𝒃) − 𝒆 (𝒃) 𝒆 (𝒂) = 0 , (3.34)

where this needs to be understood using a function 𝑓 , as:

𝒆 (𝒂)
(
𝒆 (𝒃) ( 𝑓 )

)
= 𝒆 (𝒃)

(
𝒆 (𝒂) ( 𝑓 )

)
, (3.35)

i.e. as saying that differentiation along the curve tangent to 𝒆 (𝑏) and then along the one tangent to
𝒆𝒃 is the same thing as differentiation along the curve tangent to 𝒆 (𝒂) and then along the one tangent
to 𝒆𝒃. The direct implication is trivial but the converse is a bit trickier to prove; we will admit it
here. The brackets [·, ·] are known as the Lie brackets.

3.3.4 Cotangent space

Since 𝑇𝑝M is a vector space, we can define its dual, consisting of the linear maps defined on 𝑇𝑝M,
sending it to R; see appendix A:
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One-forms

LetM be a manifold and 𝑝 ∈ 𝑀 . The cotangent space at 𝑝 is the vector space, denoted 𝑇∗
𝑝M,

of linear functions:

𝒘𝒑 :

{
𝑇𝑝M → R

𝑿𝒑 ↦→ 𝒘𝒑 (𝑿𝒑).
(3.36)

A vector of 𝑇∗
𝑝M is called a dual vector, a covector or a cotangent vector, sometimes a one-form or

even a covariant vector at 𝑝. The simplest example of a one-form is provided by the differential of
a function at 𝑝, d 𝑓𝑝. Letting 𝑓 : M → R, it is defined via:

∀𝑿𝒑 ∈ 𝑇𝑝M, d 𝑓𝑝 (𝑿𝒑) = 𝑿𝒑 [ 𝑓 ] = 𝑋𝜇𝑝
𝜕 𝑓

𝜕𝑥𝜇

����
𝑝

, (3.37)

where, for simplicity, we have again replaced 𝑓 ◦𝜙−1 by 𝑓 , where 𝜙 is a local coordinate function. In
terms of these local coordinates, remember that we have a coordinate basis {𝒆 (𝝁) } =

{
𝜕
𝜕𝑥𝜇

}
for𝑇𝑝M

(up to identification with𝑇𝑝R𝑛 via the pushforward of 𝜙). Therefore, we can define a canonical dual
basis associated to {𝒆 (𝝁) }, that is a basis of 𝑇∗

𝑝M (up to identification with 𝑇∗
𝑝R

𝑛 via the pullback
of 𝜙; see appendix B), usually denoted

{
𝝎 (𝜇)} = {d𝑥𝜇} in this context, and characterised by:

d𝑥𝜇
(
𝜕

𝜕𝑥𝜈

)
= 𝛿𝜇𝜈 . (3.38)

In this basis, any differential has components (𝑑𝑓 )𝜇 given by:

d 𝑓𝑝 = d 𝑓𝜇𝑑𝑥𝜇 . (3.39)

Therefore, we have:

d 𝑓𝑝 (𝑿𝒑) = (d 𝑓𝜇d𝑥𝜇)
(
𝑋𝜈

𝜕

𝜕𝑥𝜈

)
= d 𝑓𝜇𝑋𝜈d𝑥𝜇

(
𝜕

𝜕𝑥𝜈

)
(3.40)

= d 𝑓𝜇𝑋𝜇 .

Hence, by identifying with the definition:

∀𝜇 ∈ {0, 1, 2, 3}, d 𝑓𝜇 =
𝜕 𝑓

𝜕𝑥𝜇

����
𝑝

. (3.41)
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In general, any one-form 𝜔𝑝 is written, in a local coordinate system, 𝝎𝒑 = 𝜔𝜇d𝑥𝜇, and the action
of this one-form on vectors at 𝑝 is given, in coordinates, by:

𝝎𝒑 (𝑿𝒑) = 𝜔𝜇𝑋𝜇𝑝 . (3.42)

If, instead of a canonical basis in 𝑇𝑝M we use a non-coordinate basis
{
𝒆 (𝒂)

}
, we can of course

define its dual basis in 𝑇∗M,
{
𝝎 (𝑎)} such that:

𝝎(𝒂) (
𝒆 (𝒃)

)
= 𝛿𝑎𝑏 . (3.43)

All the previous results carry forward trivially.
We can also define an inner product between one-forms and vectors at a point:

〈., .〉 :

{
𝑇∗
𝑝M × 𝑇𝑝M → R

(𝝎𝒑, 𝑿𝒑) ↦→
〈
𝝎𝒑, 𝑿𝒑

〉
= 𝝎𝒑 (𝑿𝒑)

. (3.44)

If we now consider a change of coordinate on M at 𝑝, taking two charts (𝑈, 𝜙) and (𝑉, 𝜑) with
𝑝 ∈ 𝑈 ∩ 𝑉 , we must have, for a one-form 𝝎 ∈ 𝑇∗

𝑝𝑀: (forgetting the index 𝑝 from now one to
simplify notations):

𝝎 = 𝜔𝜇d𝑥𝜇 = 𝜔̃𝜈d𝑥𝜈 , (3.45)

where we have noted (𝑥𝜇) the coordinates in 𝜙(𝑈), and (𝑥𝜈) those in 𝜑(𝑉), and similarly for the
associated canonical dual bases. Then, we must have:

𝝎(𝑿) = 𝜔𝜇𝑋𝜇 = 𝜔̃𝜈 𝑋̃
𝜈 . (3.46)

Since 𝑋𝜈 = 𝜕𝑥𝜈

𝜕𝑥̃𝜇 𝑋̃
𝜇, this leads to:

𝜔𝜇
𝜕𝑥𝜇

𝜕𝑥𝜈
𝑋̃𝜈 = 𝜔̃𝜈 𝑋̃

𝜈 , (3.47)

and therefore, under coordinate changes, the components of one-forms transform as:

∀𝜇 ∈ {0, 1, 2, 3}, 𝜔̃𝜇 = 𝜔𝜈
𝜕𝑥𝜈

𝜕𝑥𝜇
. (3.48)

The set 𝑇∗M =
⋃
𝑝∈M 𝑇∗

𝑝M is the cotangent bundle of the manifold M. Similarly to what
happens for vectors, we can define one-form fields as follows:
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One-form field

A field of one-forms (or field of covectors) is an application𝛀 : M → 𝑇∗M that associates
a one-form 𝝎 ∈ 𝑇∗

𝑝M to any point 𝑝 ∈ 𝑀 smoothly. Then, each component of a one-form
field, Ω𝜈 (𝑝) is a function.

The set of one-form fields on a manifold M will be denoted Ω(M).

3.3.5 Tensors

At any point 𝑝 of a manifoldM, we now have two vector spaces, 𝑇𝑝M and its dual 𝑇∗
𝑝M, therefore,

we can define tensors as usual on vector spaces; see appendix A:

Tensors

A tensor of order (𝑟, 𝑠) ∈ N2 at 𝑝 ∈ M is a multilinear map:

𝑻 :


𝑇∗
𝑝M × ... × 𝑇∗

𝑝M︸                 ︷︷                 ︸
𝑟 times

×𝑇𝑝M × ... × 𝑇𝑝M︸                 ︷︷                 ︸
𝑠 times

→ R

(𝝎1, ...,𝝎𝒓 , 𝑿1, ..., 𝑿𝒔) ↦→ 𝑻 (𝝎1, ...,𝝎𝒓 , 𝑿1, ..., 𝑿𝒔)

. (3.49)

In the local coordinate basis and its dual, we get:

𝑻 = 𝑇 𝜇1...𝜇𝑟
𝜈1...𝜈𝑠

𝜕

𝜕𝑥𝜇1
⊗ ... ⊗ 𝜕

𝜕𝑥𝜇𝑟
⊗ d𝑥𝜈1 ⊗ ... ⊗ d𝑥𝜈𝑠 , (3.50)

where the 𝑇 𝜇1...𝜇𝑟
𝜈1...𝜈𝑠 are numbers called the components of the tensor 𝑻 in the coordinate basis.

Then, for any 𝑟 one-forms and 𝑠 vectors:

𝑻 (𝝎1, ...,𝝎𝒓 , 𝑿1, ..., 𝑿𝒔) = 𝑇 𝜇1...𝜇𝑟
𝜈1...𝜈𝑠

(
𝜕

𝜕𝑥𝜇1
⊗ ... ⊗ 𝜕

𝜕𝑥𝜇𝑟
⊗ d𝑥𝜈1 ⊗ ... ⊗ d𝑥𝜈𝑠

)
(
𝜔1
𝜇d𝑥𝜇, ..., 𝜔𝑟𝜇d𝑥𝜇, 𝑋𝜈1

𝜕

𝜕𝑥𝜈
, ..., 𝑋𝜈𝑠

𝜕

𝜕𝑥𝜈

)
(3.51)

= 𝑇 𝜇1...𝜇𝑟
𝜈1...𝜈𝑠

(
(𝜔1

𝜇d𝑥𝜇) ( 𝜕

𝜕𝑥𝜇1
) × ... × (𝜔𝑟𝑘d𝑥𝜇)(

𝜕

𝜕𝑥𝜇𝑟
)

× d𝑥𝜈1 (𝑋𝜈1
𝜕

𝜕𝑥𝜈
) × ... × d𝑥𝜈𝑠 (𝑋𝜈𝑠

𝜕

𝜕𝑥𝜈
)
)

(3.52)

= 𝑇 𝜇1...𝜇𝑟
𝜈1...𝜈𝑠𝜔

1
𝜇1 ...𝜔

𝑟
𝜇𝑟 𝑋

𝜈1
1 ...𝑋

𝜈𝑠
𝑠 . (3.53)
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Note how the Einstein summation convention is making our life easier! The set of tensors of order
(𝑟, 𝑠) ∈ N2 at 𝑝 ∈ M is a vector space (can you show it?), denoted 𝑇𝑟𝑠, 𝑝M. Again, we denote by
𝑇𝑟𝑠M =

⋃
𝑝∈M 𝑇𝑟𝑠, 𝑝M and we call it the tensor bundle of order (𝑟, 𝑠). We can then define a tensor

field of order (𝑟, 𝑠) by the smooth application: 𝑻 : 𝑀 → 𝑇𝑟𝑠M such that 𝑻( 𝒑) ∈ 𝑇𝑟𝑠, 𝑝M. The set
of tensor fields of type (𝑟, 𝑠) on a manifold M will be denoted T 𝑟

𝑠 (M).

Other structures as tensors

What kind of tensors are functions, vectors and one-forms?

Finally, we can give the law of transformations of the components of a tensor by a local change of
chart:

Transformations of the components of tensors under coordinate changes

Let 𝑻 ∈ 𝑇𝑟𝑠, 𝑝M at 𝑝 ∈ M. Let (𝑈, 𝜙) and (𝑉, 𝜑) be two local charts at 𝑝 with 𝑝 ∈ 𝑈 ∩ 𝑉 .
Noting (𝑥𝜇) = 𝜙(𝑝) and (𝑥𝜈) = 𝜑(𝑝) respectively, the components of the tensor 𝑻 in the
chart 𝜑 are given, in terms of the components in the chart 𝜙 by:

𝑇 𝜇1....𝜇𝑟
𝜈1....𝜈𝑠 =

𝜕𝑥𝜇1

𝜕𝑥𝜌1
...
𝜕𝑥𝜇𝑟

𝜕𝑥𝜌𝑟
𝜕𝑥𝜎1

𝜕𝑥𝜈1
...
𝜕𝑥𝜎𝑠

𝜕𝑥𝜈𝑠
𝑇𝜌1...𝜌𝑟

𝜎1...𝜎𝑠 . (3.54)

The proof is similar to the ones given for vectors and one-forms and is left to the reader.
Often, especially in the physics literature, the indices of the components of a tensor that are ’up-
stairs’ are called contravariant, because, in a local coordinate change, they transform the opposite
way, compared to the basis vectors, whereas the indices ’downstairs’ are called covariant, because
they transform the same way as the basis vectors. The law of transformation of tensor components
under a local change of chart is very important as, when given a multilinear function, it allows one
to test if it is a tensor: ’if an object carrying indices transforms like a tensor, it is one, if not, it is not’.
If such an object only transforms like a tensor under a subset of coordinate transformations, then it is
called a tensor ’under these transformations’. Also note that, according to the law of transformation,
if the components of a tensor are zero in a given chart, then they are zero in any chart, which means
that the tensor itself is identically zero at the point of the manifold considered.

Finally, let us note a very useful property of tensors, illustrating it with a (1, 1) tensor. In a given
local basis on 𝑇𝑝M, 𝒆 (𝒂) , and its dual basis 𝝎(𝒂) in 𝑇∗

𝑝M, the components of a tensor 𝑻 ∈ 𝑇1
1, 𝑝 are
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given by:
𝑇𝑎𝑏 = 𝑻

(
𝝎(𝒂) , 𝒆 (𝒃)

)
. (3.55)

The proof of this statement is a good exercise left to the reader.

3.4 The metric tensor

3.4.1 Definition

In General Relativity, there is a tensor that plays a very important role, as it carries the degrees
of freedom associated with the gravitational field: the metric tensor. As we have seen, in Special
Relativity, geometric quantities such as distances, time intervals, length of vectors and angles are
determined via a bilinear map 𝜼 defined on vectors, that we called the Minkowski metric tensor.
Besides, the equivalence principle led us to state that locally, in a suitably chosen coordinate sys-
tem, namely in a local inertial frame, the properties of spacetime must reduce to those of Special
Relativity. This means that on our spacetime manifoldM, we must have a (0, 2) tensor field acting
on vectors in tangent spaces which, locally, can have the same components as 𝜼 in a suitably chosen
coordinate system. This tensor is the metric tensor.
The interest of this new structure is threefold. First, it will allow one to define the scalar product of
two vectors in the same tangent space, thus enabling one to talk about length of vectors and angles
between vectors at the same point in spacetime. Second, it will also allow us to fix very nicely a
’natural’ way to compare vectors and tensors at different points of the manifold. Finally, it will
define a natural inner product at a given point of the manifold, allowing one to obtain the standard
identification between 𝑇𝑝𝑀 and its dual, i.e. leading to a very convenient identification between
vectors and one-forms.

Metric tensor

LetM be the spacetime manifold. A pseudo-Riemannian metric 𝒈 onM (or simply a metric
tensor 𝒈 on M) is a tensor field of type (0, 2) (bilinear form) which satisfies the following
properties at any point 𝑝 ∈ M:

(i) Symmetry: ∀(𝑼,𝑽) ∈ X(M), 𝒈(𝑼,𝑽) = 𝒈(𝑽,𝑼);

(ii) Non-degeneracy: if for 𝑽 ∈ X(M), ∀𝑼 ∈ X(M), 𝒈(𝑼,𝑽) = 0, then 𝑽 = 0.
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Therefore, locally, a pseudo-Riemannian metric is a symmetric non-degenerate bilinear form. Note
that a pseudo-Riemannianmetric is not necessarily positive-definite: theremight exist vectors𝑽 ≠ 0
such that 𝒈(𝑽,𝑽) = 0, something we are familiar with from Special Relativity.
In a local chart, we can write⁵:

𝒈 = 𝑔𝜇𝜈d𝑥𝜇 ⊗ d𝑥𝜈 (3.56)

Since the 𝑔𝜇𝜈’s form a real symmetric matrix, the associated eigenvalues are real. Since 𝒈

is pseudo-Riemannian, some eigenvalues can be negative⁶. It turns out that the number of neg-
ative eigenvalues is called the index of the metric and is an intrinsic property. If this number
is equal to one, one speaks of a Lorentzian metric, like in the case of the metric of spacetime
in Special Relativity. This is the case we are interested in. It is always possible to choose a
local coordinate system such that, locally, the metric may be written as a diagonal matrix with
±1 as eigenvalues. This means that, locally, one can always find a coordinate system such that
𝑔𝜇𝜈 = 𝜂𝜇𝜈 = diag(−1, 1, 1, 1) (Minkowski metric). Actually, to encode the equivalence principle,
we will need a little bit more:

Local inertial frame

At any event 𝐶 ∈ M, we can find local coordinates 𝑋𝜇 such that:

𝒈 |𝐶 = 𝜂𝜇𝜈d𝑋𝜇 ⊗ d𝑋𝜈 , (3.57)

and:
∀(𝜇, 𝜈, 𝜌) ∈ {0, 1, 2, 3}3,

𝜕𝑔𝜇𝜈

𝜕𝑋𝜌
(𝐶) = 0 . (3.58)

The associated frame is called a local inertial frame at 𝐶. In this frame, the laws of physics
are those of Special Relativity.

We will come back to inertial frames later in greater details. Special Relativity relied on the ex-
istence of a specific class of frames, called inertial frames, which were related to each other via
specific transformations, the Lorentz transformations. In General Relativity, inertial frames will
play a role, essentially by the mere fact that they exist. But by the very nature of a manifold, all
coordinate systems are treated on a equal footing. This is general covariance. It means that all the

⁵Note that we will mostly work in coordinate frames. However, everything can be rewritten in non-coordinate frames
by the appropriate change of notations.

⁶Note that in any case, the eigenvalues must be non-zero because the matrix has to be non-degenerate, and invertible.
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laws of physics will have to be written in a form that remains the same in every allowed coordinate
system. We will get back to this later. For now, we can just check that under a generic coordinate
transformation, 𝑥𝜇 ↦→ 𝑥𝜇 the components of the metric tensor transform as:

𝑔̃𝜇𝜈 (𝑥) =
𝜕𝑥𝜌

𝜕𝑥𝜇
𝜕𝑥𝜎

𝜕𝑥𝜈
𝑔𝜌𝜎 (𝑥) . (3.59)

3.4.2 Classification of vectors

In the same way as in Special Relativity, vectors at 𝑝 can then be given a ’length’ via the scalar
product interpretation of the metric. Let 𝑿 be a vector field. Its length function is given by:

𝐿2(𝑝) = 𝒈 (𝑿, 𝑿) = 𝑔𝜇𝜈𝑋𝜇𝑋𝜈 . (3.60)

Because 𝐿2 is a function, its values are invariant under a coordinate transformation therefore, we
can evaluate them in the local inertial frame at each point and conclude that 𝑇𝑝M has the same
causal structure as Minkowski spacetime.

Types of vectors at a point

Let 𝑝 ∈ M and 𝑋 ∈ 𝑇𝑝M be a vector at 𝑝. Then:

• If 𝒈(𝑿, 𝑿) < 0, then 𝑿 is timelike;

• If 𝒈(𝑿, 𝑿) = 0 and 𝑿 ≠ 0, then 𝑿 is lightlike or null;

• If 𝒈(𝑿, 𝑿) > 0, then 𝑿 is spacelike.

A curve tangent to 𝑿 at 𝑝 is either timelike, lightlike or spacelike at 𝑝 depending on the case;
see Fig. 3.7.
Note that we will say that two non-zero vectors are orthogonal iff 𝒈 (𝒖, 𝒗) = 0.

Remember that in Special Relativity we could pick a time orientation by picking a unit timelike
vector. Then, this time orientation was preserved under orthochronous Lorentz transformations. In
General Relativity, a time orientation can also be specified but only locally. If we want it to extend
to finite regions of spacetime, it needs to involve a timelike vector field, i.e. a vector field that is
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Figure 3.7: Local causal structure at 𝑝 ∈ M. Vectors in 𝑇𝑝M are either spacelike (blue), timelike
(red) or lightlike (green lightcone). The curves tangent to them are then also spacelike, timelike or
lightlike at the point 𝑝. In local inertial coordinates, this structure is exactly identical to the one in
Special Relativity (bottom). The lightcone that determines the local causal structure of spacetime
changes from point to point a priori. It looks like a ±𝜋/4 cone only in the local inertial frame but
its shape is coordinate dependent.

timelike across the entire region. Let 𝒖 be such a vector field with:

∀𝑝 ∈ 𝑈, 𝒈𝒑 (𝒖( 𝒑), 𝒖( 𝒑)) < 0 . (3.61)

Then, 𝒖 defines a time-orientation on𝑈 and:
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• 𝑽 timelike or lightlike is future-directed in𝑈 iff 𝒈 (𝒖,𝑽) < 0;

• 𝑽 timelike or lightlike is past-directed in𝑈 iff 𝒈 (𝒖,𝑽) > 0.

This follows from evaluating the scalar product in the local inertial frame.
As an application, consider two points 𝑝 and 𝑝 + 𝛿𝑝 on the manifold, such that both belong to

the same local chart (𝑈, 𝜙). They have coordinates 𝑥𝜇 and 𝑥𝜇 + 𝛿𝑥𝜇 respectively. Let us consider a
curve C through both points and assume that they are infinitesimally close. Let 𝑓 be a function on
M. Let 𝜆 be a parameter along the curve with tangent vector 𝑽:

d 𝑓
d𝜆

= 𝑽 ( 𝑓 ) . (3.62)

If, to go from 𝑝 to 𝑝 + d𝑝, one needs a change in 𝜆 given by d𝜆, then, we can define the tangent
vector at 𝑝:

d 𝒑 = d𝜆𝑽 ∈ 𝑇𝑝M , (3.63)

which is tangent to the curve C by construction. We note that:

d 𝒑( 𝑓 ) =d𝜆𝑽 ( 𝑓 ) (3.64)

=d𝜆
d 𝑓
d𝜆

= d 𝑓 (𝜆) (3.65)

= 𝑓 (𝑝 + d𝑝) − 𝑓 (𝑝) , (3.66)

which shows that d 𝒑 is independent of 𝜆 and only depends on the points 𝑝 and 𝑝 + d𝑝. We call it
the infinitesimal displacement between the two points. In the local chart, we get:

d 𝒑( 𝑓 ) = 𝑓 (𝑥𝜇 + 𝛿𝑥𝜇) − 𝑓 (𝑥𝜇) (3.67)

=
𝜕 𝑓

𝜕𝑥𝜇
𝛿𝑥𝜇 , (3.68)

so that we can write:
d 𝒑 = 𝛿𝑥𝜇𝒆 (𝝁) . (3.69)

Now, we can calculate the ’length’ of the infinitesimal displacement:

d𝑠2 =𝒈
(
𝛿𝑥𝜇𝒆 (𝝁) , 𝛿𝑥

𝜈𝒆 (𝝂)
)

(3.70)

=𝒈
(
𝒆 (𝝁) , 𝒆 (𝝂)

)
𝛿𝑥𝜇𝛿𝑥𝜈 (3.71)

=𝑔𝜇𝜈𝛿𝑥
𝜇𝛿𝑥𝜈 , (3.72)
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which represents the square of the length of the infinitesimal displacement. This defines the space
time interval:

d𝑠2 = 𝑔𝜇𝜈d𝑥𝜇d𝑥𝜈 . (3.73)

Be careful that in this expression, d𝑥𝜇 is not the canonical basis one-form.

3.4.3 Metric duality

Let us see another useful property of the metric tensor. At a point 𝑝 ∈ M, given a vector𝑼 ∈ 𝑇𝑝M,
the induced map 𝒈(𝑼, ·) : 𝑇𝑝M → R is clearly linear, and it is a one-form: 𝝎𝑼 = 𝒈(𝑼, ·) ∈ 𝑇∗

𝑝M.
Hence, the metric 𝒈 naturally introduces an isomorphism between 𝑇𝑝M and 𝑇∗

𝑝M: to any vector
𝑼 ∈ 𝑇𝑝M, we can associate uniquely a one-form 𝒈(𝑼, ·) ∈ 𝑇∗

𝑝M⁷. In terms of coordinates, this
is used to ’transform’ contravariant indices into covariant indices. In a local chart (𝑈, 𝜙) around 𝑝,
we can write: 𝑿 = 𝑋𝜇𝒆 (𝝁) and 𝒈 = 𝑔𝜇𝜈d𝑥𝜇 ⊗ d𝑥𝜈 . Then,

𝝎𝑿 = 𝒈(𝑿, .) = 𝑔𝜇𝜈𝑋𝜇d𝑥𝜈 ∈ 𝑇∗
𝑝M . (3.74)

Then, by writing
𝝎𝑿 = 𝜔𝜇d𝑥𝜇 , (3.75)

we get:
𝜔𝜈 = 𝑔𝜇𝜈𝑋

𝜇 . (3.76)

Usually, when there is no confusion possible, this is noted 𝜔𝜈 = 𝑋𝜈 . This can be generalised to
tensors of arbitrary orders, e.g.:

𝑇𝜇𝜈 = 𝑔𝜇𝜌𝑔𝜈𝜎𝑇
𝜌𝜎 , (3.77)

allows to transform 𝑻 = 𝑇 𝜇𝜈𝒆 (𝝁) ⊗ 𝒆 (𝝂) , tensor of order (2, 0), into a tensor of order (0, 2). Because
the map between 𝑇𝑝M and 𝑇∗

𝑝M is an isomorphism, it has an inverse which associates a unique
vector of 𝑇𝑝M to any one-form. By identifying the components 𝑔𝜇𝜈 with the entries of an 𝑛 × 𝑛
matrix, we can then construct an inverse matrix, denoted 𝑔𝜇𝜈 such that:

⁷To see that it is an isomorphism, note that it maps the basis vectors 𝒆 (𝝁) = 𝜕
𝜕𝑥𝜇 onto a basis of 𝑇∗𝑝M.
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Inverse metric

𝑔𝜇𝜌𝑔
𝜌𝜈 = 𝛿𝜈𝜇 . (3.78)

This defines a (2, 0) tensor acting on one-forms and called the inverse metric:

𝒈−1 = 𝑔𝜇𝜈
𝜕

𝜕𝑥𝜇
⊗ 𝜕

𝜕𝑥𝜈
. (3.79)

Then, it is easy to see that, given a one-form 𝝎, the vector associated with it via the isomorphism
between 𝑇𝑝M and 𝑇∗

𝑝M is given, in terms of coordinates, by 𝑿 = 𝜔𝜇𝒆 (𝝁) such that:

𝜔𝜇 = 𝑔𝜇𝜈𝜔𝜈 . (3.80)

Hence, the natural isomorphism also allows to transform covariant indices into contravariant ones.
And this extends to tensors of arbitrary orders in the same way as before. This is why physicists say
that indices are lowered and raised using the metric and its inverse.

3.4.4 The metric in the weak field limit

For pedagogical reasons, we will introduce here the metric tensor associated with a weak gravita-
tional field. This result is rigorously derived in subsection 5.2.3.

Metric of spacetime in the Newtonian limit

In presence of a weak, slowly varying, Newtonian gravitational potentialΦ𝑁 (𝑥𝜇), there is an
orthonormal coordinate system (𝑡, 𝑥, 𝑦, 𝑧) for which the metric of spacetime takes the simple
form, at leading order in Φ𝑁 :

𝒈 = − (1 + 2Φ𝑁 ) d𝑡 ⊗ d𝑡 + (1 − 2Φ𝑁 ) [d𝑥 ⊗ d𝑥 + d𝑦 ⊗ d𝑦 + d𝑧 ⊗ d𝑧] . (3.81)

The line element is then:

d𝑠2 = − (1 + 2Φ𝑁 ) d𝑡2 + (1 − 2Φ𝑁 ) 𝛿𝑖 𝑗d𝑥𝑖d𝑥 𝑗 . (3.82)

In this framework, every quantity must be understood as being valid at first order in Φ𝑁 , so that
they must all be expanded at first order in terms of the potential or its derivatives. In the remainder
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of this chapter, we will see that it gives a good description of Newtonian gravitation in a General
Relativistic language. This will help us illustrate the concepts and techniques of General Relativity
in a familiar context.

3.5 Kinematics

The trajectories of particles, massless or massive, follow quite naturally from their counterparts in
Special Relativity. Most defining properties listed in section 2.5 will remain valid provided one
substitute 𝒈 for 𝜼 in the definitions.

3.5.1 Lightlike curves

Massless particles such as photons follow lightlike curve:

Lightlike curve

A curve C ⊂ M is lightlike iff its tangent vector field is lighlike. This property does not
depend on the parametrisation. Given 𝑐 : 𝜆 ∈ R ↦→ 𝑐(𝜆) ∈ M such a parametrisation, this
means that the tangent vector field 𝒌 (𝜆) = d

d𝜆 = 𝑘𝜇 𝜕
𝜕𝑥𝜇 satisfies:

𝒈 (𝒌, 𝒌) = 𝑔𝜇𝜈𝑘𝜇𝑘𝜈 = 0 . (3.83)

All lightlike curves through a point 𝑝 ∈ M are tangent to the local lightcone of Fig. 3.7.

3.5.2 Timelike curves

Massive particles follow timelike curves:

Timelike curve

A curve C ⊂ M is timelike iff its tangent vector field is timelike. This property does not
depend on the parametrisation. Given 𝑐 : 𝜆 ∈ R ↦→ 𝑐(𝜆) ∈ M such a parametrisation, this
means that the tangent vector field𝑼(𝜆) = d

d𝜆 = 𝑈𝜇 𝜕
𝜕𝑥𝜇 satisfies:

𝒈 (𝑼,𝑼) = 𝑔𝜇𝜈𝑈𝜇𝑈𝜈 < 0 . (3.84)
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All timelike curves through a point 𝑝 ∈ M point inside to the local lightcone of Fig.3.7. As in the
special relativistic case, there is a preferred parametrisation along timelike curves: the proper time
measured by the particle/observer along the timelike curve:

Proper time

Along a timelike curve C ⊂ M parametrised by 𝜆 ∈ R, the proper time 𝜏 is defined by:

d𝜏 =
√
−𝒈 (𝑼,𝑼)d𝜆 (3.85)

=
√
−𝑔𝜇𝜈𝑈𝜇𝑈𝜈d𝜆 (3.86)

=

√
−𝑔𝜇𝜈

d𝑥𝜇
d𝜆

d𝑥𝜈
d𝜆

d𝜆 . (3.87)

For 𝜆 = 𝜏, writing 𝒖 = d
d𝜏 for the tangent vector, we see immediately that 𝒈 (𝒖, 𝒖) = −1, so that 𝒖

is a unit vector. It is called the 4-velocity of the particle along its worldline C. The 4-momentum of
the particle is then just 𝒑 = 𝑚𝒖, so that we still have:

𝒈 ( 𝒑, 𝒑) = 𝑔𝜇𝜈 𝑝𝜇𝑝𝜈 = −𝑚2 . (3.88)

3.5.3 Observers and observables

Wewill call observer any object whose worldline is a timelike curve parametrised by its proper time
𝜏. In this subsection, we will present the tools necessary to understand what quantities an observer
measures locally.

Simultaneity and local rest state

Consider an observer O with 4-velocity 𝒖 = 𝑢𝜇 𝜕
𝜕𝑥𝜇 and proper time 𝜏, along a worldline L. In

order for O to give a time to events along its worldline it is enough for them to pick a reference time
at which they can set 𝜏 = 0 and then to count the proper time elapsed from this event to any other
event. But what of events outside their worldline? Then in relativity, there is no unique way to say.
One way though, is practical because it is operational: it can be done in real experiment. Consider
that the observer O, in addition to a clock measuring proper time along their worldline, also has
the ability to shoot light rays and to receive them. Consider an event 𝐴 ∈ L along the observer’s
worldline, at proper time 𝜏, and 𝑃 ∈ M that is not on L. At a (proper) time 𝜏1 along their worldline,
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O sends a light ray towards 𝑃. Upon receiving it, 𝑃 reflects (say with a mirror) this light ray towards
O, so that it is received at 𝜏2 along L; see Fig. 3.8. We assume that light rays are not affected by
anything but gravitation: they are free-falling. We define:

Einstein’s simultaneity

𝑃 is said to be simultaneous with 𝐴 iff:

𝜏 =
𝜏1 + 𝜏2

2
. (3.89)

Figure 3.8: The distant event 𝑃 is connected to O’s worldline by two light rays (in green here): one
emitted by O at its proper time 𝜏1, and the other one received by O at 𝜏2.𝑃 is simultaneous to and
event 𝐴 along O’s worldline iff the proper time at 𝐴 is (𝜏1 + 𝜏2)/2.

This definition is purely local: it depends only on time measurements along the observer’s world-
line, without involving anything evaluated at the distant event 𝑃. The set of all events 𝑃 ∈ M
simultaneous with 𝐴 ∈ L forms a hypersurface through 𝐴. It is the simultaneity hypersurface of 𝐴
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for O. It is orthogonal to L and is thus spacelike. Indeed, let us consider that 𝑃 is infinitesimally
close to 𝐴 so that they can be connected (in 𝑇𝐴M) by infinitesimal displacements. By construction,
we have 𝜏1−𝜏 = 𝜏−𝜏2 = 𝛿𝜏. The infinitesimal displacement between 𝐴1 and 𝐴 is 𝛿𝜏𝒖, and so is the
one between 𝐴 and 𝐴2. Let 𝒌1 be the lightlike vector connecting 𝐴1 to 𝑃 and 𝒌2 the one connecting
𝑃 to 𝐴2. By defining 𝒅 the vector connecting 𝐴 to 𝑃, we have:{

𝒌1 =𝛿𝜏𝒖 + 𝒅

𝒌2 =𝛿𝜏𝒖 − 𝒅 .

(3.90)

(3.91)

Since 𝒈 (𝒌1, 𝒌1) = 𝒈 (𝒌2, 𝒌2) = 0, we get:{
−(𝛿𝜏)2 + 𝒈 (𝒅, 𝒅) + 2𝛿𝜏𝒈 (𝒖, 𝒅) = 0

−(𝛿𝜏)2 + 𝒈 (𝒅, 𝒅) − 2𝛿𝜏𝒈 (𝒖, 𝒅) = 0 ,

(3.92)

(3.93)

which implies that 𝒈 (𝒖, 𝒅) = 0 and 𝒅 is thus spacelike. Therefore, the simultaneity hypersurface of
𝐴 for O is orthogonal to 𝒖 at 𝐴. Vectors tangent to it at 𝐴 are spacelike. The set of such spacelike
vectors orthogonal to 𝒖 at 𝐴 is a vector subspace of 𝑇𝐴M called the local rest space of O at 𝐴,
denoted RO (𝐴). Then, the tangent space 𝑇𝐴M naturally splits into a direct sum:

𝑇𝐴M = Span(𝒖) ⊕ RO (𝐴) . (3.94)

Given any vector 𝑽 at 𝐴, it can always be decomposed into a part tangent to 𝒖, 𝑽| | , and a part
orthogonal to it, 𝑽⊥, by using the orthogonal projector onto the rest space; see Fig 3.9:

𝑷𝒓 = 𝑰𝒅 + 𝒖 ⊗ 𝒖∗ . (3.95)

In terms of components:
𝑃𝑟𝜇𝜈 = 𝛿

𝜇
𝜈 + 𝑢𝜇𝑢𝜈 . (3.96)

You can check that: {
𝑽⊥ =𝑷𝒓 (·,𝑽)

𝑽| | =𝑽 − 𝑽⊥ .

(3.97)

(3.98)

In the same way as 𝑇𝐴M splits into a direction along 𝒖 and the rest space according to a direct
sum, we can split the dual space and any tensor space, so it makes sense to project one-forms and
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Figure 3.9: Any vector 𝑽 can be projected onto the rest space of the observer O at an event 𝐴 using
the projection operator 𝑷𝒓 defined in Eq. (3.95).

tensors of any rank along 𝒖 or orthogonally to it by applying the projection operator and its dual the
appropriate number of times. Incidently, we have shown that at any event 𝐴 along the worldline of
an observer with 4-velocity 𝒖, a lightlike vector 𝒌, can be decomposed into:

𝒌 ∝ 𝒖 + 𝒏 , (3.99)

where 𝒏 is spacelike and orthogonal to 𝒖. This will be important later.

3.5.4 Local Lorentz factor

Consider two observers O and O′, each following worldlines L and L′ with 4-velocity 𝒖 and 𝒖′,
and crossing at an event 𝐴. Let 𝜏 be the proper time along L at 𝐴 and 𝜏′ the one along L′ at the
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same event. After an infinitesimal interval d𝜏′ of its proper time, O′ is at the event 𝐴′ along its
worldline. O determine the ’time’ of 𝐴′ in its own frame by the simultaneity procedure described
above, and gives it the time 𝜏 + d𝜏. The Lorentz factor of O′ with respect to O, 𝛾, is defined by:

𝛾 =
d𝜏
d𝜏′

. (3.100)

Let 𝐵 be the event along L simultaneous to 𝐴′ according to O; see Fig. 3.10. If we denote by

Figure 3.10: Construction to calculate the Lorentz factor between two observers.

d𝜏𝒗 the spacelike infinitesimal displacement between 𝐵 and 𝐴′, we can write:

d𝜏′𝒖′ = d𝜏𝒖 + d𝜏𝒗 , (3.101)

so that:

𝒖′ = 𝛾 [𝒖 + 𝒗] . (3.102)
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Since 𝒈 (𝒖, 𝒗) = 0, we get:

𝛾 = − 𝒈 (𝒖, 𝒖′) (3.103)

=
1√

1 − 𝒈 (𝒗, 𝒗)
. (3.104)

Note the similarity with the special relativistic formula. Also note that since 𝒈 (𝒗, 𝒗) > 0, we obtain
𝛾 > 1. This is the general relativistic analogue to the ’time dilation’.

3.5.5 Measurements

Let O be an observer moving along a timelike worldline LO with 4-velocity 𝒖 and proper time 𝜏. A
particle, massless or massive, moves along a worldline, timelike of lightlike, L with 4-momentum
𝒌 and encounters the observer O at the event 𝐶 along its worldline. Then, the energy of the particle
as measured by O is given by:

𝐸 = −𝒈 (𝒖, 𝒌) , (3.105)

where this quantity must be evaluated at the event 𝐶. To see this, one can simply go to the local
inertial frame at 𝐶 and use the special relativistic result. Then, we can define a spacelike vector (it
is orthogonal to 𝒖, which is timelike) living in O’s local rest space at 𝐶:

(3) 𝒌 = 𝒌 + 𝒈 (𝒖, 𝒌) 𝒖 = 𝒌 − 𝐸𝒖 , (3.106)

called the particle’s 3-momentum.

Massless particles

If the particle is a photon, then 𝒈 (𝒌, 𝒌) = 0 and we see that:

𝒈
(
(3) 𝒌, (3) 𝒌

)
= 𝐸2 . (3.107)

We can define a unit spacelike vector 𝒏 = (3) 𝒌/𝐸 corresponding to the instantaneous direction of
propagation of the photon in the observer’s rest frame so that:

Decomposition of photon 4-momentum

𝒌 = 𝐸 [𝒖 + 𝒏] , (3.108)

where:



The geometry of spacetime 118

• 𝒖 is the 4-velocity of the observer;

• 𝐸 = −𝒈 (𝒌, 𝒖) is the energy of the photon as measured by the observer;

• 𝒏 is a spacelike unit vector (𝒈 (𝒏, 𝒏) = 1 and 𝒈 (𝒏, 𝒖) = 0) corresponding to the direc-
tion in which the photon propagates in the observer’s rest frame at the event of mea-
surement.

This is pictured in Fig. 3.11.

Figure 3.11: The 4-momentum of a photon can be decomposed onto a component along the ob-
server’s 4-velocity, giving the observed energy, 𝐸 , and a component in the observer’s local rest
space, giving the direction of propagation of the photon at the event of measurement, 𝒏.
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Massive particles

If the particle is massive, of mass 𝑚, then 𝒌 = 𝑚𝑼 where 𝑼 is the particle’s 4-velocity. Then, the
energy is just:

𝐸 = −𝑚𝒈 (𝒖,𝑼) = 𝑚𝛾 , (3.109)

and we recover, formally, Einstein’s special relativistic formula. On the other hand, computing
𝒈 (𝒌, 𝒌) = −𝑚2 in terms of the decomposition (3.106), we get:

𝐸2 = 𝑚2 + 𝒈
(
(3) 𝒌, (3) 𝒌

)
, (3.110)

again obtaining a formula formally identical to the special relativistic one. These formal equiva-
lences come from the fact that energy and 3-momentum are purely local quantities. Thus, they
could be computed in the local inertial frame and their expressions in an arbitrary coordinate sys-
tem obtained by a simple change of coordinates. The genuine effects of gravitation will show up
when we start taking about non-local quantities.

3.6 Parallel transport, affine connection and the geodesic equation

In this section we develop a way to propagate vectors along curves in spacetime. This leads to the
concept of affine connection. We introduce the metric-compatible connection, which provides us
with a well-defined notion of derivative along vector fields that generalises partial derivatives to
arbitrary coordinate systems. Finally, we obtain the geodesic equation and we show that it allows
one to obtain the equations of motions of particles in free-fall.

3.6.1 Parallel transport: a qualitative discussion

We are guided by the fact that two vectors (respectively one-forms, or tensors of any kind) at different
points of the manifold cannot be compared directly, since they belong to different tangent spaces
(respectively cotangent spaces, etc.). So we are looking for a way to ’glue’ tangent spaces together,
for a rule that allows one to go from one tangent space to another one associated to a point ’infinitely’
closed to the first point. In R𝑛, with its canonical, Cartesian basis, things are pretty simple. Given
a vector field 𝑽 = 𝑉 𝑖𝒆 (𝒊) , we can define its partial derivatives by:

𝜕𝑉 𝑖

𝜕𝑥 𝑗
= lim

Δ𝑥 𝑗→0

𝑉 𝑖 (𝑥1, ..., 𝑥 𝑗−1, 𝑥 𝑗 + Δ𝑥 𝑗 , 𝑥 𝑗+1, ..., 𝑥𝑛) −𝑉 (𝑥1, ..., 𝑥𝑛)
Δ𝑥 𝑗

. (3.111)
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In the numerator, the first term is defined at the point 𝑥 + Δ𝑥 = (𝑥1, ..., 𝑥 𝑗−1, 𝑥 𝑗 + Δ𝑥 𝑗 , 𝑥 𝑗+1, ..., 𝑥𝑛),
and the second term at the point 𝑥 = (𝑥1, ..., 𝑥𝑛). Therefore we can try to transport𝑉 𝑖 (𝑥 +Δ𝑥) to the
point 𝑥 is order to perform the subtraction. Such a method is called parallel transport. In this case,
which is the one from usual calculus, we simply suppose that 𝑉 (𝑥) transported to 𝑥 + Δ𝑥 has the
same component as 𝑉 (𝑥): this follows from the rules defining a vector space. Indeed, in a vector
space, vectors are not attached to a point, they can be attached to any point by being drawn parallel
to themselves (this is just (𝑣 + 𝑎) − 𝑎 = 𝑣). But for a manifold, such rules are absent and one is free
to specify what is meant by parallel transporting vectors. So let us pick up a manifold M, and 𝑽 a
vector field on this manifold, as well as a local chart {𝑥𝑖}. Let us write 𝑽̃ (𝑥 + Δ𝑥) the result of the
parallel transport of the vector 𝑽 (𝑥) from 𝑥 to 𝑥 + Δ𝑥. The first rules we impose are the following:

1. ∀𝑖 ∈ {1, ..., 𝑛}, 𝑉̃ 𝑖 (𝑥 + Δ𝑥) −𝑉 𝑖 (𝑥) ∝ Δ𝑥;

2. ∀𝑖 ∈ {1, ..., 𝑛},
(
𝑉 𝑖 +𝑊 𝑖

)
(𝑥 + Δ𝑥) = 𝑉̃ 𝑖 (𝑥 + Δ𝑥) + 𝑊̃ 𝑖 (𝑥 + Δ𝑥), where 𝑾 is another vector

field.

The first condition just expresses the fact that the change has to be infinitesimal for an infinitesimal
displacement. The second condition tells us that the parallel transport is a linear operation. Using
the first condition, we see that we can write:

𝑉̃ 𝑖 (𝑥 + Δ𝑥) = 𝑉 𝑖 (𝑥) + 𝐴𝑖 𝑗 (𝑥,𝑉 (𝑥)) Δ𝑥 𝑗 . (3.112)

The 𝐴𝑖 𝑗’s are assumed to depend on 𝑉 and 𝑥, a priori, because nothing prevents it. If we use the
second condition we then get:

𝐴𝑖 𝑗 (𝑥, (𝑉 +𝑊) (𝑥)) = 𝐴𝑖 𝑗 (𝑥,𝑉 (𝑥)) + 𝐴𝑖 𝑗 (𝑥,𝑊 (𝑥)) , (3.113)

so they must be linear functions of the components of the vector:

𝐴𝑖 𝑗 (𝑥,𝑉 (𝑥)) = −Γ𝑖 𝑗𝑘 (𝑥)𝑉 𝑘 (𝑥) . (3.114)

The Γ𝑖 𝑗𝑘 thus defined are the connection coefficients. Using them, we have that:

𝑉̃ 𝑖 (𝑥 + Δ𝑥) = 𝑉 𝑖 (𝑥) − Γ𝑖 𝑗𝑘 (𝑥)Δ𝑥 𝑗𝑉 𝑘 (𝑥) . (3.115)
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Then, by analogy with the derivatives inR𝑛, we can define the covariant derivative of𝑽 with respect
to 𝑥 𝑗 , denoted ∇ 𝑗𝑽, by:

∇ 𝑗𝑽 = lim
Δ𝑥 𝑗→0

𝑉 𝑖 (𝑥 + Δ𝑥) − 𝑉̃ 𝑖 (𝑥 + Δ𝑥)
Δ𝑥 𝑗

𝜕

𝜕𝑥𝑖
(3.116)

=

(
𝜕𝑉 𝑖

𝜕𝑥 𝑗
+ Γ𝑖 𝑗𝑘𝑉

𝑘

)
𝜕

𝜕𝑥𝑖
. (3.117)

As one can see, it is a vector, since it is expressed as a linear combination of the coordinate basis
vectors of 𝑇𝑥+Δ𝑥M. Of course, for 𝑽 fixed, one can construct a one-form ∇𝑽 = ∇ 𝑗𝑽d𝑥 𝑗 whose
components are the covariant derivatives with respect to the 𝑥𝑖’s. The case of the vector space R𝑛

with Cartesian coordinates described above just corresponds to Γ𝑖 𝑗𝑘 = 0 for any (𝑖, 𝑗 , 𝑘). Beware
that the connection coefficients cannot follow the laws of transformation of tensor, as the example
below show.

Let us consider the Euclidean space in 2 dimensions, 𝐸2. We define the parallel transport in the
usual sense (case discussed above for R𝑛): 𝑽̃ (𝑥 + Δ𝑥, 𝑦 + Δ𝑦) = 𝑽 (𝑥, 𝑦). In Cartesian coordinates,
all the connections are identically zero. If we now switch to polar coordinates (𝑟, 𝜃) via

𝜓−1 :

{
R+ × [0, 2𝜋[ → R × R

(𝑟, 𝜃) ↦→ (𝑥, 𝑦) = (𝑟 cos 𝜃, 𝑟 sin 𝜃)
, (3.118)

we can write the vector 𝑽 as:

𝑉 = 𝑉 𝑥𝒆𝒙 +𝑉 𝑦𝒆𝒚 = 𝑉𝑟 𝒆𝒓 +𝑉 𝜃 𝒆𝜽 , (3.119)

where
{
𝒆𝒙, 𝒆𝒚

}
=

{
𝜕
𝜕𝑥 ,

𝜕
𝜕𝑦

}
is the Cartesian basis for vectors of 𝐸2, and {𝒆𝒓 , 𝒆𝜽} =

{
𝜕
𝜕𝑟 ,

𝜕
𝜕𝜃

}
is the

polar canonical basis. Figure 3.12 represents the parallel transport of a vector of the plane viewed
in polar coordinates.

We know that: {
𝒆𝒓 (𝑟, 𝜃) = cos 𝜃𝒆𝒙 + sin 𝜃𝒆𝒚

𝒆𝜽 (𝑟, 𝜃) = − 𝑟 sin 𝜃𝒆𝒙 + 𝑟 cos 𝜃𝒆𝒚 .

(3.120)

(3.121)

Therefore, at first order in the small displacements:
𝒆𝒓 (𝑟 + Δ𝑟, 𝜃 + Δ𝜃) =𝒆𝒓 (𝑟, 𝜃) +

Δ𝜃
𝑟
𝒆𝜽 (𝑟, 𝜃)

𝒆𝜽 (𝑟 + Δ𝑟, 𝜃 + Δ𝜃) =𝒆𝜽 (𝑟, 𝜃) − 𝑟Δ𝜃𝒆𝒓 (𝑟, 𝜃) +
Δ𝑟
𝑟
𝒆𝜽 (𝑟, 𝜃) .

(3.122)

(3.123)
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Figure 3.12: The standard parallel transport of the vector 𝑽 (𝑀) (here in blue) in the plane, to a
point 𝑀 ′: 𝑽 (𝑀 ′) = 𝑽 (𝑀), Clearly the components of the vector in the moving basis are altered
by the transport. When Δ𝑟 and Δ𝜃 are infinitesimal, the changes are encapsulated in the connection
coefficients.

Then, since we said that: 𝑽̃ (𝑥 + Δ𝑥, 𝑦 + Δ𝑦) = 𝑽 (𝑥, 𝑦), we must also have: 𝑽̃ (𝑟 + Δ𝑟, 𝜃 + Δ𝜃) =

𝑽 (𝑟, 𝜃) (properties of vectors don’t depend on the coordinate system chosen). So, writing𝑽 (𝑟, 𝜃) =
𝑉𝑟 𝒆𝒓 (𝑟, 𝜃) +𝑉 𝜃 𝒆𝜽 (𝑟, 𝜃), after a bit of algebra, we find that:


𝑉̃𝑟 =𝑉𝑟 + 𝑟𝑉 𝜃Δ𝜃

𝑉̃ 𝜃 =𝑉 𝜃 − 𝑉
𝜃

𝑟
Δ𝑟 − 𝑉

𝑟

𝑟
Δ𝜃 .

(3.124)

(3.125)
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Therefore, by coming back to the definition of the connection coefficients, we have that:
Γ𝑟 𝑟𝑟 = Γ𝑟𝑟 𝜃 = Γ𝑟 𝜃𝑟 = Γ𝜃 𝜃 𝜃 = 0

Γ𝑟 𝜃 𝜃 = −𝑟 and Γ𝜃𝑟 𝜃 = Γ𝜃 𝜃𝑟 =
1
𝑟
.

(3.126)

(3.127)

A few remarks:

• There is nothing physical in connection coefficients since they can bemade to appear or vanish
by a simple change of coordinates.

• It is clear that connection coefficients are not the components of a tensor: they are all zero in
Cartesian coordinates, but not in polar coordinates.

• The resulting connection coefficients are symmetric in their lower indices: Γ𝑖 𝑗𝑘 = Γ𝑖 𝑘 𝑗 ;

• In defining this particular case of parallel transport, we have conserved the direction of the
vector but also its norm.

Connection coefficients that verify the last two points define a Levi-Civita connection.

3.6.2 The affine connection

Definition

Now that we have studied connections ’by-hand’, we are ready to give a general definition, As
previously, we focus on the four dimensional case of interest in General Relativity and we use the
relativistic notations.

Affine connection

If we denote by X(M) the set of vector fields on spacetime M, an affine connection on M
is a map:

∇ :

{
X(M) × X(M) → X(M)

(𝑿,𝒀) ↦→ ∇𝑿𝒀
, (3.128)

such that, for all (𝑿,𝒀 , 𝒁) ∈ X(M)3 and all 𝑓 ∈ F (M):

(i) ∇𝑿 (𝒀 + 𝒁) = ∇𝑿𝒀 + ∇𝑿𝒁;

(ii) ∇(𝑿+𝒀 )𝒁 = ∇𝑿𝒁 + ∇𝒀 𝒁;
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(iii) ∇( 𝑓 𝑿 )𝒀 = 𝑓∇𝑿𝒀;

(iv) ∇𝑿 ( 𝑓𝒀) = 𝑿 [ 𝑓 ]𝒀 + 𝑓∇𝑿𝒀 .

(i) and (ii) mean that the affine connection is a bilinear map, while (iii) and (iv) spell its properties
as a differential operator. Of course, we can look at the effect of an affine connection on the vectors
of a coordinate basis, once a local chart has been chosen. Let (𝑈, 𝜙) be a local chart around 𝑝 ∈ M
such that {𝑥𝜇} = 𝜙(𝑝). Given an affine connections ∇ on M, we define the 43 = (dim M)3 = 64
functions Γ𝜌𝜇𝜈 , called connection coefficients by:

∇𝒆 (𝝁) 𝒆 (𝝂) = Γ𝜌𝜇𝜈𝒆 (𝝆) , (3.129)

where
{
𝒆 (𝝁)

}
=

{
𝜕
𝜕𝑥𝜇

}
is the canonical basis of𝑇𝑝M associated with the local coordinates {𝑥𝜇}.

Usually, one denotes∇𝒆 (𝝁) = ∇𝜇, and this operator is called the covariant derivative associated with
the given affine connection. This terminology will become clear a bit later. The connection coeffi-
cients specify how the basis vectors of the tangent spaces change from one point of the manifold to
another when they are parallel transported. This is exactly the same as what we described for the
polar basis above. Once we have fixed the action of the connection on the basis, we can calculate its
action on any vector field. Let 𝑿 = 𝑋𝜇𝒆 (𝝁) and 𝒀 = 𝑌 𝜇𝒆 (𝝁) be two vector fields. Then, according
to the properties of the connection:

∇𝑿𝒀 =𝑋𝜇∇𝒆 (𝝁)

(
𝑌 𝜈𝒆 (𝝂)

)
= 𝑋𝜇

(
𝒆 (𝝁) [𝑌 𝜈]𝒆 (𝝂) + 𝑌 𝜈∇𝒆 (𝝁) 𝒆 (𝝂)

)
(3.130)

=𝑋𝜇
(
𝜕𝑌 𝜈

𝜕𝑥𝜇
+ Γ𝜈𝜇𝜌𝑌

𝜌

)
𝑒𝜈 . (3.131)

Note that we recover the results of our ’hand-wavy’ argument above. By definition, ∇𝑿𝒀 is a vector
field with components equal to the RHS of the previous equation: ∇𝑿𝒀 = (∇𝑋𝑌 )𝜇 𝒆 (𝝁) . This is the
covariant derivative of 𝒀 along 𝑿.The components of the covariant derivative of 𝒀 along 𝑿 can be
read off Eq. (3.131):

(∇𝑋𝑌 )𝜈 = 𝑋𝜇
(
∇𝜇𝑌

)𝜈 = 𝑋𝜇 (
𝜕𝑌 𝜈

𝜕𝑥𝜇
+ Γ𝜈𝜇𝜌𝑌

𝜌

)
. (3.132)

Note that in General Relativity, the components of the covariant derivative of a vector field are
usually denoted:

∇𝜇𝑋𝜈 =
𝜕𝑌 𝜈

𝜕𝑥𝜇
+ Γ𝜈𝜇𝜌𝑌

𝜌 , (3.133)
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instead of the more rigorous
(
∇𝜇𝑋

)𝜈 . We will make use of both notations.

Action of the connection on arbitrary objects

Once a connection has been chosen, via its action on coordinate basis vector fields of 𝑇M, we can
readily generalise its action on arbitrary geometric objects such as functions, one-form fields and
tensor fields. To simplify expressions, It is customary to keep the same notation for the action on
every object. Let us fix a vector field 𝑿 ∈ X(M), and define the action of a connection ∇𝑿 on the
various tensorial objects.
For functions 𝑓 ∈ F (M), the connection is just the directional derivative:

∇𝑿 :

{
F (M) → F (M)
𝑓 ↦→ ∇𝑿 𝑓 = 𝑿 [ 𝑓 ]

. (3.134)

For general tensors, we need to impose a Leibniz rule to ensure that the connection remains a
derivative operator:

∇𝑿 (𝑻1 ⊗ 𝑻2) = (∇𝑿𝑻1) ⊗ 𝑻2 + 𝑻1 ⊗ (∇𝑿𝑻2) , (3.135)

where 𝑻1 and 𝑻2 are tensor fields of arbitrary orders. For example, for a one-form field𝝎, we define
the connection as:

∇𝑿 :

{
Ω(M) → Ω(M)
𝝎 ↦→ ∇𝑿𝝎

. (3.136)

For any vector field𝒀 , we have𝝎(𝒀) ∈ F (M), and therefore, we know how to a[ply the connection
to it:

∇𝑿 (𝝎(𝒀)) = 𝑿 [𝝎(𝒀)] = 𝑿 [𝜔𝜇𝑌 𝜇] . (3.137)

Besides, if we apply the Leibniz rule above, we must have:

∇𝑿 (𝝎(𝒀)) = (∇𝑿𝝎) (𝒀) + 𝝎 (∇𝑿𝒀) . (3.138)

Substituting for ∇𝑿𝒀 and for 𝑿 (𝜔𝜇𝑌 𝜇), and equating these two relations, we find that the compo-
nents of the one-form ∇𝑿𝝎 = (∇𝑋𝜔)𝜇𝑑𝑥𝜇 verify:

(∇𝑋𝜔)𝜇 = 𝑋𝜈 (∇𝜈𝜔)𝜇 = 𝑋𝜈
(
𝜕𝜔𝜇

𝜕𝑥𝜈
− Γ𝜌𝜈𝜇𝜔𝜌

)
. (3.139)
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Note that in General Relativity, as for vectors, the components of the covariant derivative of a
one-form field are usually denoted:

∇𝜇𝜔𝜈 =
𝜕𝜔𝜇

𝜕𝑥𝜈
− Γ𝜌𝜈𝜇𝜔𝜌 , (3.140)

instead of the more rigorous
(
∇𝜇𝜔

)
𝜈 . We will make use of both notations.

For 𝑿 = 𝒆 (𝝂) :

(∇𝑒(𝜈)𝜔)𝜇 =
𝜕𝜔𝜇

𝜕𝑥𝜈
− Γ𝜌𝜈𝜇𝜔𝜌 . (3.141)

Further, if 𝝎 = d𝑥𝑖 , then:

∇𝜈d𝑥𝜇 = −Γ𝜇𝜈𝜌d𝑥𝜌 . (3.142)

This generalises to tensors of arbitrary types in the same way. We define the connection on tensors
of type (𝑟, 𝑠) by:

∇𝑿 :

{
T 𝑟
𝑠 (M) → T 𝑟

𝑠 (M)
𝑻 ↦→ ∇𝑿𝑻

. (3.143)

Using the connection on vectors and one-forms, we then obtain a generalised Leibniz rule⁸:

(∇𝒀𝑻) (𝝎1, · · · ,𝝎𝒓 , 𝑿1, · · · , 𝑿𝒔) =𝒀 [𝑻 (𝝎1, · · · ,𝝎𝒓 , 𝑿1, · · · , 𝑿𝒔)]

− 𝑻 (∇𝒀𝝎1,𝝎2, · · · ,𝝎𝒓 , 𝑿1, · · · , 𝑿𝒔)

− · · · − 𝑻 (𝝎1,𝝎2, · · · ,∇𝒀𝝎𝒓 , 𝑿1, · · · , 𝑿𝒔) (3.144)

− 𝑻 (𝝎1,𝝎2, · · · ,𝝎𝒓 ,∇𝒀 𝑿1, · · · , 𝑿𝒔)

− · · · − 𝑻 (𝝎1,𝝎2, · · · ,𝝎𝒓 , 𝑿1, · · · ,∇𝒀 𝑿𝒔) .

In terms of components, this gives:

∇𝑿𝑻 = 𝑋𝜇∇𝜇𝑻 = 𝑋𝜇
(
∇𝜇𝑻

)𝜈1 · · ·𝜈𝑟
𝜌1 · · ·𝜌𝑠 𝒆 (𝝂1) ⊗ · · · ⊗ 𝒆 (𝝂𝒓 ) ⊗ d𝑥𝜌1 ⊗ · · · ⊗ d𝑥𝜌𝑠 , (3.145)

where:

⁸To convince yourself of this rule, do the calculation for a simple tensor, say of type (0, 2).
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(
∇𝜇𝑇

)𝜈1 ·𝜈𝑟
𝜌1 · · ·𝜌𝑠 =

𝜕𝑇 𝜈1 · · ·𝜈𝑟
𝜌1 · · ·𝜌𝑠

𝜕𝑥𝜇

+ Γ𝜈1
𝜇𝜆𝑇

𝜆𝜈2 · · ·𝜈𝑟
𝜌1 · · ·𝜌𝑠 + · · · + Γ𝜈𝑟 𝜇𝜆𝑇

𝜈1 · · ·𝜈𝑟−1𝜆
𝜌1 · · ·𝜌𝑠

− Γ𝜆𝜇𝜌1𝑇
𝜈1 · · ·𝜈𝑟

𝜆𝜌2 · · ·𝜌𝑠 − · · · − Γ𝜆𝜇𝜌𝑠𝑇
𝜈1 · · ·𝜈𝑟

𝜌1 · · ·𝜌𝑠−1𝜆 .

(3.146)

We will often denote
(
∇𝜇𝑇

)𝜈1 ·𝜈𝑟
𝜌1 · · ·𝜌𝑠 = ∇𝜇𝑇 𝜈1 ·𝜈𝑟

𝜌1 · · ·𝜌𝑠 .

Transformation of the connection coefficients

Let 𝑝 ∈ M and (𝑈, 𝜙) and (𝑉, 𝜑) be two local charts such that 𝑝 ∈ 𝑈 ∩ 𝑉 . Let 𝑥 = {𝑥𝜇} = 𝜙(𝑝)
and 𝑥 = {𝑥𝜇} = 𝜑(𝑝). We also denote by

{
𝒆 (𝝁)

}
=

{
𝜕
𝜕𝑥𝜇

}
and

{
𝒆 (𝝁)

}
=

{
𝜕
𝜕𝑥̃𝜇

}
the two coordinate

bases of 𝑇𝑝M associated with the coordinate functions 𝜙 and 𝜑, respectively. Finally, for a fixed
connection, we note Γ the connection coefficients in the coordinate system given by 𝜙 and Γ̃ these
coefficients in the coordinate system given by 𝜑. Then, we have:

∇𝒆̃ (𝝁) 𝒆 (𝝂) = Γ̃𝜌𝜇𝜈 𝒆̃ (𝝆) . (3.147)

Besides:
𝒆 (𝝁) =

𝜕𝑥𝜈

𝜕𝑥𝜇
𝒆 (𝝂) , (3.148)

so that, by taking the connection of this expression, we get:

∇𝒆̃ (𝝁) 𝒆 (𝝂) =∇𝒆̃ (𝝁)

(
𝜕𝑥𝜌

𝜕𝑥𝜈
𝒆 (𝝆)

)
(3.149)

=
𝜕2𝑥𝜌

𝜕𝑥𝜇𝜕𝑥𝜈
𝒆 (𝝆) +

𝜕𝑥𝜆

𝜕𝑥𝜇
𝜕𝑥𝜌

𝜕𝑥𝜈
∇𝜆𝒆 (𝝆) (3.150)

=

(
𝜕2𝑥𝜌

𝜕𝑥𝜇𝜕𝑥𝜈
+ 𝜕𝑥

𝜆

𝜕𝑥𝜇
𝜕𝑥𝜎

𝜕𝑥𝜈
Γ𝜌𝜆𝜎

)
𝒆 (𝝆) . (3.151)

Hence, by comparing both expressions for ∇𝒆̃ (𝝁) 𝒆 (𝝂) , we find that, under a coordinate change,
the connection coefficients transform as:

Γ̃𝜇𝜈𝜌 =
𝜕𝑥𝜆

𝜕𝑥𝜈
𝜕𝑥𝜎

𝜕𝑥𝜌
𝜕𝑥𝜇

𝜕𝑥 𝛿
Γ𝛿𝜆𝜎 + 𝜕𝑥𝜇

𝜕𝑥𝜎
𝜕2𝑥𝜎

𝜕𝑥𝜈𝜕𝑥𝜌
. (3.152)
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It is apparent that this is not the way tensors transforms, because of the second term. Therefore,
despite the fact that the connection coefficients carry indices, they are not the components of any
tensor.

3.6.3 Parallel transport and the geodesic equation

Let us now define the parallel transport of a vector along a curve.

Parallel transport

Let 𝑐 : ]𝑎, 𝑏[⊆ R → 𝑈 ⊂ M be a parametrised curve on an open subset 𝑈 of M. Let 𝜙
be a coordinate chart on 𝑈. Let us note 𝑥(𝑐(𝜆)) = {𝑥𝜇 (𝑐(𝜆))} = 𝜙(𝑐(𝜆)) for 𝜆 ∈]𝑎, 𝑏[. Let
𝑿 ∈ X(M) be an arbitrary vector field defined along the curve, such that:

𝑿(𝒄(𝝀)) = 𝑋𝜇 (𝑐(𝜆))𝒆 (𝝁) . (3.153)

Let:
𝑽 =

d𝑥𝜇

d𝜆
𝒆 (𝝁) (3.154)

be the vector tangent to the curve and associated with the parameter 𝜆. Then, if:

∀𝜆 ∈]𝑎, 𝑏[,∇𝑽 𝑿 = 0 , (3.155)

we say that 𝑿 is parallel transported along the curve 𝑐 in the open set 𝑈. Component-wise,
this reads:

d𝑋𝜇

d𝜆
+ Γ𝜇𝜈𝜌𝑉

𝜈𝑋𝜌 = 0 , (3.156)

or, equivalently:
𝑉 𝜈
𝜕𝑋𝜇

𝜕𝑥𝜈
+ Γ𝜇𝜈𝜌𝑉

𝜈𝑋𝜌 = 0 . (3.157)

Note that, in the equation for parallel transport (3.157), although each separate piece of the LHS does
not transform as a tensor under a coordinate transformation, the overall LHS does: the connection
coefficients transform exactly how they should to cancel out the changes in the directional derivative
𝑉 𝜈 𝜕𝑋

𝜇

𝜕𝑥𝜈 . Once we have the notion of parallel transport, we can define the geodesics of the manifold
with connection:
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Geodesics

Given a parametrised curve 𝑐 : ]𝑎, 𝑏[⊆ R → M, with parameter 𝜆 and associated tangent
vector field 𝑽, if 𝑽 is parallel transported along 𝑐, i.e., if:

∇𝑽𝑽 = 0 , (3.158)

we say that 𝑐 is a geodesic.
In terms of components, a geodesic is thus characterised by:

d2𝑥𝜇

d𝜆2 + Γ𝜇𝜈𝜌
d𝑥𝜈

d𝜆
d𝑥𝜌

d𝜆
= 0 . (3.159)

Geodesics are the generalisation, to manifolds with connection, of the notion of straight line in 𝐸𝑛

with the standard connection. Which means that, in a way, they are the ’most direct’ path from on
point of the manifold to another. But their main definition is that if a curve is a geodesic, along its
own flow, the tangent vector does not ’change direction’ (with respect to the given connection): it is
transported from tangent space to tangent space while remaining ’the same’. Therefore, one could
object that the condition ∇𝑽𝑽 = 0 is too restrictive. Indeed, if we choose the weaker condition:

∃ 𝑓 ∈ F (M),∇𝑽𝑽 = 𝑓𝑽 , (3.160)

then, the variation of the tangent vector remains parallel to the tangent vector, which is also fine for
defining parallelism. Nevertheless, in that case, under a reparametrisation of the curve 𝜆 → 𝜆′, we
get:

d𝑥𝜇

d𝜆
=

d𝑥𝜇

d𝜆′
d𝜆′

d𝜆
, (3.161)

and
d2𝑥𝜇

d𝜆2 =
d2𝑥𝜇

d𝜆′2

(
d𝜆′

d𝜆

)2
+ d2𝜆′

d𝜆2
d𝑥𝜇

d𝜆′
. (3.162)

Therefore, we see that, by choosing the reparametrisation such that:

d2𝜆′

d𝜆2 = 𝑓 (𝑐(𝜆)) d𝜆′

d𝜆
, (3.163)

with d𝜆′/d𝜆 ≠ 0, we can always reparametrise the curve in order for the weaker condition to reduce
to ∇𝑽𝑽 = 0. This means that our definition of geodesics is very robust.
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The connection of General Relativity

The affine connection we have defined so far is too general for our purpose. Because we have a
metric on our spacetime, we can restrict it further to suit our needs by imposing two conditions:

• First, we will require that the connection be metric compatible, i.e. that when we parallel
transport two vectors 𝑿 and 𝒀 along a third one, 𝑽, the scalar product 𝒈 (𝑿,𝒀) remains
unchanged:

∇𝑽 [𝒈 (𝑿,𝒀)] = 0 . (3.164)

Geometrically, this ensures that ’lengths’ and ’angles’ are preserved when vectors are parallel
transported.
Then, we impose that:

0 =∇𝑽 [𝒈 (𝑿,𝒀)] = 𝑉𝜌
[ (
∇𝜌𝒈

)
(𝑿,𝒀) + 𝒈

(
∇𝜌𝑿,𝒀

)
+ 𝒈

(
𝑿,∇𝜌𝒀

) ]
(3.165)

=𝑉𝜌𝑋𝜇𝑌 𝜈
(
∇𝜌𝒈

)
𝜇𝜈 , (3.166)

where we set 𝑉 𝜇∇𝜇𝑿 = 𝑉 𝜇∇𝜇𝒀 = 0 according to the fact that 𝑿 and 𝒀 are parallel trans-
ported along 𝑽. Since this relation must hold for any vectors 𝑋 , 𝑌 and 𝑉 , we get:

Metric connection

An affine connection ∇ is said to be a metric connection, or compatible with the metric
𝒈 iff, in a local chart:

∀(𝜇, 𝜈, 𝜌) ∈ {0, 1, 2, 3}3,
(
∇𝜌𝑔

)
𝜇𝜈 = 0 . (3.167)

Equivalently, using the general rule for the covariant derivative of tensor component, this last
condition can be written as:

𝜕𝑔𝜇𝜈

𝜕𝑥𝜌
− Γ𝜆𝜌𝜇𝑔𝜆𝜈 − Γ𝜆𝜌𝜈𝑔𝜆𝜇 = 0 . (3.168)

Then, starting from this relation, performing permutations of all the indices and combining
the results, we get that the connection coefficients of a metric connection are given by:

Γ𝜇𝜈𝜌 =

{
𝜇

𝜈𝜌

}
+ 𝐾𝜇𝜈𝜌 , (3.169)
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where the

{
𝜇

𝜈𝜌

}
are symmetric in their lower indices and called the Christoffel symbols,

given by: {
𝜇

𝜈𝜌

}
=

1
2
𝑔𝜇𝜆

(
𝜕𝜈𝑔𝜌𝜆 + 𝜕𝜌𝑔𝜈𝜆 − 𝜕𝜆𝑔𝜈𝜌

)
, (3.170)

and 𝐾𝜇𝜈𝜌 are the components of the contorsion tensor, which is totally antisymmetric in its
lower indices.

• Finally, in General Relativity, we impose that 𝐾𝜇𝜈𝜌 = 0, choosing the unique symmetric,
metric compatible connection. Its connection coefficients in a given coordinate system are
then its Christoffel symbols:

Connection coefficients of the general relativistic connection

Γ𝜇𝜈𝜌 =
1
2
𝑔𝜇𝜆

(
𝜕𝜈𝑔𝜆𝜌 + 𝜕𝜌𝑔𝜈𝜆 − 𝜕𝜆𝑔𝜈𝜌

)
. (3.171)

Geodesics and the equivalence principle

We started our exploration of General Relativity by emphasising the central role of the equivalence
principle. This stipulates that at any event in spacetime, there exists a local inertial frame in which
the laws of physics are those of Special Relativity:

Local inertial frame

At any event 𝐶 ∈ M, we can find local coordinates 𝑋𝜇 such that:

𝒈 |𝐶 = 𝜂𝜇𝜈d𝑋𝜇 ⊗ d𝑋𝜇 , (3.172)

and:
∀(𝜇, 𝜈, 𝜌) ∈ {0, 1, 2, 3}3,

𝜕𝑔𝜇𝜈

𝜕𝑋𝜌
(𝐶) = 0 . (3.173)

The associated frame is called a local inertial frame at 𝐶. In this frame, the laws of physics
are those of Special Relativity.
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The second condition should now be clear. Indeed, if at the event 𝑝 ∈ M,∀(𝜇, 𝜈, 𝜌) ∈ {0, 1, 2, 3}3,
𝜕𝑔𝜇𝜈
𝜕𝑋𝜌 =

0, then, the connection coefficients are all identically zero and the geodesic equation reduces to:

d2𝑥𝜇

d𝜆2 = 0 , (3.174)

which is simply the equation of motion of a free particle in Special Relativity. In other words,
geodesics are the trajectories of free falling particles. Immediately, we have two interesting kind of
geodesics⁹:

• Photons (and other massless particles) follow lightlike or null geodesics, characterised by
their tangent vector 𝒌 such that:

∇𝒌 𝒌 = 0 ⇔ d2𝑥𝜇

d𝜆2 + Γ𝜇𝜈𝜌
d𝑥𝜈

d𝜆
d𝑥𝜌

d𝜆
= 0 (3.175)

𝒈 (𝒌, 𝒌) = 0 ⇔ 𝑔𝜇𝜈
d𝑥𝜇

d𝜆
d𝑥𝜈

d𝜆
= 0 . (3.176)

• Massive particles follow timelike geodesics, characterised by their 4-velocity 𝒖 such that:

∇𝒖𝒖 = 0 ⇔ d2𝑥𝜇

d𝜏2 + Γ𝜇𝜈𝜌
d𝑥𝜈

d𝜏
d𝑥𝜌

d𝜏
= 0 (3.177)

𝒈 (𝒖, 𝒖) = −1 ⇔ 𝑔𝜇𝜈
d𝑥𝜇

d𝜏
d𝑥𝜈

d𝜏
= −1 , (3.178)

where 𝜏 is the proper time along the geodesics.

We can now clarify the link between geodesics and straight lines in Special Relativity:

Timelike geodesics as extremal curves

LetL be a timelike curve connecting two events 𝑝 and 𝑞. Let 𝜆 be a parameter alongL which
is not the proper time. Then, the proper time elapsed along L between 𝑝 and 𝑞 is:

𝜏 (𝑝, 𝑞) =
ˆ 𝜆(𝑞)

𝜆(𝑝)
d𝜏 =

ˆ 𝜆(𝑞)

𝜆(𝑝)

√
−𝑔𝛼𝛽

d𝑥𝛼
d𝜆

d𝑥𝛽
d𝜆

d𝜆 . (3.179)

Then L is a timelike geodesics iff it extremises this proper time.

⁹Spacelike geodesics are also interesting of course, but they do not correspond to the trajectory of any particles.
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To obtain this result, we perturb the curve in the class of timelike curves: 𝑥𝜇 (𝜆) = 𝑥𝜇 (𝜆) + 𝛿𝑥𝜇 (𝜆),
where we choose the same parameter along every timelike curve and 𝑥𝜇 denotes the curve that
extremises the proper time. Then, using a dot to denote derivatives with respect to 𝜆:

𝜏(𝑝, 𝑞) [𝑥 + 𝛿𝑥] =
ˆ 𝜆(𝑞)

𝜆(𝑝)

√
−

(
𝑔𝛼𝛽 (𝑥) +

𝜕𝑔𝛼𝛽

𝜕𝑥𝜇
𝛿𝑥𝜇

) ( ¤̄𝑥𝛼 + ¤𝛿𝑥𝛼
) (

¤̄𝑥𝛽 + ¤𝛿𝑥𝛽
)
d𝜆 (3.180)

=
ˆ 𝜆(𝑞)

𝜆(𝑝)

√√√√√√−𝑔𝛼𝛽 (𝑥) ¤̄𝑥𝛼 ¤̄𝑥𝛽︸           ︷︷           ︸
=𝐹2 ( 𝑥̄ )

− 𝑔𝛼𝛽 (𝑥) ¤̄𝑥𝛼 ¤𝛿𝑥𝛽 + 𝑔𝛼𝛽 (𝑥) ¤̄𝑥𝛽 ¤𝛿𝑥𝛼︸                                 ︷︷                                 ︸
=2𝑔𝛼𝛽 ( 𝑥̄ ) ¤̄𝑥𝛼 ¤𝛿𝑥𝛽

−
𝜕𝑔𝛼𝛽

𝜕𝑥𝛾
¤̄𝑥𝛼 ¤̄𝑥𝛽𝛿𝑥𝛾d𝜆

(3.181)

=
ˆ 𝜆(𝑞)

𝜆(𝑝)
𝐹 (𝑥)d𝜆

√
1 − 𝐹−2(𝑥)

[
2𝑔𝛼𝛽 (𝑥) ¤̄𝑥𝛼 ¤𝛿𝑥𝛽 +

𝜕𝑔𝛼𝛽

𝜕𝑥𝛾
(𝑥) ¤̄𝑥𝛼 ¤̄𝑥𝛽𝛿𝑥𝛾

]
(3.182)

=𝜏(𝑝, 𝑞) [𝑥] − 1
2

ˆ 𝜆(𝑞)

𝜆(𝑝)

d𝜆
𝐹 (𝑥)

[
2𝑔𝛼𝛽 (𝑥) ¤̄𝑥𝛼 ¤𝛿𝑥𝛽 +

𝜕𝑔𝛼𝛽

𝜕𝑥𝛾
(𝑥) ¤̄𝑥𝛼 ¤̄𝑥𝛽𝛿𝑥𝛾

]
. (3.183)

Thus, after an integration by part:

𝛿𝜏(𝑝, 𝑞) = 𝜏(𝑝, 𝑞) [𝑥+𝛿𝑥] −𝜏(𝑝, 𝑞) [𝑥] = −1
2

ˆ 𝜆(𝑞)

𝜆(𝑝)

[
−2

d
d𝜆

(
𝐹−1𝑔𝛼𝛾 ¤̄𝑥𝛼

)
+ 𝐹−1 𝜕𝑔𝛼𝛽

𝜕𝑥𝛾
¤̄𝑥𝛼 ¤̄𝑥𝛽

]
𝛿𝑥𝛾 .

(3.184)
Since this must be true for every perturbation in the class of timelike curve, we get:

𝛿𝜏(𝑝, 𝑞) = 0 ⇒ −2
d
d𝜆

(
𝐹−1𝑔𝛼𝛾 ¤̄𝑥𝛼

)
+ 𝐹−1 𝜕𝑔𝛼𝛽

𝜕𝑥𝛾
¤̄𝑥𝛼 ¤̄𝑥𝛽 = 0 . (3.185)

Besides, 𝐹2(𝑥) =
(

d𝜆
d𝜏

)2
by construction, so that:

d
d𝜆

= 𝐹
d
d𝜏

. (3.186)

Hence, Eq. (3.185) becomes:

𝑔𝛼𝛽
d2𝑥𝛼

d𝜏2 +
d𝑔𝛼𝛾
d𝜏

d𝑥𝛼

d𝜏
− 1

2
𝜕𝑔𝛼𝛽

𝜕𝑥𝛾
d𝑥𝛼

d𝜏
d𝑥𝛽

d𝜏
= 0 . (3.187)

Thus:
𝑔𝛼𝛽

d2𝑥𝛼

d𝜏2 +
𝜕𝑔𝛼𝛾

𝜕𝑥𝛽
d𝑥𝛼

d𝜏
d𝑥𝛽

d𝜏
− 1

2
𝜕𝑔𝛼𝛽

𝜕𝑥𝛾
d𝑥𝛼

d𝜏
d𝑥𝛽

d𝜏
= 0 . (3.188)

Contracting with 𝑔𝛾𝛿:

d2𝑥 𝛿

d𝜏2 + 𝑔𝛾𝛿
𝜕𝑔𝛼𝛾

𝜕𝑥𝛽
d𝑥𝛼

d𝜏
d𝑥𝛽

d𝜏
− 1

2
𝑔𝛾𝛿

𝜕𝑔𝛼𝛽

𝜕𝑥𝛾
d𝑥𝛼

d𝜏
d𝑥𝛽

d𝜏
= 0 . (3.189)
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Finally, we can split the second term by noticing that 𝛼 and 𝛽 are dummy indices:

𝑔𝛾𝛿
𝜕𝑔𝛼𝛾

𝜕𝑥𝛽
d𝑥𝛼

d𝜏
d𝑥𝛽

d𝜏
=

1
2
𝑔𝛾𝛿

𝜕𝑔𝛼𝛾

𝜕𝑥𝛽
d𝑥𝛼

d𝜏
d𝑥𝛽

d𝜏
+ 1

2
𝑔𝛾𝛿

𝜕𝑔𝛽𝛾

𝜕𝑥𝛼
d𝑥𝛼

d𝜏
d𝑥𝛽

d𝜏
, (3.190)

so that we arrive at the equation for the curve extremising the proper time:

d2𝑥 𝛿

d𝜏2 + Γ𝛿 𝛼𝛽
d𝑥𝛼

d𝜏
d𝑥𝛽

d𝜏
= 0 , (3.191)

which is exactly the geodesic equation.
This argument does not work for lightlike geodesics of course, but it can be amended by extremising
the proper time of arrival of the light ray at the observer for a fixed source. This is the general
relativistic version of Fermat’s principle of optics.

3.6.4 Application: static, weak field limit

As an illustration, let us consider the metric for a static, weak gravitational field such as the one at
the surface of the Earth. We assumed that it was given by the form:

d𝑠2 = − (1 + 2Φ(𝑥, 𝑦, 𝑧)) d𝑡2 + (1 − 2Φ(𝑥, 𝑦, 𝑧))
[
d𝑥2 + d𝑦2 + d𝑧2

]
, (3.192)

with |Φ| � 1, so we must expand everything at first order in Φ. It is a good exercise to calculate
the connection coefficients. The only non-zero ones are:

Connection coefficients in the static, weak field limit

Γ0
0𝑖 =Γ

0
𝑖0 =

𝜕Φ
𝜕𝑥𝑖

, Γ𝑖00 = 𝛿𝑖 𝑗
𝜕Φ
𝜕𝑥 𝑗

(3.193)

Γ𝑖 𝑗𝑘 = − 𝜕Φ
𝜕𝑥 𝑗

𝛿𝑖 𝑘 −
𝜕Φ

𝜕𝑥𝑘
𝛿𝑖 𝑗 +

𝜕Φ

𝜕𝑥𝑙
𝛿𝑖𝑙𝛿 𝑗𝑘 . (3.194)

The geodesic equations then take the form:
d2𝑡

d𝜆2 + 2
𝜕Φ
𝜕𝑥𝑖

d𝑥𝑖

d𝜏
d𝑡
d𝜆

= 0

d2𝑥𝑖

d𝜏2 + 𝛿𝑖 𝑗 𝜕Φ
𝜕𝑥 𝑗

(
d𝑡
d𝜆

)2
+

[
𝛿𝑖𝑙
𝜕Φ

𝜕𝑥𝑙
𝛿 𝑗𝑘 −

𝜕Φ
𝜕𝑥 𝑗

𝛿𝑖 𝑘 −
𝜕Φ

𝜕𝑥𝑘
𝛿𝑖 𝑗

]
d𝑥 𝑗

d𝜏
d𝑥𝑘

d𝜏
= 0 .

(3.195)

(3.196)
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Timelike geodesics

Timelike geodesics are then described by their 4-velocity:

𝒖 = 𝒖̄ + 𝜹𝒖 , (3.197)

where 𝒖̄ is the 4 velocity in absence of gravitational field and 𝜹𝒖 = 𝑂 (Φ). Therefore, we can write:

𝒖̄ = 𝛾

[
𝜕

𝜕𝑡
+ 𝑣̄𝑖 𝜕

𝜕𝑥𝑖

]
, (3.198)

with 𝑣̄𝑖 = d𝑥𝑖
d𝑡 and 𝛾−1 =

√
1 − ‖®𝑣‖2. Let us work with a particle which in absence of any gravita-

tional field, would be at rest in the local frame¹⁰, so that 𝑣̄𝑖 = 0 and 𝛾 = 1. In that case 𝒖̄ = 𝜕
𝜕𝑡 , so

that:
d
d𝜏

= 𝑢̄𝜇
𝜕

𝜕𝑥𝜇
=

d
d𝑡
, (3.199)

and:
𝒖 = (1 + 𝛿𝑢0) 𝜕

𝜕𝑡
+ 𝑣𝑖 𝜕

𝜕𝑥𝑖
, (3.200)

with 𝑣𝑖 = d𝑥𝑖
d𝜏 = d𝑥𝑖

d𝑡 = 𝑂 (Φ). The condition 𝒈 (𝒖, 𝒖) = −1 at first order then gives 𝛿𝑢0 = −Φ.
Using 𝜏 as parameter, Eq. (3.195) then gives:

d2𝑡

d𝜏2 = 0 . (3.201)

Besides, the third term in Eq. (3.196) is of order 3 and can be neglected, so that we get:

d2𝑥𝑖

d𝑡2
= −𝛿𝑖 𝑗 𝜕Φ

𝜕𝑥 𝑗
. (3.202)

This is Newton’s law for a particle falling in the gravitational field, as it should be.

Lightlike geodesics

For lightlight geodesics with 4-momentum 𝒌, we get:

𝒌 = 𝒌̄ + 𝜹𝒌 . (3.203)

In absence of gravitational field, we know that the energy is constant and:

𝑘̄0 = 𝐸 and 𝑘̄ 𝑖 = 𝐸𝑛𝑖 , (3.204)

¹⁰The case 𝑣̄𝑖 ≠ 0 can be treated similarly, with a few more technical steps but nothing conceptually more subtle.
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where 𝑛𝑖 fixes the direction of propagation in absence of gravitational field. The constraint 𝒈 (𝒌, 𝒌) =
0 at first order then gives:

𝛿𝑘0 − 𝑛𝑖𝛿𝑘𝑖
𝐸

= −2Φ . (3.205)

The geodesic equations become:
d𝛿𝑘0

d𝜆
+ 2𝐸2𝑛𝑖

𝜕Φ
𝜕𝑥𝑖

=0

d𝛿𝑘 𝑖

d𝜆
+ 2𝐸2

[
𝛿𝑖 𝑗

𝜕Φ
𝜕𝑥 𝑗

−
(
𝑛 𝑗
𝜕Φ
𝜕𝑥 𝑗

)
𝑛𝑖

]
=0 .

(3.206)

(3.207)

We can make some progress by noting that at leading order in these equations:

d
d𝜆

= 𝑘̄𝜇
𝜕

𝜕𝑥𝜇
= 𝐸

[
𝜕

𝜕𝑡
+ 𝑛𝑖 𝜕

𝜕𝑥𝑖

]
. (3.208)

And since Φ does not depend explicitly on 𝑡:

𝐸𝑛𝑖
𝜕Φ
𝜕𝑥𝑖

=
dΦ
d𝜆

. (3.209)

Therefore:
d𝛿𝑘0

d𝜆
= −2𝐸

dΦ
d𝜆

. (3.210)

Considering a photon emitted by a source at 𝜆𝑆 and received by an observer comoving with the
coordinates at 𝜆𝑂, we get:

𝛿𝑘0 (𝜆𝑂) − 𝛿𝑘0 (𝜆𝑆) = 2𝐸 [Φ (𝜆𝑆) −Φ (𝜆𝑂)] . (3.211)

Because the observer is comoving, 𝒖 = (1 −Φ) 𝜕𝜕𝑡 , and we can calculate the gravitational redshift:

1 + 𝑧 =
(
𝑘𝜇𝑢𝜇

)
𝑆(

𝑘𝜇𝑢𝜇
)
𝑂

. (3.212)

Since
𝒈 (𝒌, 𝒖) = 𝑘𝜇𝑢𝜇 = −𝐸

[
1 +Φ + 𝛿𝑘

0

𝐸

]
, (3.213)

we get:
1 + 𝑧 = 1 +Φ(𝑂) −Φ(𝑆) . (3.214)

To compare with Eq. (2.339) expressing the same effects purely from the equivalence principle, we
note that 𝑃 = 𝑆, 𝑄 = 𝑂:

1 + 𝑧 = 𝐸 (𝑆)
𝐸 (𝑂) =

Δ𝜏𝑄
Δ𝜏𝑃

= 1 +Φ(𝑂) −Φ(𝑆) , (3.215)
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so the two methods agree.
The second geodesic equation can also be used to calculate the deviation of light but this will be
done in details in chapter 4 so we leave it for now.

3.7 Gravitation is curvature

As we just showed, free-falling particles follow geodesics. However, locally, we can always make
a geodesics look like a straight line in spacetime by going to the local inertial frame around that
geodesic. Are there effects of gravitation that cannot be made to vanish by such a change of frame?
Yes, and as we are going to see, these are linked to tidal effects, i.e. differential in the value of the
gravitational field in an extended (even small) region of spacetime. Let us start by considering a
timelike geodesic L0 parametrised by an affine parameter 𝜆. The observer following it can always
cancel the effect of the gravitational field along its worldline. But if another free falling particle
passes nearby along its own geodesic, it will not in general be at rest in the observer’s rest space,
unless the gravitational field does not vary between their respective positions. If the field varies
across the region, effects of the gravitational field will be visible in the local rest frame. The two
particles will be moving farther or closer: these are exactly tidal effects. This discussion induces us
into studying the variations in the relative positions between geodesics.

3.7.1 Geodesic deviation equation

LetL0 be a timelike or lightlike geodesics parametrised by an affine parameter 𝜆, and with a tangent
vector field 𝑿 = d

d𝜆 . We consider a continuous family of geodesics of the same kind, L(𝑠), indexed
by 𝑠 ∈ R, in the neighbourhood of L0, such that L0 = L(0) and all parametrised by the same affine
parameter 𝜆 as the reference geodesic L0. Locally, events can be parametrised by the two numbers
(𝑠, 𝜆) telling us on which geodesic they are (𝑠) and where they are on that geodesic (𝜆); see Fig. 3.13.

To go from the point 𝑥𝛼 (𝜆, 0) on the reference geodesic L0 to the point on the geodesics L(d𝑠)
with the same affine parameter: 𝑥𝛼 (𝜆, d𝑠), we move along the vector field 𝜉 = d

d𝑠 locally tangent to
the curves parametrised by 𝑠:”

𝑥𝛼 (𝜆, d𝑠) = 𝑥𝛼 (𝜆, 0) + 𝜉𝛼 (𝜆)d𝑠 . (3.216)
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Figure 3.13: The deviation vector connecting geodesics into the neighbourhood of a reference
geodesic L0 to that reference.

The vector field 𝜉 defined along the reference geodesic is called the separation vector. The vector
field, defined along the geodesic of reference:

∇𝑿𝝃 =
D𝜉𝜇

D𝜆
𝒆 (𝝁) (3.217)

=

(
d𝜉𝜇

d𝜆
+ Γ𝜇𝜈𝜌𝑋

𝜈𝜉𝜌
)
𝒆 (𝝁) (3.218)

can be thought of as the ’velocity’ of this vector. Note that, for the convenience of this section, we
defined the new derivative operator ”covariant derivative along the geodesic” acting on components
of vectors:

D
D𝜆

= 𝑋𝜇∇𝜈 . (3.219)

Similarly, we have an acceleration:

∇𝑿 [∇𝑿𝝃] =
D2𝜉𝜇

D𝜆2 𝒆 (𝝁) . (3.220)

It is the second quantity that is relevant. Let us calculate it:

D2𝜉𝜇

D𝜆2 =∇𝑿 [∇𝑿𝜉
𝜇] (3.221)

=𝑋𝛼∇𝛼
[
𝑋𝛽∇𝛽𝜉𝜇

]
. (3.222)
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First, we need to note a remarkable properties of the vectors 𝑿 and 𝝃. Because they are associated
to independent parameters, we have:

𝑋𝛼∇𝛼𝜉𝛽 − 𝜉𝛼∇𝛼𝑋𝛽 = 𝑋𝛼
𝜕𝜉𝛽

𝜕𝑥𝛼
− 𝜉𝛼 𝜕𝑋

𝛽

𝜕𝑥𝛼
(3.223)

=
d𝑥𝛼

d𝜆
𝜕𝜉𝛽

𝜕𝑥𝛼
− d𝑥𝛼

d𝑠
𝜕𝑋𝛽

𝜕𝑥𝛼
(3.224)

=
d𝜉𝛽

d𝜆
− d𝑋𝛽

d𝑠
(3.225)

=
d2𝑥𝛽

d𝑠d𝜆
− d2𝑥𝛽

d𝜆d𝑠
= 0 . (3.226)

Thus:
∇𝑿𝝃 = ∇𝝃𝑿 . (3.227)

Therefore:

D2𝜉𝜇

D𝜆2 =∇𝑿

[
∇𝝃𝑋

𝜇
]

(3.228)

=𝑋𝛼∇𝛼
(
𝜉𝛽

)
∇𝛽𝑋𝜇 + 𝑋𝛼𝜉𝛽∇𝛼∇𝛽𝑋𝜇 (3.229)

=
(
𝜉𝛼∇𝛼𝑋𝛽

)
∇𝛽𝑋𝜇 + 𝑋𝛼𝜉𝛽∇𝛼∇𝛽𝑋𝜇 (3.230)

=𝜉𝛼∇𝛼
©­­­«𝑋

𝛽∇𝛽𝑋𝜇︸     ︷︷     ︸
=0

ª®®®¬ − 𝜉
𝛼𝑋𝛽∇𝛼∇𝛽𝑋𝜇 + 𝑋𝛼𝜉𝛽∇𝛼∇𝛽𝑋𝜇 (3.231)

=𝜉𝛽𝑋𝛼
[
∇𝛼∇𝛽 − ∇𝛽∇𝛼

]
𝑋𝜇 . (3.232)

This quantity is intimately related to the Riemann curvature tensor of the metric connection, which
is defined for any one-form field 𝝎 and three vector fields 𝑿, 𝒀 and 𝒁 as:

Riemann curvature tensor

𝑹 (𝝎, 𝒁, 𝑿,𝒀) = 𝝎
[
∇𝑿∇𝒀 𝒁 − ∇𝒀∇𝑿𝒁 − ∇[𝑿 ,𝒀 ]𝒁

]
. (3.233)

In a coordinate basis, its components are:

𝑅𝛼𝜌𝛽𝛾 =
𝜕Γ𝛼𝛾𝜌
𝜕𝑥𝛽

−
𝜕Γ𝛼𝛽𝜌
𝜕𝑥𝛾

+ Γ𝜎𝛾𝜌Γ
𝛼
𝛽𝜎 − Γ𝜎𝛽𝜌Γ

𝛼
𝛾𝜎 . (3.234)

Indeed, we see that we have:
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Geodesic deviation equation

∇𝑿∇𝑿𝝃 = 𝑹 (·, 𝑿, 𝑿, 𝝃) , (3.235)

or in terms of components:
D2𝜉𝛼

D𝜆2 = 𝑅𝛼𝜌𝛽𝛾𝑋
𝜌𝑋𝛽𝜉𝛾 . (3.236)

Equivalently, in a less covariantly beautiful but often useful form:

d2𝜉𝛼

d𝜆2 + 2Γ𝛼𝜈𝜌𝑋𝜈
d𝜉𝜌

d𝜆
+ 𝜉𝛾𝜕𝛾Γ𝛼𝛽𝜌𝑋𝛽𝑋𝜌 = 0 . (3.237)

We see that tidal effects, i.e. relative motions of free-falling particles with respect to each other
are encoded in this Riemann curvature tensor, so we will now spend some efforts understanding it
a bit more and discovering a few of its properties.

3.7.2 The Riemann curvature tensor

Geometric interpretation

Before talking about the spacetime manifold, let us focus for a moment on the example of the 2-
sphere 𝑆2. We define the parallel transport along the great circles (i.e., equivalently, the connection)
by requiring that the angle in the ambient space (so in the Euclidean sense) between a vector and the
tangent to the great circle remains constant whenwemove the vector along the great circle. Consider
two points 𝑝 and 𝑞 on the equator of 𝑆2 (for simplicity) that are diametrically opposite. Then, there
are two great circles through 𝑝 and 𝑞, the ’equal latitude’ one, and the ’equal longitude’ one. We
can observe that, the result of transporting a vector 𝑽 from 𝑝 to 𝑞 according to our connection
rule along the ’equal latitude’ circle is very different from the result of transporting the same initial
vector along the ’equal longitude’ circle; see Fig. 3.14.

The fact that the result of transporting a vector depends on the path chosen to transport it is
what characterises the curvature, and it is clearly independent on the coordinates chosen to repre-
sent the manifold.
In an arbitrary spacetime manifold with a metric connection, consider an infinitesimal ’parallelo-
gram’ 𝑃𝑄𝑅𝑆, were, in a local chart (𝑈, 𝜙) such that 𝑃𝑄𝑅𝑆 ⊂ 𝑈, we can set 𝜙(𝑃) = 𝑥, 𝜙(𝑄) = 𝑥+𝜖 ,
𝜙(𝑆) = 𝑥 + 𝛿 and 𝜙(𝑆) = 𝑥 + 𝜖 + 𝛿. The situation described in what follows is depicted on Fig. 3.15.
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Figure 3.14: On the one hand, the vector𝑽 ( 𝒑) is transported along the great circle tangent to𝑼 until
𝑞 while preserving the Euclidean angle between the two vectors, producing 𝑽′(𝒒). On the other
hand, it is transported along the great circle tangent to 𝑿 applying the same rule, producing 𝑽′′(𝒒).
The difference between the two vectors comes from the curvature of the connection corresponding
to our rule for parallel transport.

Let us parallel transport a vector 𝑽 (𝑷) ∈ 𝑇𝑃M along 𝑃𝑄 and then along 𝑄𝑅. First, we obtain
a vector 𝑽𝑪 (𝑸) ∈ 𝑇𝑄M whose components in the local coordinate basis are given by:

𝑉
𝜇
𝐶 (𝑄) = 𝑉

𝜇 (𝑃) − Γ𝜇𝜈𝜌 (𝑃)𝑉𝜌 (𝑃)𝜖𝜈 . (3.238)
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Figure 3.15: A same vector 𝑽 (𝑷)is parallel transported to 𝑅 along two different paths closing in a
parallelogram. The mismatch between the two vectors obtained at 𝑅 is quantified by the Riemann
tensor.
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Then, we transport this vector all the way to 𝑅, and we get:

𝑉
𝜇
𝐶 (𝑅) = 𝑉

𝜇
𝐶 (𝑄) − Γ𝜇𝜈𝜌 (𝑄)𝑉𝜌𝐶 (𝑄)𝛿

𝜈 (3.239)

= 𝑉 𝜇 (𝑃) − Γ𝜇𝜈𝜌 (𝑃)𝑉𝜌 (𝑃)𝜖𝜈 −
(
Γ𝜇𝜈𝜌 (𝑃) + 𝜕𝜆Γ𝜇𝜈𝜌 (𝑃)𝜖𝜆

)
×

(
𝑉𝜌 (𝑃) − Γ𝜌𝜆𝜎𝑉

𝜎𝜖𝜆
)
𝛿𝜈 (3.240)

= 𝑉 𝜇 (𝑃) − Γ𝜇𝜈𝜌 (𝑃)𝑉𝜌 (𝑃) (𝜖𝜈 + 𝛿𝜈)

−
(
𝜕𝜆Γ

𝜇
𝜈𝜌 (𝑃) − Γ𝜇𝜈𝜌 (𝑃)Γ𝜎𝜆𝜌 (𝑃)

)
𝑉𝜌 (𝑃)𝜖𝜆𝛿𝜈 , (3.241)

where we have used a Taylor expansion of the connection coefficients and we have only kept terms
up to second order. We also used the notation: 𝜕𝜇 = 𝜕

𝜕𝑥𝜇 . Similarly, we can obtain for the vector
transported from 𝑃 to 𝑅 via 𝑃𝑆 followed by 𝑆𝑅:

𝑉
𝜇
𝐶′ (𝑅) = 𝑉 𝜇 (𝑃) − Γ𝜇𝜈𝜌 (𝑃)𝑉𝜌 (𝑃) (𝜖𝜈 + 𝛿𝜈)

−
(
𝜕𝜈Γ

𝜇
𝜆𝜌 (𝑃) − Γ𝜇𝜆𝜎 (𝑃)Γ𝜎𝜈𝜌 (𝑃)

)
𝑉𝜌 (𝑃)𝜖𝜆𝛿𝜈 . (3.242)

Hence, the two vectors at 𝑅 differ by:

𝑉
𝜇
𝐶′ (𝑅) −𝑉 𝜇𝐶 (𝑅) = 𝑅

𝜇
𝜌𝜈𝜆(𝑃)𝑉𝜌 (𝑃)𝜖𝜈𝛿𝜆 . (3.243)

In other words, the Riemann tensor measures the difference between two vectors resulting from the
parallel transport of one vector in two directions along an infinitesimal parallelogram¹¹.

We will say that spacetime is flat iff 𝑹 = 0, otherwise spacetime is said to be curved. This
characterisation does not depend on the local charts chosen as it is tensorial.

Properties of the Riemann tensor

Since the Riemann tensor is the crucial object, holding the properties of the gravitational field in
General Relativity, we are going to present some of its most important properties. First, we have

¹¹The Lie bracket, that we introduced incidently early without comment, measures the inability to close a parallelogram
by following the flows of two vector fields in one way or the opposite. Once we have a connection, thanks to the Riemann
tensor, we can actually say what it ’costs’ for vectors to be transported along closed parallelograms.
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some symmetry properties of its components:



𝑅𝜇𝜈𝜎𝜌 = − 𝑅𝜇𝜈𝜌𝜎
𝑔𝜇𝜆𝑅

𝜆
𝜈𝜌𝜎 =𝑅𝜇𝜈𝜌𝜎 = −𝑅𝜈𝜇𝜌𝜎 = −𝑔𝜈𝜆𝑅𝜆𝜇𝜌𝜎

𝑅𝜇𝜈𝜌𝜎 =𝑅𝜌𝜎𝜇𝜈

𝑅𝜇𝜈𝜌𝜎+𝑅𝜇𝜎𝜈𝜌 + 𝑅𝜇𝜌𝜎𝜈 = 0 (first Bianchi identities).

(3.244)

(3.245)

(3.246)

(3.247)

These can be verified by careful substitutions and inspections. The Riemann tensor has 44 = 256
components, but, thanks to these symmetries, only 20 are independent.
Next, we have a important relation called the second Bianchi identities:

(∇𝑋𝑅) (·,𝑈,𝑌 , 𝑍) + (∇𝑍𝑅) (·,𝑈, 𝑋,𝑌 ) + (∇𝑌𝑅) (·,𝑈, 𝑍, 𝑋) = 0; , (3.248)

valid for any vector fields𝑼, 𝑿,𝒀 and 𝒁. It is better known in its expression in terms of components:

∇𝜇𝑅𝜈𝜆𝜌𝜎 + ∇𝜌𝑅𝜈𝜆𝜎𝜇 + ∇𝜎𝑅𝜈𝜆𝜇𝜌 = 0 . (3.249)

3.7.3 Application: weak field limit

We return to the static, weak field gravitational field, for which the metric is given by Eq. (3.192).
As an exercise, one can compute the components of the Riemann tensor. The only non-zero ones
are:

Riemann tensor in the static, weak field limit

𝑅0
𝑖 𝑗0 = − 𝑅0

𝑖0 𝑗 =
𝜕2Φ
𝜕𝑥𝑖𝜕𝑥 𝑗

(3.250)

𝑅𝑖0 𝑗0 = − 𝑅𝑖00 𝑗 = 𝛿
𝑖𝑘 𝜕2Φ

𝜕𝑥𝑘𝜕𝑥 𝑗
(3.251)

𝑅𝑖 𝑘𝑙 𝑗 =𝑅
𝑖
𝑗𝑙𝑘 =

𝜕2Φ

𝜕𝑥𝑘𝜕𝑥 𝑗
𝛿𝑖 𝑙 −

𝜕2Φ

𝜕𝑥𝑘𝜕𝑥𝑙
𝛿𝑖 𝑗 +

𝜕2Φ

𝜕𝑥𝑙𝜕𝑥𝑚
𝛿𝑖𝑚𝛿 𝑗𝑘 −

𝜕2Φ
𝜕𝑥 𝑗𝜕𝑥𝑚

𝛿𝑖𝑚𝛿𝑙𝑘 . (3.252)

Consider a massive particle in free-fall in this gravitational field. It follows a timelike geodesic
like the ones we studied in subsection 3.6.4 . In particular, its 4-velocity is given by:

𝒖 = (1 −Φ) 𝜕
𝜕𝑡

+ 𝑣𝑖 𝜕
𝜕𝑥𝑖

, (3.253)
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with 𝑣𝑖 = d𝑥𝑖
d𝑡 = 𝑂 (Φ). Thus, at first order, the geodesic deviation equation. Eq. (3.236), reads:

D2𝜉𝜇

D𝜏2 = 𝑅𝜇00𝜈𝜉
𝜈 . (3.254)

Note that, at first order:
D𝜉𝑖

D𝜏
=

d𝜉𝑖

d𝜏
+ Γ𝑖0𝜈𝜉

𝜈 , (3.255)

and:
D2𝜉𝑖

D𝜏2 =
d2𝜉𝑖

d𝜏2 , (3.256)

so that the spatial separation between two neighbouring free-falling massive particles obeys:

d2𝜉𝑖

d𝜏2 = −𝛿𝑖𝑘 𝜕2Φ

𝜕𝑥𝑘𝜕𝑥 𝑗
𝜉 𝑗 . (3.257)

This is exactly what a Newtonian calculation would give for the tidal force acting on two nearby
free-falling objects.

3.7.4 Constructing local inertial frames: Riemann and Fermi normal coordinates

Aswe have repeatedly seen, local inertial frames, i.e. local reference systems attached to free-falling
observers and in which the laws of special relativity hold, are key to formulating the laws of general
relativity. So far, we have assumed that we could always construct such frames¹². Here, we show
how to explicitly build such frames. We start with Riemann normal coordinates defined at an event.
The strategy is the following:

1. We pick an event𝑂 in a spacetime with metric 𝒈, along the worldline of a free-falling observer.
We call 𝑥𝜇 a set of local coordinates.

2. We pick a timelike unit vector 𝒆 (0) . This could be the 4-velocity of the free-falling observer
passing by 𝑂, but it does not have to be.

¹²Actually, we have once constructed one, in subsection 2.7.2, for Rindler observers uniformly accelerating in
Minkowski spacetime. By the equivalence principle, this is clearly analogous to a free falling observer in a uniform
gravitational field.
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3. We pick 3 linearly independent, orthogonal spacelike unit vectors 𝒆 (𝒊) . These could be in the
local rest space of the observer passing by𝑂, but they don’t have to be. In the local coordinate
system around 𝑂, we have (orthonormality condition):

𝑔𝜇𝜈𝑒
𝜇
(𝛼)𝑒

𝜈
(𝛽) = 𝜂𝛼𝛽 . (3.258)

4. We choose another event 𝑃 and draw a geodesic segment S connecting 𝑂 to 𝑃. Under rea-
sonable assumptions, we can assume that this geodesic segment is unique, provided 𝑃 is in
a sufficiently small neighbourhood of 𝑂. If the geodesic is spacelike, we choose the proper
distance 𝑠 as a parameter 𝜆, and if it is timelike, we take the proper time 𝜏. Up to a simple
redefinition, we can choose 𝜆(𝑂) = 0 and 𝜆(𝑃) = 𝜆𝑃. Let us call 𝒏 the tangent vector to this
geodesic. Letting 𝒆 (𝝁) = 𝜕

𝜕𝑥𝜇 , we have:

𝒏 =𝑛𝜇𝒆 (𝝁) (3.259)

=𝑛̂𝛼𝑒 (𝛼) = 𝑛̂
𝛼𝑒
𝜇
(𝛼) 𝒆 (𝝁) , (3.260)

so that, in the local coordinate system at 𝑂:

𝑛𝜇 (𝑂) = 𝑛̂𝛼𝑂𝑒
𝜇
(𝛼) . (3.261)

The four numbers 𝑛̂𝛼𝑂 give the direction of the geodesic segmentS relative to the tetrad {𝒆 (𝜶) }.

5. We define the Riemann normal coordinates of 𝑃 in the local tetrad {𝒆 (𝜶) } to be the four
numbers 𝑥𝛼 such that:

𝑥𝛼 = 𝜆𝑃 𝑛̂
𝛼
𝑂 . (3.262)

For the sake of clarity, let us assume that S is spacelike. Let us denote by 𝑔̂𝛼𝛽 the components
of the metric tensor in Riemann normal coordinates in the neighbourhood of 𝑂. Since 𝒏 is a unit
vector, we have along S:

𝒈 (𝒏, 𝒏) = 1 , (3.263)

which, in the local coordinates 𝑥𝜇, and evaluated at 𝑂 reads:

𝑔𝜇𝜈 (𝑂)𝑛𝜇 (𝑂)𝑛𝜈 (𝑂) =1 (3.264)

=𝑔𝜇𝜈 (𝑂)𝑛̂𝛼𝑂𝑒
𝜇
(𝛼) 𝑛̂

𝛽
𝑂𝑒

𝜈
(𝛽) (3.265)

=𝜂𝛼𝛽 𝑛̂
𝛼
𝑂𝑛̂

𝛽
𝑂 . (3.266)
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Besides, in Riemann normal coordinates, Eq. (3.263) evaluated at 𝑂 reads:

𝑔̂𝛼𝛽 (𝑂)𝑛̂𝛼𝑂𝑛̂
𝛽
𝑂 = 1 . (3.267)

Thus:
𝑔̂𝛼𝛽 (𝑂)𝑛̂𝛼𝑂𝑛̂

𝛽
𝑂 = 𝜂𝛼𝛽 𝑛̂

𝛼
𝑂𝑛̂

𝛽
𝑂 , (3.268)

and since the metric at a point cannot depend on the direction:

𝑔̂𝛼𝛽 (𝑂) = 𝜂𝛼𝛽 . (3.269)

At the event 𝑂, Riemann normal coordinates are orthonormal. However, there is more: this is also
true in the neighbourhood of 𝑂 in a precise sense, as we will see now. The geodesic segment S is
tangent to the vector field 𝒏, which in Riemann normal coordinates decomposes as:

𝒏 = 𝑛̂𝛼
𝜕

𝜕𝑥𝛼
, (3.270)

with constant components along the geodesic segment:

𝑛̂𝛼 =
d𝑥𝛼

d𝑠
=

d
d𝑠

(
𝑠𝑛̂𝛼𝑂

)
= 𝑛̂𝛼𝑂 . (3.271)

Let us write the geodesic equation along S in Riemann normal coordinates:

d𝑛̂𝛼

d𝑠
+ Γ̂𝛼𝛽𝛾 𝑛̂

𝛽 𝑛̂𝛾 = 0 , (3.272)

and since 𝑛̂𝛼 = 𝑛̂𝛼𝑂 are constant, we find that:

Γ̂𝛼𝛽𝛾 𝑛̂
𝛽 𝑛̂𝛾 = 0 . (3.273)

This relation is valid everywhere along S and since at 𝑂 the connection coefficients cannot depend
on direction, we get:

Γ̂𝛼𝛽𝛾 (𝑂) = 0 . (3.274)

Clearly, this implies that, in Riemann normal coordinates¹³:

𝜕𝑔̂𝛼𝛽

𝜕𝑥𝛾
(𝑂) = 0 . (3.275)

¹³It is sufficient to realise that in any coordinate system: 𝜕𝛾𝑔𝛼𝛽 = 𝑔𝛼𝜇Γ𝜇𝛽𝛾 + 𝑔𝛽𝜇Γ𝜇𝛼𝛾 .
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Thus, we see that, by Taylor expanding the metric coefficients in Riemann normal coordinates, in
the neighbourhood of 𝑂 we have:


𝑔̂𝛼𝛽 (𝑥𝛾) =𝑔̂𝛼𝛽 (𝑂) + 𝑥𝛾

𝜕𝑔̂𝛼𝛽

𝜕𝑥𝛾
(𝑂) +𝑂

(
𝑥2

)
=𝜂𝛼𝛽 +𝑂

(
𝑥2

)
,

(3.276)

(3.277)

confirming that the frame of Riemann normal coordinates is indeed locally inertial. Corrections
appear at the next order and to evaluate them, we need to use the geodesic deviation equation . First,
let us note that if we vary slightly the numbers 𝑛̂𝛼𝑂, we define new geodesics from𝑂 so that we have
a family of deviation vectors with components:

𝜂
𝜇
(𝛼) =

𝜕𝑥𝛼

𝜕𝑛̂𝛼𝑂
. (3.278)

Be careful that (𝛼) here is not a spacetime index: it is merely a label. Expanding in the neighbour-
hood of 𝑂:

Γ̂𝜇𝜈𝜌 = 0 + 𝜕𝜎 Γ̂𝜇𝜈𝜌 (𝑂)𝑥𝜎 +𝑂
(
𝑥2

)
, (3.279)

we get:
D𝜂𝜇(𝛼)

D𝑠
= 𝛿𝜇𝛼 + 𝑠2𝜕𝜌Γ̂𝜇𝛼𝜆(𝑂)𝑛̂𝜆𝑂𝑛̂

𝜌
𝑂 +𝑂

(
𝑠3

)
. (3.280)

Taking a second derivative¹⁴:

D2𝜂
𝜇
(𝛼)

D𝑠2
= 3𝑠𝜕𝜌Γ̂𝜇𝛼𝜆(𝑂)𝑛̂𝜆𝑂𝑛̂

𝜌
𝑂 +𝑂 (𝑠) . (3.281)

Thus, using the geodesic deviation equation, Eq. (3.236), and once again using the fact that the
result ought to be independent from the direction, and remembering the symmetries of the Riemann
tensor:

3
𝜕 Γ̂𝜇𝛼𝜆
𝜕𝑥𝜌

(𝑂) = −𝑅̂𝜇𝜌𝛼𝜆(𝑂) . (3.282)

Hence:

𝜕𝜌Γ̂
𝜇
𝛼𝜆(𝑂) + 𝜕𝜆Γ̂𝜇𝛼𝜌 (𝑂) = −1

3
[
𝑅̂𝜇𝜌𝛼𝜆(𝑂) + 𝑅̂𝜇𝜆𝛼𝜌 (𝑂)

]
. (3.283)

¹⁴This is where you have to be careful that (𝛼) is not a coordinate index here.
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Permuting indices 2 by two and combining the results we get:

𝜕𝜆Γ̂
𝜇
𝛼𝜌 (𝑂) = −1

3
[
𝑅̂𝜇𝜌𝛼𝜆(𝑂) + 𝑅̂𝜇𝛼𝜌𝜆(𝑂)

]
. (3.284)

From there, we can easily extract that:

𝜕2𝑔̂𝛼𝛽

𝜕𝑥𝜆𝜕𝑥𝜌
(0) = −1

3
[
𝑅̂𝛼𝜌𝛽𝜆 + 𝑅̂𝛽𝜌𝛼𝜆

]
. (3.285)

Thus, we find that, at dominant order:

𝑔̂𝛼𝛽 (𝑥𝛾) = 𝜂𝛼𝛽 −
1
3
𝑅̂𝛼𝜌𝛽𝜆𝑥

𝜌𝑥𝜆 +𝑂
(
𝑥3

)
. (3.286)

We recover that the Riemann tensor encodes tidal effects, which are the true gravitational degrees
of freedom and the only gravitational effects present in a local inertial coordinate system.
Riemann normal coordinates are adapted to the definition of an inertial frame in one given event. If
one wants to define an inertial frame that is carried around by an observer, one needs to be able to
consistently define orthonormal coordinates along the worldline of this observer. This is what Fermi
normal coordinates are. In order to define them, let us pick an observer A following a timelike
geodesic 𝛾. We parametrise the geodesic by the proper time 𝜏 of the observer. For any event 𝑃
outside 𝛾, we draw a spacelike geodesic 𝛽 that passes through 𝑃 and intersect 𝛾 orthogonally at
𝐴(𝜏), such that 𝑃 is in the local rest space of 𝐴(𝜏). Picking 𝐴(𝜏) as origin, we choose the tangent
vector to 𝛾 at 𝐴(𝜏), 𝒆 (0) (𝜏) = d

d𝜏 as the time direction and we pick three orthonormal spacelike
vectors 𝒆 (𝒊) (𝜏) in the tangent rest space of 𝐴(𝜏). The geodesic 𝛽 is parametrised by the proper
distance 𝑠 so that 𝑠 = 0 corresponds to 𝐴(𝜏) et 𝑠 = 𝑠𝑃 to 𝑃. The tangent vector to 𝛽 is the unit
vector 𝒏. At 𝐴(𝜏), this vector, which is spacelike, can be decomposed on the local tetrad and its
components is the local coordinates 𝑥𝜇 are:

𝑛𝛼 (𝜏) = 𝑛̄𝑖𝑒𝛼(𝑖) . (3.287)

𝑛̄0 = 0 because 𝒈
(
𝒏, 𝒆 (0)

)
= 0 and the tetrad is orthonormal. The Fermi normal coordinates of 𝑃

along 𝛾 are then {𝑥𝛼} such that: {
𝑥0 =𝜏

𝑥𝑖 =𝑠𝑃 𝑛̄
𝑖 .

(3.288)

(3.289)
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Let us, for the sake of the demonstration assume that we have a set of Riemman normal coordinates
{𝑥𝜇} at O ∈ 𝛾 constructed as above and that O = 𝐴(0). We suppose that the vector 𝒆0 of the
Riemman normal coordinates is aligned with the tangent vector to 𝛾 at 𝜏 = 0. We set:

𝒆 (𝝁) (0) = 𝒆 (𝜇) . (3.290)

The basis vectors at any other event along 𝛾 are the obtained by parallel transport along 𝛾. Writing:

𝑒
𝜇
(𝛼) (𝜏) = 𝑒

𝜇
(𝛼) (0) + 𝜏 ¤̄𝑒

𝜇
(𝛼) (0) +

1
2
𝜏2 ¥̄𝑒𝜇(𝛼) (0) +𝑂

(
𝜏2

)
, (3.291)

where a dot denotes differentiation along 𝛾 (i.e. w.r.t. 𝜏). We can use that the basis is a Riemann
normal one at 𝜏 = 0 to set 𝑒𝜇(𝛼) (0) = 𝛿

𝛼
𝜇. Moreover, the parallel transport of the basis vectors 𝒆 (𝝁)

along 𝛾 in Riemann normal coordinates reads:
d𝑒𝜇(𝜈)

d𝜏
+ Γ̂𝜇𝜆𝜌𝑒

𝜆
(𝜈)

d𝑥𝜌

d𝜏
= 0 . (3.292)

Note that these are components on the Fermi normal frame vectors in the Riemann normal frame,
not in the local coordinates {𝑥𝜇} but notations have their limits here. This can be solved order by
order in powers of 𝜏. We find: 

¤̄𝑒𝜇(𝜈) (0) =0

¥̄𝑒𝜇(𝜈) (0) =
1
3
𝑅̂𝜇0𝜈0 .

(3.293)

(3.294)

Thus:
𝑒
𝜇
(𝜈) (𝜏) = 𝛿

𝜇
𝜈 +

1
6
𝜏2𝑅̂𝜇0𝜈0 +𝑂

(
𝜏3

)
. (3.295)

This completes the construction of the Fermi basis along 𝛾 in the vicinity of O. Along the spacelike
geodesic 𝛽 between 𝑃 and 𝑂 (𝜏), we have the geodesic equation in Riemann normal coordinates:

d𝑥𝜇

d𝑠
+ Γ̂𝜇𝜈𝜌

d𝑥𝜈

d𝑠
d𝑥𝜌

d𝑠
= 0 . (3.296)

Inserting into this equation the Taylor expansion:

𝑥𝜇 (𝑠) = 𝑥𝜇 (0) + 𝑠 ¤̂𝑥𝜇 + 1
2
𝑠2 ¥̂𝑥𝜇 (0) + 1

6
𝑠3

d3𝑥𝜇

d𝑠3
(0) +𝑂

(
𝑠3

)
, (3.297)

where a dot is now a derivative w.r.t 𝑠, we can again solve order by order, remembering that 𝑥0(0) =
𝜏, 𝑥𝑖 (0) = 0 and ¤̂𝑥𝜇 (0) = 𝑛̂𝜇 (𝑂), to get:

𝑥0(𝑠) =𝜏 + 1
3
𝜏𝑠2𝑅̂0𝑝0𝑞 (𝑂)𝑛̂𝑝 𝑛̂𝑞 + . . .

𝑥𝑖 (𝑠) =𝑠𝑛̂𝑖 + 1
6
𝜏2𝑠𝑅̂𝑖0𝑝0()𝑛̂𝑝 +

1
3
𝜏𝑠2𝑅̂𝑖 𝑝𝑞0𝑛̂

𝑝 𝑛̂𝑞 + . . . .

(3.298)

(3.299)
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The Riemann tensor here is evaluated at O. Finally, this gives the coordinate transformation from
Fermi to Riemann normal coordinates:

𝑥0(𝑠) =𝑥0 + 1
3
𝑥0𝑅̂0𝑝0𝑞𝑥

𝑝𝑥𝑞 + . . .

𝑥𝑖 (𝑠) =𝑥𝑖 + 1
6

(
𝑥0

)2
𝑅̂𝑖0𝑝0𝑥

𝑝 + 1
3
𝑥0𝑅̂𝑖 𝑝𝑞0𝑥

𝑝𝑥𝑞 + . . . .

(3.300)

(3.301)

The metric components in Fermi normal coordinates can then be obtained from those in Riemann
normal coordinates by a change of coordinates, and one finds:


𝑔̄00 = − 1 − 𝑅̂0𝑝0𝑞 (𝜏)𝑥𝑝𝑥𝑞 +𝑂

(
𝑥3

)
𝑔̄0𝑖 =

2
3
𝑅̂𝑖 𝑝𝑞0(𝜏)𝑥𝑝𝑥𝑞 +𝑂

(
𝑥3

)
𝑔̄𝑖 𝑗 =𝛿𝑖 𝑗 −

1
3
𝑅̂𝑖 𝑝 𝑗𝑞 (𝜏)𝑥𝑝𝑥𝑞 +𝑂

(
𝑥3

)
.

(3.302)

(3.303)

(3.304)

Note that, in principle, the components of the Riemann tensor here are evaluated at O, not that
𝐴(𝜏). But, notice that moving from O to 𝐴(𝜏) does not change the metric components at order 2
in 𝑥, nor does the coordinate transformation at third orderṠo the error on the components of the
Riemann tensor are negligible at third order. Finally, note that these components, when expressed
in Riemann or Fermi normal coordinates, differ at most by terms of order 𝑥2, so that, in the metric
components, one can use the components in either frame to express the metric components, at the
order considered here.
We see that, along 𝛾, with 𝑥𝑖 = 0, we have:

𝑔̄𝜇𝜈 (𝛾) = 𝜂𝜇𝜈 and Γ̄𝜇𝜈𝜌 (𝛾) = 0 . (3.305)

We have thus constructed a free-falling frame carried by A in its motion.

3.8 Energy, momentum and the energy-momentum tensor

So far, we have discussed how matter, in the form of massless or massive point particles, reacts to
a given gravitational field. This means that we have treated matter as a collection of test-particles
we could use to probe the geometry of spacetime. As we have discussed, in General Relativity,
this is encapsulated in the metric of spacetime, parallel transport and the associated curvature of
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the affine connection. To have a complete theory of gravitation, we still have to determine how the
gravitational field is generated by the matter present in the Universe. This will properly be the topic
of the next section; but before we can establish this link, we have to introduce the correct way to
describe matter in General Relativity. This is the goal of this section.

3.8.1 The energy-momentum tensor

In General Relativity, on sufficiently large scales, the metric of spacetime is not sensitive to all the
details in the distribution of mater. It only feels a few coarse-grained properties of that distribution,
namely its energy and its averaged momentum. So although, by the equivalence principle and the
relativistic equivalence between mass and energy, it is sensitive to the distribution of all matter, par-
ticles but also fields such as the electromagnetic field, it is only sensitive to some of their collective
properties. These are fully encapsulated in the energy-momentum tensor.

Energy-momentum tensor

The energy-momentum tensor of matter is a symmetric (0, 2)-tensor field 𝑻.

As we have seen, the notions of energy and momentum are observer-dependent for particles, so
we expect them to also depend on the observer for the collective distribution of matter. Let O be an
observer, with 4-velocity𝑼O, and a local basis for its rest frame

{
𝒆 (𝒊)

}
. Then:

1. 𝜌O = 𝑻 (𝑼O,𝑼O) is the energy density of the matter measured by O.

2. 𝑝𝑖O = −𝑻 (𝒆 (𝒊) ,𝑼O) are the components of the momentum density of the matter measured by
O, 𝒑O = 𝑝𝑖O𝒆 (𝒊) .

3. 𝑞𝑖O = −𝑻 (𝑼O, 𝒆 (𝒊) ) are the components of the energy flux of the matter measured by O,
𝒒O = 𝑞𝑖O𝒆 (𝒊) . The energy crossing a surface element in the observer’s rest frame with area
d𝑆 and normal ®𝑛, in a time d𝑡, is thus:

d𝐸 = 𝑛𝑖𝑞
𝑖
Od𝑆d𝑡 . (3.306)

By symmetry of the energy-momentum tensor, in units of 𝑐 = 1, we get 𝒒O = 𝒑O, which is
a consequence of the relativistic equivalence between mass and energy.
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4. ΠO
𝑖 𝑗 = 𝑻

(
𝒆 (𝒊) , 𝒆 ( 𝒋 )

)
are the components of the stress of the matter measured by O, 𝚷O i.e.

the force exerted by matter along the direction 𝒆 (𝒊) on the surface normal to 𝒆 ( 𝒋 ) . It is the
part of the energy-momentum tensor acting on the rest space of the observer.

By duality, we can construct a (2, 0)-tensor, 𝑻∗ equivalent to the energy-momentum tensor as de-
fined above. In terms of the quantities observed by O:

𝑻∗ = 𝜌O𝑼O ⊗ 𝑼O + 𝒑O ⊗ 𝑼O +𝑼O ⊗ 𝒒O +𝚷O . (3.307)

The energy-momentum tensor is obtained from it by using the dual of each vector and tensor:

𝑻 = 𝜌O𝑼
∗
O ⊗ 𝑼∗

O + 𝒑∗O ⊗ 𝑼∗
O +𝑼∗

O ⊗ 𝒒∗O +𝚷∗
O . (3.308)

In terms of components in a local basis, we get:

𝑇𝜇𝜈 =𝜌O𝑈O𝜇𝑈O𝜈 + 𝑝𝜇𝑈O𝜈 + 𝑝𝜈𝑈O𝜇 + ΠO𝜇𝜈 . (3.309)

The stress can be further decomposed into an isotropic part and an anisotropic part by isolating its
trace:

ΠO𝜇𝜈 = 𝑃O
(
𝑔𝜇𝜈 + 𝑢𝜇𝑢𝜈

)
+ Π̂O𝜇𝜈 , (3.310)

where the trace is 3𝑃O with 𝑃O the pressure measured by O, and 𝚷̂O is traceless.

3.8.2 Energy-momentum tensor for a fluid

If matter can be described by a continuous fluid, we can define the 4-velocity of the fluid elements 𝒖,
and the energy momentum tensor gets a natural decomposition by using the quantities measured by
an observer comoving with the fluid: 𝑼O = 𝒖. Then the energy-momentum tensor can be written:

𝑻 = (𝜌 + 𝑃)𝒖∗ ⊗ 𝒖∗ + 𝑃𝒈 + 𝒒∗ ⊗ 𝒖∗ + 𝒖∗ ⊗ 𝒒∗ + 𝚷̂∗ . (3.311)

The quantities defined here are:

1. the energy-density of the fluid: 𝜌;

2. the pressure of the fluid: 𝑃

3. the energy flux of the fluid: 𝒒 = 𝑞𝜇𝒆 (𝝁) with 𝑞𝜇𝑢𝜇 = 0;
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4. the anisotropic stress of the fluid: 𝚷̂ = Π̂𝜇𝜈𝒆 (𝝁) 𝒆 (𝝂) with Π̂𝜇𝜇 = 0 and Π̂𝜇𝜈𝑢𝜈 = 0.

For a perfect fluid: 𝒒 = 0 and 𝚷̂ = 0, so that:

Energy-momentum tensor for a perfect fluid

𝑻 = (𝜌 + 𝑃)𝒖∗ ⊗ 𝒖∗ + 𝑃𝒈 . (3.312)

In terms of components is a coordinate basis:

𝑇𝜇𝜈 = (𝜌 + 𝑃) 𝑢𝜇𝑢𝜈 + 𝑃𝑔𝜇𝜈 . (3.313)

Note that a perfect fluid may not appear perfect to an observer O not comoving with the fluid.
For a perfect fluid of non-relativistic particles sourcing a weak gravitational field:

𝑢𝜇 =(1 +Φ)𝛿𝜇0 + 𝑣𝑖𝛿𝜇𝑖 (3.314)

𝑃 �𝜌 = 𝑂 (Φ) , (3.315)

so that:

𝑇00 =𝜌 (3.316)

𝑇0𝑖 =0 (3.317)

𝑇𝑖 𝑗 =0 . (3.318)

3.8.3 Conservation of energy and momentum

In Special Relativity, we know that energy and momentum are conserved, which reads:

𝜕𝑇 𝜇𝜈
𝜕𝑥𝜇

= 0 . (3.319)

In General Relativity, this must remain true in local inertial frames, so it must be replaced by its
covariant form involving the covariant derivative:

∇𝜇𝑇 𝜇𝜈 = 0 . (3.320)
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3.9 From source to geometry: Einstein field equations

In Newtonian mechanics, the gravitational field, Φ, is determined by its source, namely the mass
density, 𝜌, via Poisson’s equation:

ΔΦ = 4𝜋𝐺𝜌 . (3.321)

Therefore, if the metric of spacetime is to accurately capture the properties of the gravitational
field, we expect it to be linked to the energy-momentum content via a tensorial equation:

𝑬 [𝒈] = 𝜅𝑻 , (3.322)

where 𝜅 is a constant and 𝑬 is a (0, 2)-tensor. The fact that the equation is a relation between tensors
ensures that it remains valid in any coordinate system, thus satisfying one of General Relativity’s
fundamental assumption; this is often called general covariance. From our point of view however,
this is just the fact that the natural framework to incorporate gravitation to a relativistic theory is the
one of spacetimemanifolds. Wewould like Eq. (3.322) to reduce to Eq. (3.321) for a non-relativistic,
weak source. Therefore, we can assume that 𝑬 only depends on 𝒈 and its first and second derivatives
at most. Specifically, it must be a function of 𝒈 and the Riemann tensor. Moreover, since Eq. (3.320)
must be satisfied for any reasonable source, we must have:

∇𝜇𝐸𝜇𝜈 = 0 . (3.323)

Starting from Bianchi identities, Eq. (3.249), it is actually possible to construct such a tensor.
It turns out to be unique up to a simple term but we will not attempt to prove this uniqueness here.
Let us thus start from Bianchi identities:

∇𝜇𝑅𝜈𝜆𝜌𝜎 + ∇𝜌𝑅𝜈𝜆𝜎𝜇 + ∇𝜎𝑅𝜈𝜆𝜇𝜌 = 0 , (3.324)

and define the Ricci tensor as a symmetric (0,2)-tensor obtained by contracting the Riemann tensor
on its first and second entries, or in terms of its components:

𝑅𝜇𝜈 = 𝑅
𝜌
𝜇𝜌𝜈 . (3.325)

Then, taking a trace of Eq.(3.324) on the second and fourth indices¹⁵:

∇𝜇𝑅𝜆𝜎 + ∇𝜈𝑅𝜈𝜆𝜎𝜇 + ∇𝜎𝑅𝜈𝜆𝜇𝜈 = 0 . (3.326)

¹⁵Remember that ∇𝛼𝑔𝛽𝛾 = 0 according to metric compatibility, so we are always free to contract inside covariant
derivatives and take traces as we wish.
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Using that 𝑅𝜈𝜆𝜇𝜈 = −𝑅𝜈𝜆𝜈𝜇 = −𝑅𝜆𝜇, we get:

∇𝜇𝑅𝜆𝜎 + ∇𝜈𝑅𝜈𝜆𝜎𝜇 − ∇𝜎𝑅𝜆𝜇 = 0 . (3.327)

Next, let us contract this equation with 𝑔𝜆𝜎:

∇𝜇𝑅 + ∇𝜈
[
𝑔𝜆𝜎𝑅𝜈𝜆𝜎𝜇

]
− 𝑔𝜆𝜎∇𝜎𝑅𝜆𝜇 = 0 , (3.328)

where we used that ∇𝛼𝑔𝛽𝛾 = 0 and we defined the Ricci scalar as the trace of the Ricci tensor:

𝑅 = 𝑔𝜇𝜈𝑅𝜇𝜈 . (3.329)

The second term in Eq. (3.328) can be simplified by noting that:

𝑔𝜆𝜎𝑅𝜈𝜆𝜎𝜇 =𝑔𝜆𝜎𝑔𝜈𝜌𝑅𝜌𝜆𝜎𝜇 (3.330)

= − 𝑔𝜆𝜎𝑔𝜈𝜌𝑅𝜆𝜌𝜎𝜇 (3.331)

= − 𝑔𝜈𝜌𝑅𝜎𝜌𝜎𝜇 (3.332)

= − 𝑔𝜈𝜌𝑅𝜌𝜇 . (3.333)

Then, we get:
∇𝜇𝑅 − 𝑔𝜈𝜌∇𝜈𝑅𝜌𝜇 − 𝑔𝜆𝜎∇𝜎𝑅𝜆𝜇 = 0 , (3.334)

or, relabelling dummy indices:
∇𝜇𝑅 − 2𝑔𝜈𝜌∇𝜈𝑅𝜌𝜇 = 0 . (3.335)

Thus:
𝑔𝜈𝜌∇𝜈𝑅𝜌𝜈 −

1
2
𝑔𝜇𝜌𝑔

𝜌𝜈∇𝜈𝑅 = 0 , (3.336)

where we used 𝛿𝜇𝜈 = 𝑔𝜇𝜌𝑔𝜌𝜈 . Finally:

𝑔𝜈𝜌∇𝜈
[
𝑅𝜌𝜇 −

1
2
𝑅𝑔𝜌𝜇

]
= 0 . (3.337)

Therefore, the Einstein tensor, 𝑮 defined, in components, by:

𝐺𝜇𝜈 = 𝑅𝜇𝜈 −
1
2
𝑅𝑔𝜇𝜈 (3.338)



157 The geometry of spacetime

satisfies:
∇𝜇𝐺𝜇𝜈 = 0 , (3.339)

and could be used as the tensor 𝑬 we were looking for. However, it needs to be supplemented
by another terms for completeness. As we have noted several times, ∇𝜌𝑔𝜇𝜈 = 0, so that we can
always add a term proportional to 𝑔𝜇𝜈 to the Einstein’s tensor and obtain a tensor satisfying our
requirements, Thus, we will choose:

𝑬 = 𝑮 + Λ𝒈 , (3.340)

whereΛ ∈ R is a constant known as the cosmological constant. It appears as a constant of the theory,
to be determined by experiment or observations. Currently, it manifests itself at cosmological scales
only and its observed value is:

Λ ' 10−52m−2 . (3.341)

Because it is so small, it has no discernible effects on length scales much smaller than cosmological
ones. This is why we will neglect it everywhere, except in chapter 6. To summarize, we arrived at
the following form for our gravitational field equations:

𝑅𝜇𝜈 −
1
2
𝑅𝑔𝜇𝜈 = 𝜅𝑇𝜇𝜈 . (3.342)

To complete our task, we need to fix the coupling constant 𝜅. We expect it to be proportional to 𝐺,
Newton’s constant, but wewant to determine how exactly. To do that, we impose that these equations
lead to Poisson’s equation for a static, weak gravitational field generated by a non-relativistic source.
In that case:

𝑇𝜇𝜈 = 𝜌𝛿𝜇0𝛿𝜈0 , (3.343)

and the non-zero components of the Ricci tensor reads:

Ricci tensor in the static, weak field limit

𝑅00 =ΔΦ (3.344)

𝑅𝑖 𝑗 =ΔΦ𝛿𝑖 𝑗 , (3.345)

so that the Ricci scalar becomes:
𝑅 = 2ΔΦ . (3.346)
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The Einstein tensor is thus:

𝐺00 = 2ΔΦ and 𝐺𝑖 𝑗 = 𝐺0𝑖 = 0 . (3.347)

Thus, neglecting the cosmological constant, we get¹⁶:

2ΔΦ = 𝜅
[
𝑐4] 𝜌 , (3.348)

and thus:
𝜅
[
𝑐4]
2

= 4𝜋𝐺 , (3.349)

i.e.:

𝜅 =
8𝜋𝐺
𝑐4 = 8𝜋𝐺 . (3.350)

Finally, we get the:

Einstein Field Equations

𝐺𝜇𝜈 + Λ𝑔𝜇𝜈 =
8𝜋𝐺
𝑐4 𝑇𝜇𝜈 , (3.351)

with:
𝐺𝜇𝜈 = 𝑅𝜇𝜈 −

1
2
𝑅𝑔𝜇𝜈 . (3.352)

Note that by taking the trace of this equation we get:

−𝑅 + 4Λ = 8𝜋𝐺𝑇 , (3.353)

where 𝑇 = 𝑇 𝜇𝜇 is the trace of the energy-momentum tensor. Thus, the Einstein field equations are
sometimes written in the equivalent form:

𝑅𝜇𝜈 − Λ𝑔𝜇𝜈 = 8𝜋𝐺
[
𝑇𝜇𝜈 −

1
2
𝑇𝑔𝜇𝜈

]
, (3.354)

¹⁶We have re-established factors of 𝑐 to get units right. In the Poisson equation, 𝜌 is the mass density. Thus, the energy
density in the relativistic energy-momentum tensor is 𝑐2𝜌. Two more factors of 𝑐 come from the fact that Φ → Φ/𝑐2

in the metric. This can be directly checked form the Einstein field equations. the energy-momentum tensor components
have units of energy per unit volume and the LHS has units of inverse area, so the constant 𝜅 must have units of length
over energy. But 𝐺 has units of length to the power 5 over energy times time to the four, so it must be divided by 𝑐4 to
get units of length over energy.
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which is particularly useful in vacuum, when 𝑇𝜇𝜈 = 0. These Einstein field equations quantify how
matter and energy act on the spacetime geometry to generate the metric encoding the gravitational
field. Note that by symmetries, they consist in 4×(4+1)/2 = 10 coupled partial differential equations
for the 10 metric independent components. Of course, a choice of arbitrary coordinate system can
fix 4 of these metric components, so we are left with 10 coupled equations for 6 actual degrees of
freedom. This simplymeans that some of these equations can be interpreted as constraints. However,
this system is so complex that, in general, and without any assumptions on the symmetries of the
system and the nature of the sources, there is little hope to arrive at any practical solution. The
following chapters will all be devoted to such assumptions in various physically relevant contexts.
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Stars and black holes: the Schwarzschild solution
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4.1 Introduction

The simplest way to illustrate the link between geometry and matter that underpins general relativity
and allowed us to build the theory in chapter 3 is to study the gravitational field generated by a highly
symmetrical distribution of matter: that of a perfectly spherical, isolated clump of non-relativistic
matter, i.e. a ball of mass. This is certainly the simplest model we can build of astrophysical objects
such as stars and planets.
A few things need to be understood from the start. We are going to review the approach to be
followed in the Newtonian context first, so that we will be able to contrast with the relativistic case
later. The spherical distribution of mass plays the role of a source of the gravitational field. If we
choose the origin of the coordinate system at the centre of the distribution and we use spherical
coordinates, we can describe that source by a density:

𝜌(𝑡, 𝑟) = 𝜌(𝑟)Θ(𝑟 − 𝑅(𝑡)) , (4.1)

where 𝜌(𝑟) describes the profile of density and depends only on 𝑟 by symmetry. Θ(𝑢) is the Heav-
iside functions which is 1 for 𝑢 ≤ 0 and 0 otherwise. The function 𝑅(𝑡) is the radius of the object
at time 𝑡; by giving it a time dependence, we allow for the object to ”pulse”, as long as it does so
while keeping its spherical symmetry. What we will focus on is the field generated by this source
outside the source itself, i.e. in vacuum: 𝑟 > 𝑅(𝑡). In Newtonian physics, this amounts to solving
the Laplace equation:

ΔΦ(𝑡, 𝑟, 𝜃, 𝜙) = 0 , (4.2)

for the gravitational potential Φ(𝑡, 𝑟, 𝜃, 𝜙). Actually, by symmetry, we must have 𝜙 = 𝜙(𝑡, 𝑟) and
the Laplacian thus simplifies, so that Eq. (4.2) becomes:

1
𝑟2

𝜕

𝜕𝑟

[
𝑟2 𝜕Φ
𝜕𝑟

]
= 0 . (4.3)

This can be straightforwardly solved to obtain:

Φ(𝑡, 𝑟) = −𝐶1(𝑡)
𝑟

+ 𝐶2(𝑡) , (4.4)

where 𝐶1(𝑡) and 𝐶2(𝑡) are arbitrary functions of time. They need to be set by imposing some
boundary conditions. Using the fact that the action of the mass distribution should fade at infinity:

lim
𝑟→+∞

Φ(𝑡, 𝑟) = 0 , (4.5)
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we impose 𝐶2(𝑡) = 0. To fix 𝐶1(𝑡), we need to examine the other boundary, that is, the surface of
the star: 𝑟 = 𝑅(𝑡). Inside the star, the gravitational field obeys the Poisson equation:

ΔΦ = 4𝜋𝐺𝜌 . (4.6)

Using spherical symmetry, we can get that in the form:

𝜕Φ
𝜕𝑟

=
𝐺𝑀 (< 𝑟)

𝑟2 , (4.7)

where 𝑀 (< 𝑟) is the mass enclosed in a sphere of radius 𝑟 < 𝑅(𝑡):

𝑀 (< 𝑟) = 4𝜋
ˆ 𝑟

0
𝑢2𝜌(𝑢)d𝑢 . (4.8)

Differentiating Eq. (4.4) with respect to 𝑟 and evaluating the result at 𝑟 = 𝑅(𝑡), we get:

𝜕Φ
𝜕𝑟

(𝑡, 𝑅(𝑡)) = 𝐶1(𝑡)
𝑅2(𝑡)

, (4.9)

while the same quantity obtained from Eq. (4.7) gives:

𝜕Φ
𝜕𝑟

(𝑡, 𝑅(𝑡)) = 𝐺𝑀

𝑅2(𝑡)
, (4.10)

where 𝑀 = 𝑀 (< 𝑅) is the total mass of the star. Thus, we find that 𝐶1(𝑡) = 𝐺𝑀 . This is a
simplified version of Gauss’s theorem: the potential outside a spherical gravitational object only
depends on the total mass of the object:. The form of the potential is given by:

Φ(𝑡, 𝑟) = −𝐺𝑀
𝑟

. (4.11)

It is interesting to note that we did not need to suppose that the source was static. As long as it
pulses while retaining its symmetry, the potential outside the source remains time-independent.
We are now going to apply the same strategy that we deployed above to tackle the same problem
in General Relativity. Let us consider the spacetime around a spherically symmetric distribution
of mass. What is its geometry? To describe the system, we are going to make a certain number of
assumptions:

(a) Asymptotic flatness: We assume that the system is isolated so that far enough from the source
(in a way that will be made clear later), the geometry of spacetime is that of Minkowski
spacetime, i.e. the one we get in absence of any gravitational field.
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(b) Vacuum solution: We concentrate on the geometry outside the sources: 𝑇𝜇𝜈 = 0.

(c) Spherical symmetry: By the principle according to which the symmetries of the sources dictate
the symmetries of the solution, we will assume that the spacetime is spherically symmetric.

The last assumption leads us to choose a coordinate chart outside the star that respects the symme-
tries.

One can show that, by an appropriate choice of coordinates, the most general spherically sym-
metric spacetime can always be decomposed (foliated) in a sequence of spacelike hypersurfaces
labelled by a time coordinate 𝑡 ∈ R, that are themselves foliated by concentric spheres of radii
𝑟 ∈ R; see Fig. 4.1.

Figure 4.1: The chart (𝑡, 𝑟, 𝜃, 𝜙) adapted to spherically symmetric spacetime and the associated
foliation. The black thick dot represents the centre of symmetry at the time 𝑡. Any event in spacetime
𝑃 sits on a 2-sphere of radius 𝑟 at fixed time 𝑡 that is embedded in an hypersurfaces at constant 𝑡
orthogonal to 𝜕

𝜕𝑡 . It is then labelled by its the angular position (𝜃, 𝜙) on that sphere.

The metric then takes the form:

𝒈 = −e𝜈 (𝑡 ,𝑟 )d𝑡 ⊗ d𝑡 + e𝜆(𝑡 ,𝑟 )d𝑟 ⊗ d𝑟 + 𝑟2 [
d𝜃 ⊗ d𝜃 + sin2 𝜃 d𝜙 ⊗ d𝜙

]
, (4.12)
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and the line element reads:

d𝑠2 = −e𝜈 (𝑡 ,𝑟 )d𝑡2 + e𝜆(𝑡 ,𝑟 )d𝑟2 + 𝑟2 [
d𝜃2 + sin2 𝜃 d𝜙2] , (4.13)

where 𝜈(𝑡, 𝑟) and 𝜆(𝑡, 𝑟) are arbitrary functions. The exponential form used here is arbitrary but
it serves to remember the proper signs of the metric components and it will simplify calculations
further down. Proofs of this fact can be found in [21] and in box 23.3 of [16]. In the language
of appendix B, the space at constant 𝑡 is isotropic around the centre but not homogeneous. Here
(𝜃, 𝜙) ∈ [0, 𝜋) × [0, 2𝜋) are the usual angles on the sphere 𝑆2, 𝑟 is the area distance, i.e. the distance
such that the area of the sphere at constant 𝑡 and 𝑟 is given by 4𝜋𝑟2.

4.2 Spacetime outside a spherical star: The Schwarzschild solution

4.2.1 Solution to the Einstein field equations

We can now use assumption (𝑏) above to solve the Einstein field equations for the metric (4.12).
We aim to solve the vacuum equations which can always be written as:

𝑅𝜇𝜈 = 0 . (4.14)

We first need to compute the connection coefficients for the metric 4.12. The only ones that are
non-zero are:
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Connection coefficients for the metric (4.12)

Γ0
00 =

1
2
𝜕𝜈

𝜕𝑡
; Γ0

01 = Γ0
10 =

1
2
𝜕𝜈

𝜕𝑟
; Γ0

11 =
e𝜆−𝜈

2
𝜕𝜆

𝜕𝑡
; (4.15)

Γ1
00 =

e𝜈−𝜆

2
𝜕𝜈

𝜕𝑟
; Γ1

11 =
1
2
𝜕𝜆

𝜕𝑟
; Γ1

01 = Γ1
10 =

1
2
𝜕𝜆

𝜕𝑡
; (4.16)

Γ1
22 = −𝑟e−𝜆 ; Γ1

33 = −𝑟e−𝜆 sin2 𝜃 ; (4.17)

Γ2
12 = Γ2

21 =
1
𝑟

; Γ2
33 = − sin 𝜃 cos 𝜃 (4.18)

Γ3
31 = Γ3

13 =
1
𝑟

; Γ3
32 = Γ3

23 =
cos 𝜃
sin 𝜃

. (4.19)

Using these, we obtain the non-zero components of the Ricci tensor:

Components of the Ricci tensor for the metric (4.12)

𝑅00 = − 1
2

[
𝜕2𝜆

𝜕𝑡2
+ 1

2

(
𝜕𝜆

𝜕𝑡

)2
− 1

2
𝜕𝜈

𝜕𝑡

𝜕𝜆

𝜕𝑡

]
+ e𝜈−𝜆

2

[
𝜕2𝜈

𝜕𝑟2 + 1
2

(
𝜕𝜈

𝜕𝑟

)2
− 1

2
𝜕𝜈

𝜕𝑟

𝜕𝜆

𝜕𝑟
+ 2
𝑟

𝜕𝜈

𝜕𝑟

]
;

(4.20)

𝑅11 = − 1
2

[
𝜕2𝜈

𝜕𝑟2 + 1
2

(
𝜕𝜈

𝜕𝑟

)2
− 1

2
𝜕𝜆

𝜕𝑟

𝜕𝜈

𝜕𝑟
− 2
𝑟

𝜕𝜆

𝜕𝑟

]
+ e𝜆−𝜈

2

[
𝜕2𝜆

𝜕𝑡2
+ 1

2

(
𝜕𝜆

𝜕𝑡

)2
− 1

2
𝜕𝜈

𝜕𝑡

𝜕𝜆

𝜕𝑡

]
;

(4.21)

𝑅01 =𝑅10 =
1
𝑟

𝜕𝜆

𝜕𝑡
; 𝑅22 = 1 − e−𝜆

[
1 + 𝑟

2

(
𝜕𝜈

𝜕𝑟
− 𝜕𝜆

𝜕𝑟

)]
; 𝑅33 = sin2 𝜃𝑅22 . (4.22)

From 𝑅01 = 0, we can then obtain simply:

𝜆 = 𝜆(𝑟) . (4.23)
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Then, we form:

𝑅00 + e𝜈−𝜆𝑅11 = 0 , (4.24)

to get:
𝜕𝜈

𝜕𝑟
+ d𝜆

d𝑟
= 0 , (4.25)

so that:

𝜈(𝑡, 𝑟) = −𝜆(𝑟) + 𝑓 (𝑡) , (4.26)

for an arbitrary function 𝑓 (𝑡). Next, we use that 𝑅22 = 0 to get:

e−𝜆
[
1 − 𝑟 d𝜆

d𝑟

]
= 1 , (4.27)

which can be rewritten:
d
d𝑟

(
𝑟e−𝜆(𝑟 )

)
= 1 , (4.28)

so that:

e−𝜆 = 1 + 𝐶
𝑟

for 𝐶 ∈ R . (4.29)

To conclude the calculation, we need to fix the function 𝑓 (𝑡). This can be done by using assumption
(a) above. From Eq. (4.29) we get:

lim
𝑟→+∞

𝜆(𝑟) = 0 , (4.30)

which implies that:

lim
𝑟→+∞

𝜈(𝑡, 𝑟) = 𝑓 (𝑡) . (4.31)

Then, asymptotic flatness imposes that:

lim
𝑟→+∞

𝜈(𝑡, 𝑟) = 𝑓 (𝑡) = 0 . (4.32)

Then we arrive at a family of solutions indexed by an arbitrary constant 𝐶 ∈ R:

𝒈 = −
(
1 + 𝐶

𝑟

)
d𝑡 ⊗ d𝑡 +

(
1 + 𝐶

𝑟

)−1
d𝑟 ⊗ d𝑟 + 𝑟2 [

d𝜃 ⊗ d𝜃 + sin2 𝜃 d𝜙 ⊗ d𝜙
]
. (4.33)

Note that we obtained static solutions although the source is not necessarily static: as long as it stays
spherically symmetric, the source could evolve and the metric outside would remain static¹.

¹What do we mean by static here? We mean that it has a timelike Killing vector field, 𝜕𝜕𝑡 here; see appendix B
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4.2.2 Birkhoff-Jebsen theorem

To fully characterise the field around a spherical star, we still have to find a way to fix𝐶. At the very
least, far from the star, when the field is weak, we expect to recover Newton’s law of motion for a
massive test-particle. At first order in 1/𝑟 , the metric becomes:

𝒈 ' −
(
1 + 𝐶

𝑟

)
d𝑡 ⊗ d𝑡 +

(
1 − 𝐶

𝑟

)
d𝑟 ⊗ d𝑟 + 𝑟2 [

d𝜃 ⊗ d𝜃 + sin2 𝜃 d𝜙 ⊗ d𝜙
]
. (4.34)

Let us consider a test-particle of mass 𝑚 and 4-velocity 𝒖 = 𝑢𝜇𝒆 (𝝁) . At first order, we develop
𝑢𝜇 = 𝑢̄𝜇 + 𝛿𝑢𝜇 where 𝑢̄𝜇 are the components of the 4-velocity in absence of any gravitational field
from the star , and 𝛿𝑢𝜇 = O(1/𝑟) is the perturbation due to the presence of the star. Then, we
expand at first order the geodesic equation:

∇𝒖𝒖 = 0 ⇔ 𝑢𝛼𝜕𝛼𝑢
𝜇 + Γ𝜇𝛼𝛽𝑢

𝛼𝑢𝛽 = 0 . (4.35)

At dominant order, we recover the equation of a straight line in Minkowski spacetime, expressed in
spherical coordinates. If we start at rest, we stay at rest since we are in Minkowski spacetime. Since
we focus on motion caused by the presence of the massive star, we can thus assume that 𝑢̄𝜇 = 𝛿𝜇0 .
The first order, perturbative equation of motion then becomes:

d𝛿𝑢𝜇

d𝑡
+ 𝛿Γ𝜇00 = 0 . (4.36)

Since:
𝛿Γ𝜇00 ' − 𝐶

2𝑟2 𝛿
𝜇1 , (4.37)

we get a radial motion with:
d2𝑟

d𝑡2
=
𝐶

2𝑟2 . (4.38)

To recover Newton’s second law, we must thus set 𝐶 = −2𝐺𝑀 where 𝑀 is the total mass of the star.
The quantity:

𝑅𝑆 = 2𝐺𝑀
[
=

2𝐺𝑀
𝑐2

]
, (4.39)

is called the Schwarzschild radius of the star. It is the only free parameter entering the metric
generated in vacuum by a spherical object. There is no time-dependence left and given the mass of
the object, the metric is fully determined as long as it stays spherical.
We have proven the:
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Birkhoff-Jebsen Theorem

There exists a unique spherically symmetric, vacuum and asymptotically flat solution to the
Einstein field equations. This solution is static and is given by the Schwarzschild geometry:

𝒈 = −
(
1 − 𝑅𝑆

𝑟

)
d𝑡 ⊗ d𝑡 +

(
1 − 𝑅𝑆

𝑟

)−1
d𝑟 ⊗ d𝑟 + 𝑟2 [

d𝜃 ⊗ d𝜃 + sin2 𝜃 d𝜙 ⊗ d𝜙
]
. (4.40)

The coordinates (𝑡, 𝑟, 𝜃, 𝜙) are known as the Schwarzschild coordinates. Note that the depar-
ture from Minkowski spacetime in the metric coefficients is simply:

−𝑅𝑆
𝑟

= 2Φ(𝑟) , (4.41)

i.e. twice the Newtonian potential.

Equivalently, we get the Schwarzschild line element:

d𝑠2 = −
(
1 − 𝑅𝑆

𝑟

)
d𝑡2 +

(
1 − 𝑅𝑆

𝑟

)−1
d𝑟2 + 𝑟2 [

d𝜃2 + sin2 𝜃 d𝜙2]
= − (1 + 2Φ(𝑟)) d𝑡2 + (1 + 2Φ(𝑟))−1 d𝑟2 + 𝑟2 [

d𝜃2 + sin2 𝜃 d𝜙2] .
(4.42)

(4.43)

This line element is singular for 𝑟 = 0 and for 𝑟 = 𝑅𝑆 . We will see in section 4.6, that the first
singularity is serious while the other one is not. But in what follows we first want to use Eq. (4.42) to
describe the geometry outside a star so we have to check that these singularities are not a problem
for us. Clearly, 𝑟 = 0 is inside the star and as such, is not a covered by the geometry given by
Eq. (4.40), which describes the vacuum region outside the star. On the other hand, for a star of mass
𝑀 , the Schwarzschild radius can be expressed as:

𝑅𝑆 ' 3
𝑀

𝑀�
km , (4.44)

to be compared with the Sun’s radius: 𝑅� ' 7 × 105 km. For a stellar object, the Schwarzschild
radius is always much smaller than the size of the object and the coordinate singularity of the
Schwarzchild metric at 𝑟 = 𝑅𝑆 is irrelevant as far as describing the geometry outside the star is
concerned. In what follows we will always restrict ourselves to 𝑟 > 𝑅𝑆 . We will allow for values of
𝑟 close to 𝑅𝑆 to illustrate some important relativistic effects when discussion geodesics, although
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such effects would not be present for realistic Solar-type stars, because they become important for
compact starts such as neutron stars. In section 4.6 we will explore what happens if we remove the
central object and continue the Schwarzschild geometry past the hypersurface 𝑟 = 𝑅𝑆 to discover a
new class of objects: black holes.

4.3 Geodesics of the Schwarzschild geometry

4.3.1 Geodesic equations in Schwarzschild coordinates

To explore the physics associated to a geometry, the best way is to study how test particles in free
fall behave in that geometry. This means one has to study the timelike and lightlike geodesics. Let
us remember that these are characterised by the geodesic equation:

∇𝒖𝒖 = 0 ⇔ d𝑢𝜇

d𝜆
+ Γ𝜇𝜈𝜌𝑢

𝜇𝑢𝜌 = 0 , (4.45)

where 𝜆 is an affine parameter such that d𝜆 = −𝑢𝜇d𝑥𝜇. Moreover:

𝑢𝜇 =
d𝑥𝜇

d𝜆
, (4.46)

are the components of the components of the vector field tangent to the geodesics given parametri-
cally by 𝑥𝜇 (𝜆). The nature of the geodesics is determined by:

𝒈(𝒖, 𝒖) = 𝑔𝜇𝜈𝑢𝜇𝑢𝜈 = 𝜀 , (4.47)

with 𝜀 = −1 for a timelike geodesics with the parameter chosen to be the proper time along the
geodesic (𝜆 = 𝜏) and 𝜀 = 0 for a lightlike one.
Let us first rewrite the connection coefficients (4.15)-(4.19) for the Schwarzschild metric (4.40):
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Connection coefficients for the Schwarzschild metric

Γ0
01 = Γ0

10 =
𝑅𝑆

2𝑟 (𝑟 − 𝑅𝑆)
; (4.48)

Γ1
00 =

𝑅𝑆 (𝑟 − 𝑅𝑆)
2𝑟3 ; Γ1

11 = − 𝑅𝑆
2𝑟 (𝑟 − 𝑅𝑆)

; (4.49)

Γ1
22 = 𝑅𝑆 − 𝑟 ; Γ1

33 = (𝑅𝑆 − 𝑟) sin2 𝜃 ; (4.50)

Γ2
12 = Γ2

21 =
1
𝑟

; Γ2
33 = − sin 𝜃 cos 𝜃 (4.51)

Γ3
12 = Γ3

31 =
1
𝑟

; Γ3
23 = Γ3

32 =
cos 𝜃
sin 𝜃

. (4.52)

Then, the geodesic equations read:

d2𝑡

d𝜆2 + 𝑅𝑆
𝑟 (𝑟 − 𝑅𝑆)

d𝑡
d𝜆

d𝑟
d𝜆

= 0

d2𝑟

d𝜆2 + 𝑅𝑆
2𝑟3

(
d𝑡
d𝜆

)2
− 𝑅𝑆

2𝑟 (𝑟 − 𝑅𝑆)

(
d𝑟
d𝜆

)2
− (𝑟 − 𝑅𝑆)

[(
d𝜃
d𝜆

)2
+ sin2 𝜃

(
d𝜙
d𝜆

)2
]
= 0

d2𝜃

d𝜆2 + 2
𝑟

d𝑟
d𝜆

d𝜃
d𝜆

− sin 𝜃 cos 𝜃
(
d𝜙
d𝜆

)
= 0

d2𝜙

d𝜆2 + 2
𝑟

d𝑟
d𝜆

d𝜙
d𝜆

+ 2 cos 𝜃
sin 𝜃

d𝜃
d𝜆

d𝜙
d𝜆

= 0 .

(4.53)

(4.54)

(4.55)

(4.56)

4.3.2 Conserved quantities

These equations are highly coupled and there is no hope that we will be able to solve them exactly.
However, we can make some progress by looking for conserved quantities. This can be done by
looking for combinations of Eqs. (4.53)-(4.56) that can be written as total derivatives. In a more
clever way, we can also use Killing vector fields of the geometry. From appendix B, we know that
a vector field 𝝃 is a Killing vector field, i.e. that it generates a local isometry of spacetime iff it
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satisfies the Killing equation:
∇(𝜇𝜉𝜈) = 0 . (4.57)

Consider such a Killing vector 𝝃 and a geodesics with tangent vector 𝒖. Then:

∇𝒖 (𝒈(𝝃, 𝒖)) = 𝑢𝛼∇𝛼
[
𝑔𝛽𝛾𝜉

𝛽𝑢𝛾
]

(4.58)

= 𝑢𝛼∇𝛼
[
𝜉𝛽𝑢

𝛽
]

(4.59)

=
(
𝑢𝛼∇𝛼𝜉𝛽

)
𝑢𝛽 + 𝜉𝛽 𝑢𝛼∇𝛼𝑢𝛽︸    ︷︷    ︸

= 0

(4.60)

=
1
2

(
∇𝛼𝜉𝛽 + ∇𝛽𝜉𝛼

)
𝑢𝛼𝑢𝛽 (symmetry 𝛼 ↔ 𝛽) (4.61)

= ∇(𝛼𝜉𝛽)𝑢
𝛼𝑢𝛽 = 0 . (4.62)

Thus we have the result:

Conserved quantities

If 𝝃 is a Killing vector field for the geometry, then 𝒈(𝝃, 𝒖) is conserved along the geodesic
tangent to 𝒖.

In the case of the Schwarzschild metric, we have 4 Killing vector fields:

• a timelike Killing vector field 𝝃(0) = 𝒆 (0) = 𝜕
𝜕𝑡 which can be found by noticing that the metric

components in the coordinate system (𝑡, 𝑟, 𝜃, 𝜙) does not depend on 𝑡; see appendix B;

• three spacelikeKilling vector fields coming from spherical symmetry of space; see appendix B.
These three vectors are: 

𝝃(1) = sin 𝜙
𝜕

𝜕𝜃
+ cos 𝜃 cos 𝜙

sin 𝜃
𝜕

𝜕𝜙
;

𝝃(2) = cos 𝜙
𝜕

𝜕𝜃
− cos 𝜃 sin 𝜙

sin 𝜃
𝜕

𝜕𝜙
;

𝝃(3) =
𝜕

𝜕𝜙
.

(4.63)

(4.64)

(4.65)

The conservation of 𝒈(𝝃(0) , 𝒖) along the geodesics gives us an analogue to the conservation of
energy, while the conservation of 𝒈(𝝃(3) , 𝒖) provides a conservation akin to the one of angular
momentum. Thus, we find the following conserved quantities in the Schwarzschild geometry:
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
𝑒 =

(
1 − 𝑅𝑆

𝑟

)
d𝑡
d𝜆

𝑙 = 𝑟2 sin2 𝜃
d𝜙
d𝜆

(4.66)

(4.67)

The other two Killing vector fields can be combined to get:

d𝜃
d𝜆

=
1
𝑟2

[
cos 𝜙𝒈(𝝃(2) , 𝒖) + sin 𝜙𝒈(𝝃(1) , 𝒖)

]
. (4.68)

If we start initially with 𝜃 (𝜆𝑖) = 𝜃𝑖 and d 𝜃
d𝜆 (𝜆𝑖) = 0, then Eq. (4.68) must be satisfied for any value

of 𝜙, which implies that 𝒈(𝝃(2) , 𝒖) = 𝒈(𝝃(1) , 𝒖) = 0. These two quantities are conserved along the
geodesics and must remain zero. Therefore:

∀𝜆 ∈ R , d𝜃
d𝜆

= 0 , i.e. ∀𝜆 ∈ R , 𝜃 = 𝜃𝑖 . (4.69)

Note that, using Eq. (4.55) and Eq. (4.67) , this is only possible for 𝜃𝑖 = 𝜋/2, but one can always
rotate the coordinate system to satisfy this condition. We see that the motion happens in a plane,
which we can take to be the plane 𝜃 = 𝜋/2. In that case, the conserved quantities become:

𝑒 =

(
1 − 𝑅𝑆

𝑟

)
d𝑡
d𝜆

𝑙 = 𝑟2 d𝜙
d𝜆

,

(4.70)

(4.71)

and the geodesic equations read:

d2𝑡

d𝜆2 + 𝑒𝑅𝑆
(𝑟 − 𝑅𝑆)2

d𝑟
d𝜆

= 0

d2𝑟

d𝜆2 − 𝑅𝑆
2𝑟 (𝑟 − 𝑅𝑆)

(
d𝑟
d𝜆

)2
+ 𝑒2𝑅𝑆

2𝑟 (𝑟 − 𝑅𝑆)2 − (𝑟 − 𝑅𝑆)𝑙2
𝑟4 = 0

d2𝜙

d𝜆2 + 2𝑙
𝑟3

d𝑟
d𝜆

= 0 .

(4.72)

(4.73)

(4.74)

Besides, using 𝒈(𝒖, 𝒖) = 𝜀 gives:
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Master equation for geodesic motion

E ≡ 𝑒2 + 𝜀
2

=
1
2

(
d𝑟
d𝜆

)2
+𝑉eff (𝑟) , (4.75)

with the effective one-dimensional potential:

𝑉eff (𝑟) = 𝜀
𝑅𝑆
2𝑟

+ 𝑙2

2𝑟2 − 𝑅𝑆𝑙
2

2𝑟3 . (4.76)

The master equation (4.75) allows one to analyse the motion purely in terms of the radial coor-
dinate 𝑟 . Formally, it has the form of an equation of conservation of the total energy per unit mass
E for a test-particle of velocity d𝑟

d𝜆 in the one-dimensional potential𝑉eff (𝑟). Once properties of 𝑟 (𝜆)
are determined by using this ”energy method”, then 𝜙(𝜆) can, in principle, be obtained by solving:

d𝜙
d𝜆

=
𝑙

𝑟2(𝜆)
. (4.77)

Trajectories are characterised by two dimensionless constants, E and 𝜇 = 𝑙/𝑅𝑆 which will be key
to our subsequent analysis.

4.4 Motion of massive bodies around a spherical star

4.4.1 General properties of trajectories

Let us first illustrate the power of the ”energy method” above for timelike geodesics. In that case,
𝜀 = −1, 𝜆 = 𝜏, the proper time along the geodesics, and the effective potential reads:

𝑉eff (𝑟) = −𝐺𝑀
𝑟︸ ︷︷ ︸

Newtonian potential

+ 𝑙2

2𝑟2︸︷︷︸
centrifugal barrier︸                                  ︷︷                                  ︸

Newtonian part

− 𝑅𝑆𝑙
2

2𝑟3︸︷︷︸
GR effect

. (4.78)

It has three distinct contribution:

• the attractive Newtonian gravitational potential −𝐺𝑀/𝑟 which dominates for large values of
𝑟;
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• a centrifugal term 𝑙2/2𝑟2 which is always repulsive and is also present in Newtonian mechan-
ics;

• a new, general relativistic term, −𝑅𝑆𝑙2/2𝑟3 which becomes important for small values of 𝑟 .

This third term is entirely responsible for deviations from the Keplerian trajectories of Newtonian
mechanics. We represent this potential for a few values of the ratio 𝜇 = 𝑙/𝑅𝑆 on Fig. 4.2 where we
already see a very important new feature: for small values of 𝑟 ≳ 𝑅𝑆 , the relativistic term dominates
over the centrifugal one and the relativistic potential barrier has a finite height; we will talk about
consequences of this fact in a moment. In terms of the variable 𝑟 = 𝑟/𝑅𝑆 , the potential becomes:

𝑉eff (𝑟) = − 1
2𝑟

+ 𝜇2

2𝑟2 − 𝜇2

2𝑟3 . (4.79)

Thus, the potential has extrema iff:

𝜕𝑉eff

𝜕𝑟
(𝑟ext) = 0 ⇒ 𝑟2

ext − 2𝜇2𝑟ext + 3𝜇2 = 0 . (4.80)

The discriminant of this polynomial is simply:

Δ = 4𝜇2
(
𝜇2 − 3

)
. (4.81)

This results in three possible configurations:

1. If 𝑙 < 𝑅𝑆
√

3, then the potential does not have any extremum. It is a monotonously increasing
function of 𝑟. The particle’s angular momentum is not sufficient to keep the mass away from
the star’s attraction and whatever its ”total energy” E, it ultimately falls onto the central star.
The bound orbits of Newtonian mechanics disappear due to the presence of the general rela-
tivistic term which dominates for small values of 𝑟 . This is illustrated on Fig. 4.3 and Fig. 4.4.
The motion happens along horizontal lines at E = cst which must necessarily obey:

E ≥ 𝑉eff (𝑟 (𝜆)) . (4.82)

Since𝑉eff < 0, all trajectories with E > 0 are free: the particle can either fall onto the central
star or evade it. On the other hand, all trajectories with E < 0 are bounded and actually fall
onto the central star.
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Figure 4.2: The potential𝑉eff from Eq. (4.78) for a few values of 𝜇 = 𝑙/𝑅𝑆 as a function of 𝑟 = 𝑟/𝑅𝑆 .

2. If 𝑙 = 𝑅𝑆
√

3, there is a unique extremum at 𝑟ISCO = 3𝑅𝑆 . It is attained for EISCO = 𝑉ISCO, i.e.
𝑟 (𝜆) = 𝑟ISCO constant. This corresponds to a ”marginally” stable circular orbit (𝑉 ′′

eff (𝑟ISCO) =
0) and is called the Innermost Stable Circular Orbit or ISCO because no object can be main-
tained on a circular orbit at a distance 𝑟 < 𝑟ISCO (see below). For negative E ≠ EISCO,
particles fall onto the central star; see Fig. 4.5.
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Figure 4.3: The potential 𝑉eff from Eq. 4.78 for 𝜇 = 𝑙/𝑅𝑆 = 1 <
√

3 as a function of 𝑟 = 𝑟/𝑅𝑆 . The
relativistic term dominates at small 𝑟 and prevents the existence of the usual bounded Newtonian
potential.

3. If 𝑙 > 𝑅𝑆
√

3, then the potential has two distinct extrema:

• a minimum at:

𝑟min = 𝑅𝑆

[
𝜇2 + 𝜇

√
𝜇2 − 3

]
. (4.83)
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Figure 4.4: Trajectories with E < 0 in𝑉eff from Eq. (4.78) for 𝜇 = 𝑙/𝑅𝑆 <
√

3. The relativistic term
dominates at small 𝑟 and prevents the existence of the usual bound orbits of Newtonian mechanics.

This corresponds to a stable circular orbit around the central star, attained for E =

𝑉min = 𝑉eff (𝑟min). Note that we always have 𝑟min > 𝑟ISCO, which justifies the name.

• a maximum at:
𝑟max = 𝑅𝑆

[
𝜇2 − 𝜇

√
𝜇2 − 3

]
. (4.84)

This corresponds to an unstable circular orbit marking the height of the potential barrier.
Unlike in the Newtonian case, relativistic orbits with large 𝑙 can still plunge into the
central object if E > 𝑉rmin = 𝑉max. Note that 𝑉max > 0 iff 𝑙 > 2𝑅𝑆 . Outside of the two
circular orbits, we find three types of trajectories if 𝑙 > 2𝑅𝑆 (and only 2 if 𝑙 < 2𝑅𝑆).
This is summarised in Fig. 4.6:
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Figure 4.5: Potential for 𝑙 = 𝑅𝑆
√

3., showing the ISCO.

· For E > 𝑉max, particles are free to move away from the central object or to plunge
directly into it, depending on their initial radial velocity.

· For 0 < E < 𝑉max, particles either directly escape to infinity (if there initial ra-
dial velocity is positive), or approach the central object up to a minimum distance
𝑏 determined by 𝑉eff (𝑏) = E before escaping to infinity. This is a collision, or
scattering.



Stars and black holes 180

· For 𝑉min < E < 0, trajectories are orbits. Radial distances to the central object are
bounded from below and above respectively by 𝑟peri (for periastron) and 𝑟apo (for
apastron). This bounds are determined by solving:

𝑉eff (𝑟) = E < 0 . (4.85)

E > 𝑉max

Plunge orbit or free particle

0 < E < 𝑉max
Collision

𝑉min < E < 0 Bound orbit

𝑟peri 𝑟apo

Figure 4.6: Possible trajectories for 𝑙 > 𝑅𝑆
√

3. Here we present the case 𝑙 > 2𝑅𝑆 but the discussion
is not altered by the less restrictive bound; the collisions simply disappear.

Note that for 𝑉min < E < 𝑉max, if the particle starts with 𝑟 < 𝑟max, then the particle is trapped and
necessarily falls towards the central object.
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4.4.2 Kepler’s law for the stable circular orbit

Let us look in more details at the stable circular orbit at 𝑟min given by Eq. (4.83) when 𝑙 > 𝑅𝑆
√

3. Let
Ω be the angular velocity of a test particle placed on this circular orbit, as measured by an observer
O at infinity i.e. infinitely far from the star, so that we can consider that locally around the observer,
the metric is that of Minkowski spacetime. How would O measure Ω?
Let us assume that the test particle emits a photon radially towards O at a point with coordinates(
𝑡1,emit, 𝑟min, 𝜋/2, 𝜙0

)
. Let us further assume that this photon is received by O at

(
𝑡1,rec, 𝑟rec, 𝜋/2, 𝜙0

)
with 𝑟rec � 𝑟min. Next, the test particle emits a second photon radially towards O after a complete
orbit, i.e. at the event of coordinates

(
𝑡2,emit, 𝑟min, 𝜋/2, 𝜙0 + 2𝜋

)
. Since we have that:

d𝜙
d𝑡

=
1
𝑒

(
1 − 𝑅𝑆

𝑟min

)
d𝜙
d𝜏

=
𝑙

𝑒𝑟2
min

(
1 − 𝑅𝑆

𝑟min

)
= cst , (4.86)

we get:
d𝜙
d𝑡

=
2𝜋

𝑡2,emit − 𝑡1,emit
. (4.87)

On the other hand, along radial null geodesics, we get:

d𝑡 =
(
1 − 𝑅𝑆

𝑟

)
d𝑟 . (4.88)

Integrating this equation for the two trajectories, we notice that the RHS is identical in both cases.
Therefore:

𝑡2,rec − 𝑡2,emit = 𝑡1,rec − 𝑡1,emit . (4.89)

Finally, the proper time measured by O with their own clock is 𝑡 since they are located at infinity.
Thus, they measure the angular velocity:

Ω =
2𝜋

𝑡2,rec − 𝑡1,rec
(4.90)

=
2𝜋

𝑡2,emit − 𝑡1,emit
(4.91)

=
d𝜙
d𝑡

. (4.92)

Hence, we get:

Ω =
𝑙

𝑒𝑟2
min

(
1 − 𝑅𝑆

𝑟min

)
. (4.93)
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Using that on the circular orbit:
𝑒2 − 1

2
= 𝑉eff (𝑟min) , (4.94)

we get that:
𝑒2

𝑙2
=

(
1 − 𝑅𝑆

𝑟min

) (
1
𝑙2

+ 1
𝑟2

min

)
. (4.95)

Then, Eq. (4.83) gives:

𝑟min

𝑅𝑆
=

(
𝑙

𝑅𝑆

)2
+ 𝑙

𝑅𝑆

√(
𝑙

𝑅𝑆

)2
− 3 , (4.96)

from which we get:

𝑅𝑆
𝑟min

=
𝑅2
𝑆

𝑙2

[
1 +

√
1 − 3𝑅

2
𝑆

𝑙2

] (4.97)

=
𝑅2
𝑆

𝑙2
[
1 −

(
1 − 3𝑅2

𝑆/𝑙2
)] 1 −

√√√
1 −

(
𝑅2
𝑆

𝑙2

) (4.98)

=
1
3

1 −

√
1 − 3

𝑅2
𝑆

𝑙2

 . (4.99)

Thus, taking the square: (
𝑅𝑆
𝑟min

)2
=

1
3

[
2
𝑅𝑆
𝑟min

−
𝑅2
𝑆

𝑙2

]
, (4.100)

from which we get:
𝑅2
𝑆

𝑙2
= 2

𝑅𝑆
𝑟min

− 3
𝑅2
𝑆

𝑟2
min

. (4.101)

Plugging this back into Eq. (4.95), we arrive at:

𝑙

𝑒
=

1
1 − 𝑅𝑆/𝑟min

√
𝑅𝑆𝑟min

2
, (4.102)

so that we arrive at

Ω =

√
𝑅𝑆

2𝑟3
min

. (4.103)



183 Stars and black holes

Introducing the observed period 𝑇 = 2𝜋/Ω, we get Kepler’s law for the stable circular orbit:

𝑇2 ∝ 𝑟3
min . (4.104)

All the relativistic terms have vanished and we are left with the Newtonian result. This is a pure
coincidence without any obvious physical meaning. This is apparent in the sense that 𝑟 is a mere
arbitrary coordinate. With a different radial coordinate, the result would be altered.

4.4.3 Non-circular bound orbits

In the rest fo this section, we are going to concentrate on the more refined properties of bound orbits.
We consider a trajectory with 𝑙 > 𝑅𝑆

√
3 and 𝑉min < E < 0. We are going to write an equation for

𝑟 (𝜙). We can rewrite Eq. (4.75) as:(
d𝑟
d𝜏

)2
= 2E + 𝑅𝑠

𝑟
− 𝑙2

𝑟2 + 𝑅𝑆𝑙
2

𝑟3 . (4.105)

Then, using that:
d𝜙
d𝜏

=
𝑙

𝑟2 , (4.106)

we get that:
d𝑟
d𝜏

=
d𝑟
d𝜙

d𝜙
d𝜏

=
𝑙

𝑟2
d𝑟
d𝜙

. (4.107)

We are now going to use Binet’s approach and define²:

𝑥 =
2𝑙2

𝑅𝑆𝑟
, (4.108)

such that:
d𝑟
d𝜙

= − 2𝑙2

𝑅𝑆𝑥2
d𝑥
d𝜙

. (4.109)

Substituting in Eq. (4.107) and then in Eq. (4.105), we obtain after some simplifications:(
d𝑥
d𝜙

)2
=

8E𝑙2

𝑅2
𝑆

+ 2𝑥 − 𝑥2 +
𝑅2
𝑆

2𝑙2
𝑥3 . (4.110)

²Note that with this normalisation, 𝑥 = 1 at the Newtonian circular orbit.
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Differentiating with respect to 𝜙 and simplifying, we arrive at the parametric equation of bound
orbits for massive particles:

d2𝑥

d𝜙2 = 1 − 𝑥 +
3𝑅2

𝑆

4𝑙2
𝑥2 . (4.111)

This is the equation of a harmonic oscillator with angular frequency 𝜔0 = 1 and forcing term
1 + 3𝑅2

𝑆

4𝑙2 𝑥
2. The last term is absent in Newtonian mechanics and encodes the general relativistic

effects. In absence of this term, the Newtonian equation is exactly solvable so it may be possible to
make progress if we assume that we are in the limit of small corrections. Note that the coefficient:

𝛼 =
3𝑅2

𝑆

4𝑙2
=

3
4𝜇2 <

1
4
. (4.112)

Let us assume that we are in the regime 𝛼 � 1, so that we can look for a first order expansion of
the solution:

𝑥(𝜙) ' 𝑥0(𝜙) + 𝑥1(𝜙) , (4.113)

where 𝑥0(𝜙) is solution to:
d2𝑥0

d𝜙2 = 1 − 𝑥0 , (4.114)

and 𝑥1 = O (𝛼). The solution to Eq. (4.114) is well-known and, up to a phase that we are free to fix,
the solution is given by:

𝑥0(𝜙) = 1 + 𝑒 cos 𝜙 , (4.115)

where 𝑒 = 1 − 𝑏2/𝑎2 < 1 is the eccentricity of the ellipse with a focus at the star, 𝑎 and 𝑏 are the
semi-major and semi-minor axes, respectively. Plugging this into Eq. (4.111) and developing to first
order in 𝛼 only, we get an equation for 𝑥1(𝜙):

d2𝑥1

d𝜙2 + 𝑥1 = 𝛼 [1 + 𝑒 cos 𝜙]2 = 𝛼

[
1 + 𝑒

2

2
+ 2𝑒 cos 𝜙 + 𝑒

2

2
cos(2𝜙)

]
. (4.116)

Noting that: 
d2

d𝜙2 (𝜙 sin 𝜙) + 𝜙 sin 𝜙 = 2 cos 𝜙

d2

d𝜙2 (cos 2𝜙) + cos(2𝜙) = −3 cos(2𝜙) ,

(4.117)

(4.118)
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we see that a solution to Eq. (4.116) is provided by:

𝑥1(𝜙) = 𝛼
[
1 + 𝑒

2

2
− 𝑒2

6
cos(2𝜙) + 𝑒𝜙 sin 𝜙

]
. (4.119)

At first order in 𝛼, the orbit is thus defined by the parametric equation:

𝑥(𝜙) ' 1 + 𝑒 cos 𝜙 + 𝛼
[
1 + 𝑒

2

2
− 𝑒2

6
cos(2𝜙) + 𝑒𝜙 sin 𝜙

]
. (4.120)

Note that at first order in 𝛼, we can write:

cos [(1 − 𝛼)𝜙] = cos 𝜙 cos(𝛼𝜙) + sin 𝜙 sin(𝛼𝜙) (4.121)

' cos 𝜙 + 𝛼𝜙 sin 𝜙 , (4.122)

so that we can write:

𝑥(𝜙) ' 1 + 𝑒 cos [(1 − 𝛼)𝜙] + 𝛼
[
1 + 𝑒

2

2
− 𝑒2

6
cos(2𝜙)

]
. (4.123)

For 𝛼 = 0, the solution is periodic, with period 𝑇0 = 2𝜋. What is the period of the first order
solution? Let us write:

𝑇 = 2𝜋 + Δ𝜙 = 2𝜋 + 𝛼𝛽 , (4.124)

and look to determine 𝛽. By definition of the period, we have:

𝑥(𝜙 + 𝑇) = 𝑥(𝜙) . (4.125)

Since:

𝛼 cos (2(𝜙 + 𝑇) = 𝛼 cos(2𝜙) +𝑂 (𝛼2) (4.126)

cos [(1 − 𝛼) (𝜙 + 𝑇)] ' cos 𝜙 + 𝛼𝜙 sin 𝜙 + 𝛼(2𝜋 − 𝛽) sin 𝜙 (4.127)

' cos ((1 − 𝛼)𝜙) + 𝛼(2𝜋 − 𝛽) sin 𝜙 , (4.128)

this is only satisfied if 𝛽 = 2𝜋 Thus after a complete period that brings the particle back to its
original position, the polar angle at which it happens has shifted by:

Δ𝜙 = 2𝜋𝛼 =
3𝜋𝑅2

𝑆

2𝑙2
. (4.129)
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In particular, the point of closest approach, i.e. the periastron advances by an angle Δ𝜙 after each
revolution of the particle. At lowest order, we can replace the angular momentum per unit mass 𝑙
by its value on the Newtonian ellipse. We have:

2𝑎 = 𝑟peri + 𝑟apo = 𝑟 (0) + 𝑟 (𝜋) = 2𝑙2

𝑅𝑆 (1 + 𝑒) +
2𝑙2

𝑅𝑆 (1 − 𝑒) . (4.130)

This gives:

𝑙2 =
𝑅𝑆
2
(1 − 𝑒2)𝑎 . (4.131)

Therefore, restoring units, we find that the periastron of an object such as a planet orbiting a star of
mass 𝑀 advances after each revolution by an angle:

Δ𝜙 =
6𝜋𝐺𝑀

(1 − 𝑒2)𝑎𝑐2 per period . (4.132)

This is illustrated on Fig. 4.7.

Figure 4.7: Precession of the orbit of a planet around a star. The orbit looks like a slowly advancing
ellipse.

If we apply this formula to the case of Mercury, which has the largest eccentricity in the Solar
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System, with: 
𝐺𝑀

𝑐2 =
𝐺𝑀�
𝑐2 ' 1.48 × 103 m

𝑎 ' 5.79 × 1010 m

𝑒 ' 0.2056 ,

(4.133)

(4.134)

(4.135)

we find:
Δ𝜙 ' 5.01 × 10−7 per period ' 0.103′′ per period . (4.136)

Given that Mercury orbits around the Sun in 88 (Earth) days, the advance of its perihelion in a
century (on Earth) is given by:

Δ𝜙 ' 42.72′′ per century . (4.137)

The perihelion of Mercury actually precesses by 574.10′′ per century, a fact that was well know by
astronomers in the 19th century. All but about 43′′ could be explained within Newtonian mechanics
by taking into account the perturbations to the orbit due to the other planets in the Solar System, as
well as the non-sphericity of the Sun. Einstein’s calculation of the relativistic correction that made
up the missing 43′′ was a powerful motivation to adopt General Relativity.

4.5 Light rays around a spherical star

Let us turn our attention to the trajectories of photons. We start with some general properties and
then move to some physical applications.

4.5.1 General properties of light rays in Schwarzschild spacetime

Effective potential

For lightlike geodesics, 𝒈 (𝒖, 𝒖) = 𝜀 = 0, so that the effective potential (4.76) becomes:

𝑉eff (𝑟) =
𝑙2

2𝑟2 − 𝑅𝑆𝑙
2

2𝑟3 , (4.138)

which, in terms of 𝑟 = 𝑟/𝑅𝑆 reads:

𝑉eff (𝑟) =
𝜇2

2𝑟2 − 𝜇2

2𝑟3 . (4.139)

This potential is represented for a few values of 𝜇 on Fig. 4.8
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Figure 4.8: The effective potential for light rays. The vertical line at 𝑟 = 3𝑅𝑆/2 indicates the
unstable circular orbit.

Note that the Newtonian gravitational potential has disappeared, as expected. For all values of
𝑙 ≠ 0, the potential has a maximum at:

𝑟𝑐 =
3
2
𝑅𝑆 , (4.140)

corresponding to an unstable circular orbit, attained for 𝑒𝑐 = 2𝜇/3
√

3. For 𝑒 > 𝑒𝑐, the trajectories
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correspond to plunge orbits or photons escaping to infinity while for 0 < 𝑒 < 𝑒𝑐 we obtain a
standard scattering if 𝑟 > 3𝑅𝑆/2; if 𝑟 < 3𝑅𝑆/2, photons cannot escape and plunge onto the central
object. Before exploring some consequences of the structure of these trajectories, we will treat the
particular case of radial trajectories, with 𝑙 = 0.

Radial trajectories

As one can readily see, radial orbits, with 𝑙 = 0, i.e. 𝜙 = 𝜙0 = cst, are a bit particular since they
correspond to an effective potential:

𝑉eff = 0 , (4.141)

which results in a radial equation: (
d𝑟
d𝜆

)2
= 𝑒2 . (4.142)

This fixes a relation between 𝑟 and the affine parameter 𝜆:

d𝜆 = ±d𝑟
𝑒
, (4.143)

with a + for infalling photons and a − for outgoing photons. These geodesics are more easily studied
by going back to the line element:

0 = −
(
1 − 𝑅𝑆

𝑟

)
d𝑡2 +

(
1 − 𝑅𝑆

𝑟

)−1
d𝑟2 . (4.144)

Hence:

d𝑡 = ±
(
1 − 𝑅𝑆

𝑟

)−1
d𝑟 , (4.145)

which is of course consistent with Eq. (4.143) given the definition of 𝑒. Eq. (4.145) is easy enough
to integrate:

𝑡 = ±
ˆ

d𝑟
1 − 𝑅𝑆/𝑟

= ±𝑅𝑆
ˆ

𝑥d𝑥
𝑥 − 1

with 𝑥 =
𝑟

𝑅𝑆
(4.146)

= ± 𝑅𝑆
ˆ
𝑥 − 1 + 1
𝑥 − 1

d𝑥 = ±𝑅𝑆
[ˆ

d𝑥 +
ˆ

d𝑥
𝑥 − 1

]
(4.147)

= ± 𝑅𝑆 [𝑥 + ln |𝑥 − 1|] + 𝐶 for 𝐶 ∈ R (4.148)

= ±
[
𝑟 + 𝑅𝑆 ln

���� 𝑟𝑅𝑆 − 1
����] + 𝐶 for 𝐶 ∈ R . (4.149)
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Note that this expression is also valid for 𝑟 < 𝑅𝑆 and we will come back to that important fact
in section 4.6. For now, we have arrived at two families of radial lightlike geodesics in the region
𝑟 > 𝑅𝑆:

Radial lightlike geodesics

• Outgoing radial light like geodesics for which d𝑟
d𝑡 > 0, given by:

𝑡 = 𝑟 + 𝑅𝑆 ln
(
𝑟

𝑅𝑆
− 1

)
+ 𝐶 for 𝐶 ∈ R . (4.150)

• Infalling radial light like geodesics for which d𝑟
d𝑡 < 0, given by:

𝑡 = −𝑟 − 𝑅𝑆 ln
(
𝑟

𝑅𝑆
− 1

)
+ 𝐶 for 𝐶 ∈ R . (4.151)

Some of these radial geodesics are represented on Fig. 4.9. One can see that, as expected, far from
the central object, we recover the geodesics of Minkowski spacetime, i.e. straight lines:

𝑡 = ±𝑟 + 𝐶 for 𝐶 ∈ R . (4.152)

Since every point on the spacetime diagram is effectively a 2-sphere, the two radial lightlike geodesics
actually generate a local lightcone. We represented in green the future-directed part of a few of these
lightcones. Note that we implicitly chose 𝒆 (0) = 𝜕

𝜕𝑡 as our future timelike direction in the region
𝑟 > 𝑅𝑆 as this corresponds to the proper time of an observer located very far from the central object.
As one can see, the local causal structure tends to the one of Minkowski for 𝑟 � 𝑅𝑆 , with local
lightcones with an opening angle of 𝜋/2. However, as we approach the central region and 𝑟 = 𝑅𝑆 ,
the lightcones in (𝑡, 𝑟) coordinates close up. We still have some outgoing and infalling rays, but it
gets ”harder and harder” for outgoing rays to escape the central region. Infalling rays also seem to
be ”grazing” the hypersurface 𝑟 = 𝑅𝑆 . Timelike curves are always locally inside these lightcones.
This geodesic structure will be very useful when we extend the Schwarzschild geometry to describe
black holes in section 4.6. But before we focus on this problem, we can come back to generic light-
like geodesics for 𝑟 > 𝑅𝑆 and deduce some physical, observable effects of the propagation of light
in the field of a central object.
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Figure 4.9: Radial lightlike geodesics of the Schwarzschild metric in the region 𝑟 > 𝑅𝑆 in a space-
time diagram. Infalling geodesics are represented in red dashed lines and outgoing ones in solid
black.
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4.5.2 Gravitational redshift

First, consider a set of observers at rest in the Schwarzschild coordinates. If we call 𝑼 = 𝑈𝜇𝒆 (𝝁)

the field of their 4-velocity, we have:

𝑈1 = 𝑈2 = 𝑈3 = 0 . (4.153)

Since 𝒈(𝑼,𝑼) = −1, this results in:

𝑈0 =

(
1 − 𝑅𝑆

𝑟

)−1/2
. (4.154)

Assume that such an observer emits a photon at (𝑡1, 𝑟1, 𝜋/2, 𝜙1) that is received by another such
observer at (𝑡2, 𝑟2, 𝜋/2, 𝜙2). Let 𝒌 be the tangent vector to the lighlike geodesics followed by the
photon. At any point (𝑡, 𝑟, 𝜃, 𝜙), the frequency, 𝜔(𝑟), of the photon as measured by an observer at
rest in Schwarzschild coordinates is given by:

~𝜔(𝑟) = − 𝒈(𝑼, 𝒌) (4.155)

= − 𝑔00𝑈
0𝑘0 (4.156)

=

√
1 − 𝑅𝑆

𝑟

d𝑡
d𝜆

, (4.157)

where 𝜆 is an affine parameter along the lightlike geodesics. Using the conservation of 𝒈(𝒆 (0) , 𝒌) =
−𝑒, we get:

~𝜔(𝑟) = − 𝑒√
1 − 𝑅𝑆

𝑟

. (4.158)

Therefore, the observed photon at 𝑟2 has a frequency that is shifted with respect to its observed
frequency at 𝑟1, by a factor:

1 + 𝑧 = 𝜔(𝑟1)
𝜔(𝑟2)

=

√
1 − 𝑅𝑆/𝑟2

1 − 𝑅𝑆/𝑟1
. (4.159)

This expression is general and does not depend on whether or not the geodesics is radial. 𝑧 is the
gravitational spectral shift. It is given by the fractional change in the measured wavelength of the
photon between emission and reception:

𝑧 =
𝜆2 − 𝜆1

𝜆1
, (4.160)
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so that 𝑧 > 0 corresponds to a redshift and 𝑧 < 0 to a blueshift. Using Eq. (4.159), we see that a
photon moving away from the central object is redshifted, while it is blueshifted if it falls onto the
central object.
In the weak field limit, with 𝑟 � 𝑅𝑆 , we get:

1 + 𝑧 '
(
1 − 𝑅𝑆

2𝑟2

) (
1 + 𝑅𝑆

2𝑟1

)
(4.161)

'1 − 𝐺𝑀

𝑟2
+ 𝐺𝑀

𝑟1
(4.162)

'1 +Φ (𝑟2) −Φ (𝑟1) , (4.163)

which agrees with the result we obtained using the equivalence principle in subsection 2.8.2. It
is also consistent with the work in the static, weak field limit in subsection 3.6.3, as it should be
because the Schwarzschild metric reduces to the static, weak field limit in the approximations we
have made here.

4.5.3 Deviation of light

Assume that a light ray coming from infinity falls onto the central object with 0 < 𝑒 < 𝑒𝑐. It
approaches the central object until it reaches a minimum distance 𝑟 given by:

𝑒2

2
= 𝑉eff (𝑟) ⇔

𝑟3

𝑏2 − 𝑟 + 𝑅𝑆 = 0 , (4.164)

where we defined the impact parameter 𝑏 = 𝑙/𝑒 (more on this name later). Note that the condition
𝑒 < 𝑒𝑐 translates into 𝑏 > 3

√
3𝑅𝑆/2. Then, the light ray bounces back on the potential barrier

and moves away from the central object, going to infinity in a direction different from its infalling
one. This is a classical scattering problem. We propose to estimate the angle by which the outgoing
direction deviates from the ingoing one. We introduce Cartesian axes [𝑂𝑥) and [𝑂𝑦) in the plane
of motion such that 𝑂 coincides with the centre of the star, and the 𝑥 direction is aligned with the
initial direction of propagation of the photons; see Fig. 4.10.
Initially, the photon is emitted at a point (𝑡in, 𝑟in, 𝜋/2, 𝜙in) = (𝑡in, 𝑥in, 𝑦in, 0) and is very far from the
central object, so we can take the limit 𝑟in → +∞. It has 4-momentum with 𝑘0

in ' 𝑒 and 𝑘1
in ' −𝑒

(using the radial equation in the limit of large 𝑟). Besides, we have that: 𝑦in = 𝑟in sin 𝜙in ' 𝑟in𝜙in

because 𝑦in � 𝑟in so that 𝜙in is small. Taking a derivative, we get:
d𝜙
d𝑡

����
in
' 𝑦in

𝑟2
in
, (4.165)
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Figure 4.10: Geometry of the problem for the deviation of light by a central object.

where we used that:
d𝑟
d𝑡

����
in
=
𝑘1

in

𝑘0
in

' 1 . (4.166)

On the other hand:

d𝜙
d𝑡

=
d𝜙
d𝜆

d𝜆
d𝑡

(4.167)

=
𝑙

𝑒𝑟2

(
1 − 𝑅𝑆

𝑟

)
, (4.168)

so that:
d𝜙
d𝑡

����
in
' 𝑏

𝑟2
in
. (4.169)

We can conclude that 𝑦in = 𝑏, thus the name impact parameter for 𝑏.
The radial equation of motion can then be written in terms of the angle 𝜙 and Binet’s variable
𝑢 = 𝑏/𝑟 , to give (exercise):

d2𝑢

d𝜙2 + 𝑢 =
3𝑅𝑆
2𝑏

𝑢2 , (4.170)



195 Stars and black holes

similarly to what was done in subsection 4.4.3 to obtain Eq. (4.111). In that equation, the term
on the RHS is the general relativistic term. Then, we assume that the photons remain far from the
Schwarzschild radius of the object, so that we are in weak field. This amounts to assuming that
𝑅𝑆 � 𝑏 so that the general relativistic term is small compared to the others. Hence, we look for a
solution in the form:

𝑢(𝜙) ' 𝑢0(𝜙) + 𝑢1(𝜙) , (4.171)

where 𝑢1(𝜙) = O (𝑅𝑆/𝑏) and 𝑢0 satisfies:

d2𝑢0

d𝜙2 + 𝑢0 = 0 . (4.172)

Since this corresponds to the trajectory of light without deviation, i.e. to the straight line 𝑦 = 𝑏,
we must have: 𝑟0 sin 𝜙 = 𝑏, i.e. 𝑢0 = sin 𝜙, which clearly satisfies Eq. (4.172). Injecting that in
Eq. (4.170) and expanding at first order in 𝑅𝑆/𝑏 we obtain an equation for 𝑢1(𝜙):

d2𝑢1

d𝜙2 + 𝑢1 =
3𝑅𝑆
2𝑏

sin2 𝜙 . (4.173)

This can be solved to get the solution with the right boundary condition³, namely 𝑢(0) = 0:

𝑢1(𝜙) =
3𝑅𝑆
4𝑏

(
1 + 1

3
cos(2𝜙)

)
− 𝑅𝑆
𝑏

cos 𝜙 . (4.174)

The deviation 𝛼 is such that on the outward branch of the trajectory we have, asymptotically 𝜙out =

𝜋 + 𝛼. Thus imposing 𝑢(𝜋 + 𝛼) = 0 leads, at first order, to:

0 = sin(𝜋 + 𝛼) + 3𝑅𝑆
4𝑏

(
1 + 1

3
cos (2(𝜋 + 𝛼))

)
− 𝑅𝑆
𝑏

cos(𝜋 + 𝛼) (4.175)

= − 𝛼 + 𝑅𝑆
𝑏

+ 𝑅𝑆
𝑏
, (4.176)

so that we have light is deflected by an angle:

𝛼 =
2𝑅𝑆
𝑏

. (4.177)

³The general solution to the non-homogeneous problem is the general solution to the homogeneous problem, 𝐴 sin 𝜙+
𝐵 cos 𝜙, added to a particular solution to the non-homogeneous problem, here 3𝑅𝑆

4𝑏

(
1 + 1

3 cos(2𝜙)
)
. Since we know that

𝑢(0) = 0 and 𝑢0 (0) = 0, this fixes 𝐵. 𝐴 is irrelevant here has it gets re-absorbed in the zeroth-order solution and is zero
asymptotically anyway.
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In 1919, Eddington and his team set to measure this angular deviation by observing the apparent
shift in position on the sky of stars located behind the Sun during a Solar eclipse: by observing the
stars at night before the eclipse (while the Sun was not interfering with light coming from them)
and then again during the eclipse, they were able to measure 𝛼. For rays grazing the Sun, we can
take 𝑏 ' 𝑅� and we find:

𝛼 ' 1.75′′ . (4.178)

Eddington’s observations were in agreement with that prediction and this was the first real test
of General Relativity (on a genuine, unexpected prediction). It made Einstein famous worldwide
overnight. The study of deviations of light rays by clumps of matter is now a fully developed branch
of astrophysics known as gravitational lensing which is used on multiple scales to probe gravity,
the growth of structure in the Universe and the nature of Dark Matter; see Fig. 4.11 for a stunning
recent image exhibiting many gravitationally lensed images.

Fig. 4.12 summarises modern constraints on General Relativity obtained via gravitational lens-
ing across a wide range of scales and using various instruments. The agreement is stunning.

4.5.4 Shapiro time delay

Not only are light rays bent by the presence of mass along their path, but electromagnetic signals
are also retarded by gravitational field. This is known as gravitational (or Shapiro) time-delay. Let
us consider a light ray sent from Earth to a distant satellite, bouncing back on the satellite and
being sent back to Earth. We choose our Schwarzschild coordinates (𝑡, 𝑟, 𝜃, 𝜙) centred on the Sun
with 𝜃 = 𝜋/2 the ecliptic. We denote by 𝑟⊕ and 𝑟∗ the radial coordinates of Earth and the satellite
respectively. Let 𝑟0 be the closest distance to the Sun along the light ray. The situation is summarised
on Fig. 4.13. Along the lightlike geodesic connecting Earth to the satellite, as well as along the one
connecting the satellite to Earth, using Eqs. (4.75)-(4.138), we have:

(
d𝑟
d𝜆

)2
=𝑒2 − 𝑙2

𝑟2 + 𝑅𝑆
𝑙2𝑟3 (4.179)

=
𝑙2

𝑏2 − 𝑙2

𝑟2 + 𝑅𝑆
𝑙2𝑟3 . (4.180)
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Figure 4.11: Image of the SMACS 0723 galaxy cluster by the James Webb Space Telescope,
Credit:NASA, ESA, CSA, and STScI. There are many images of gravitationally lensed galaxies
in this image. They appear distorted by the massive cluster situated on the line of sight. Try and
find them.

Then:

d𝑡
d𝑟

=
d𝑡
d𝜆

d𝜆
d𝑟

(4.181)

=

(
1 − 𝑅𝑆

𝑟

)−1 (
1 − 𝑏2

𝑟2

(
1 − 𝑅𝑆

𝑟

))−1/2
. (4.182)

Given that at 𝑟 = 𝑟0, d𝑟
d𝜆 = 0 by definition, we can related 𝑏 to 𝑟0:

𝑏2 = 𝑟2
0

(
1 − 𝑅𝑆

𝑟

)−1
. (4.183)
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Figure 4.12: Constraints on General Relativity from lensing observables: deviation of light in the
upper part and time delays in the lower part. General Relativity corresponds to 𝛾 = 1. Figs taken
from [22].

Thus, we arrive that:

d𝑡
d𝑟

=

(
1 − 𝑅𝑆

𝑟

)−1
[
1 −

𝑟2
0
𝑟2

1 − 𝑅𝑆/𝑟
1 − 𝑅𝑆/𝑟0

]−1

. (4.184)
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Figure 4.13: Geometry of the problem for the Shapiro effect. The dashed line corresponds to the
trajectory light would have in special relativity, in absence of the Sun, while the solid curve is the
actual trajectory.

In all applicable situations, we have 𝑟0 � 𝑟⊕, 𝑟0 � 𝑟∗ and 𝑅𝑆 � 𝑟 , so we can simplify this
expression by a series of Taylor expansions at first order in small quantities:

d𝑡
d𝑟

'
(
1 + 𝑅𝑆

𝑟

) (
1 −

𝑟2
0
𝑟2

)−1/2 [
1 +

𝑟2
0

𝑟2 − 𝑟2
0

(
𝑅𝑆
𝑟

− 𝑅𝑆
𝑟0

)]−1/2

(4.185)

'
(
1 + 𝑅𝑆

𝑟

) (
1 −

𝑟2
0
𝑟2

)−1/2 [
1 + 𝑟0

2 (𝑟0 + 𝑟)
𝑅𝑆
𝑟

]
(4.186)

'
(
1 −

𝑟2
0
𝑟2

)−1/2 [
1 + 𝑅𝑆

𝑟
+ 𝑟0

2 (𝑟0 + 𝑟)
𝑅𝑆
𝑟

]
(4.187)

' 𝑟√
𝑟2 − 𝑟2

0

[
1 + 𝑅𝑆

𝑟
+ 𝑟0

2 (𝑟0 + 𝑟)
𝑅𝑆
𝑟

]
. (4.188)
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We can use this expression to get the time taken by a photon to travel between a source at 𝑟1 towards
an observer at 𝑟2:

𝑡 (𝑟1, 𝑟2) =
ˆ 𝑟2

𝑟1

𝑟√
𝑟2 − 𝑟2

0

[
1 + 𝑅𝑆

𝑟
+ 𝑟0

2 (𝑟0 + 𝑟)
𝑅𝑆
𝑟

]
d𝑟 . (4.189)

Equivalently:

𝑡 (𝑟1, 𝑟2) =
ˆ 𝑟2

𝑟1

𝑟√
𝑟2 − 𝑟2

0

d𝑟

︸               ︷︷               ︸
=
[√
𝑟2−𝑟2

0

]𝑟2

𝑟1

+ 𝑅𝑆
ˆ 𝑟2

𝑟1

d𝑟√
𝑟2 − 𝑟2

0︸           ︷︷           ︸
=

[
ln

(
𝑟
𝑟0
+
√

𝑟2
𝑟2
0
−1

)]𝑟2

𝑟1

+ 𝑅𝑆
2

ˆ 𝑟2

𝑟1

𝑟0d𝑟
√
𝑟 − 𝑟0 (𝑟 + 𝑟0)3/2︸                        ︷︷                        ︸
=
[√

𝑟−𝑟0
𝑟+𝑟0

]𝑟2

𝑟1

. (4.190)

The travel time between Earth and the point of closest approach is therefore:

𝑡 (𝑟⊕, 𝑟0) =
√
𝑟2
⊕ − 𝑟2

0 + 𝑅𝑆 ln

(
𝑟⊕
𝑟0

+
√
𝑟2
⊕
𝑟2

0
− 1

)
+ 𝑅𝑆

2

√
𝑟⊕ − 𝑟0

𝑟⊕ + 𝑟0
, (4.191)

and an identical expression for the travel time between the point of closest approach and the satellite
by replacing 𝑟⊕ by 𝑟∗⁴. The travel time is thus given by:

𝑇 = 𝑇Mink + Δ𝑇 , (4.192)

where:
𝑇Mink = 2

[√
𝑟2
⊕ − 𝑟2

0 +
√
𝑟2
∗ − 𝑟2

0

]
(4.193)

is the travel time in Minkowski spacetime. It is twice the sum of the travel time between Earth
and the point of closest approach in a straight line and the travel time between the point of closest
approach and the satellite in a straight line. However, in Minkowski spacetime, light travels along
straight lines and follows the dashed curve on Fig. 4.13, which means that its travel time between
Earth and the satellite and back is:

𝑇True
Mink = 2

[√
𝑟2
⊕ − 𝑏2 +

√
𝑟2
∗ − 𝑏2

]
. (4.194)

⁴Although it is not apparent in the final expression (4.190), because the spacetime is static, and because we can
assume that the positions of the satellite and Earth have not changed significantly during the return trip of photons, we
have 𝑡 (𝑟0, 𝑟∗) = 𝑡 (𝑟∗, 𝑟0). This is called the ”inverse return of light” in geometric optics. We will use these relations in
what follows.
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But at leading order, using Eq. (4.183), we get:

𝑇True
Mink ' 𝑇Mink −

[
𝑡 (𝑟⊕, 𝑟0)

𝑅𝑆𝑟0

𝑟2
⊕

+ 𝑡 (𝑟∗, 𝑟0)
𝑅𝑆𝑟0

𝑟2
∗

]
. (4.195)

The difference between the two expressions, which is known as the geometric time delay for clear
reasons, is of order two in our small parameters and can thus be neglected.
Therefore, the Shapiro time delay is given by:

Δ𝑇 = 𝑅𝑆

2 ln
©­­«
(
𝑟⊕ +

√
𝑟2
⊕ − 𝑟2

0

) (
𝑟∗ +

√
𝑟2
∗ − 𝑟2

0

)
𝑟2

0

ª®®¬ +
√
𝑟⊕ − 𝑟0

𝑟⊕ + 𝑟0
+

√
𝑟∗ − 𝑟0

𝑟∗ + 𝑟0

 . (4.196)

This expression is always positive so this is indeed a delay. The expression given here is actually
too general since it does not take into account the fact that we used Taylor expansions to obtain it.
If we do Taylor expand Eq. (4.196), we get, at dominant order⁵:

Δ𝑇 = 2𝑅𝑆

[
ln

(
4𝑟⊕𝑟∗
𝑟2

0

)
+ 1

]
. (4.197)

The measurement of this time delay with the Cassini probe in 2003 confirmed that gravitational
agreed with General Relativity to one part in 2 × 10−5[4].
In 2010, the Shapiro effect was also used to measure the mass of a neutron star. The neutron star is
actually observed as a pulsar named PSR J1614-2230 and belongs to a binary system with a white
dwarf. Once every revolution, the white dwarf passes between the neutron star and us. This means
that by observing carefully the intervals between the pulses emitted by the neutron star during the
passage of the white dwarf and immediately before or after, one can measure a delay in their arrival
time on Earth. This was measured to be 25 𝜇s for this system, which leads to an estimate of the
mass of the white dwarf and, using orbital parameters, to a value for the mass of the neutron star:
𝑀 = 1.97 ± 0.04𝑀�. This is a very high value, the highest ever recorded for a neutron star, which
provides a lot of information on the properties of the dense matter forming the neutron star.

⁵Note that, the argument of the logarithm is very large so neglecting terms proportional to 𝑟0/𝑟⊕ or 𝑟0/𝑟∗ is easily
justified. However, this argument receives another contribution, equal to

(
𝑟2
⊕ + 𝑟2

∗
)
/(𝑟⊕𝑟∗) which is not small. Never-

theless, using 𝑟⊕ ∼ 𝑟∗, we see that this term is order unity, so much smaller than the dominant term that we kept here.
Technically, we performed a Laurent expansion rather than a Taylor expansion.
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4.6 The Schwarzschild black hole

In the previous sections of this chapter, we studied the gravitational field around an isolated, spher-
ical source like a star. If we describe a star as a ball of hot gas with density 𝜌(𝑡, 𝑟) and pressure
𝑝(𝑡, 𝑟), the stability of the star depends on the balance between two forces: the self-gravitation of
the matter which tends to make the star contract and heats up the gas, and the internal pressure of the
gas, which increases with temperature and tends to support the matter, opposing the gravitational
collapse. However, as nucleosynthesis proceeds, the chemical composition of the star changes and
this equilibrium evolves. Eventually, after a series of complicated stages, nuclear fusion stops and
the internal process are no longer able to oppose the gravitational collapse: the star dies. Its end
state depends on how much mass remains in the core of the star: dwarfs for low mass remnants or
neutron stars for 𝑀� ≲ 𝑀 ≲ 3𝑀�. These compact objects are supported by the quantum pressure
generated by Pauli exclusion principle of fermions: electrons for white dwarfs and neutrons for neu-
tron stars. However, if the mass of the remnant exceeds about 3𝑀�, even these quantum effects are
not strong enough to maintain the stability of the object: it collapses completely and forms a black
hole.
In this section, we will discuss in fair details the simplest black hole solution, the Schwarzschild
black hole. We will not attempt any discussion of the formation of black holes, nevertheless, we can
make a few remarks in this introduction. Imagine a ball of self-gravitating, non-relativistic matter
with radius (in Schwarzschild coordinates) 𝑅(𝑡) collapsing isotropically under the influence of its
own gravity. As we have seen, outside the star, everything is described by the exterior Schwarzschild
solution we studied in the previous sections. As long as 𝑅(𝑡) > 𝑅𝑆 everything is all right. As we are
going to see next, it turns out that nothing special happens to timelike geodesics at 𝑟 = 𝑅𝑆 so that the
star continues to shrink past that limit. At that point however, it forms a black hole. What happens
to matter as it continues falling beyond the Schwarzschild radius towards an infinite concentration
at the centre of the spatial coordinates in the asymptotic future is subject to contemporary debates
and can only be assessed in quantum gravity, which is way beyond the scope of these notes.

4.6.1 Beyond the Schwarzschild radius: a conundrum

Let us go back to the Schwarzschild metric in Schwarzschild coordinates:

𝒈 = −
(
1 − 𝑅𝑆

𝑟

)
d𝑡 ⊗ d𝑡 +

(
1 − 𝑅𝑆

𝑟

)−1
d𝑟 ⊗ d𝑟 + 𝑟2 [

d𝜃 ⊗ d𝜃 + sin2 𝜃 d𝜙 ⊗ d𝜙
]
. (4.198)
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So far, we looked at the geometry for the exterior region 𝑟 > 𝑅𝑆 but we can note that this metric is
perfectly well defined for 0 < 𝑟 < 𝑅𝑆 which we will call the interior region. As an illustration, the
radial lightlike geodesics that we characterised in subsection 4.5.1 via Eqs. (4.151)-(4.150) can be
constructed for 0 < 𝑟 < 𝑅𝑆; they simply exchange their role and we get:

Radial lightlike geodesics: interior and exterior

• Outward radial lightlike geodesics ( d𝑟
d𝑡 > 0):

𝑡 =𝑟 + 𝑅𝑆 ln
(
𝑟

𝑅𝑆
− 1

)
+ 𝐶 for 𝐶 ∈ R for 𝑟 > 𝑅𝑆 (4.199)

𝑡 = − 𝑟 − 𝑅𝑆 ln
(
1 − 𝑟

𝑅𝑆

)
+ 𝐶 for 𝐶 ∈ R for 0 < 𝑟 < 𝑅𝑆 . (4.200)

• Inward radial lightlike geodesics ( d𝑟
d𝑡 < 0):

𝑡 = − 𝑟 − 𝑅𝑆 ln
(
𝑟

𝑅𝑆
− 1

)
+ 𝐶 for 𝐶 ∈ R for 𝑟 > 𝑅𝑆 (4.201)

𝑡 =𝑟 + 𝑅𝑆 ln
(
1 − 𝑟

𝑅𝑆

)
+ 𝐶 for 𝐶 ∈ R for 0 < 𝑟 < 𝑅𝑆 . (4.202)

A few of these geodesics are represented on Fig. 4.14. Note that each point on this diagram is
effectively a 2-sphere. Note that we have changed their names from ”outgoing” and ”infalling”
to ”outward” and ”inward”. In the exterior region, the notions overlap because we have chosen
𝒆 (0) = 𝜕

𝜕𝑡 for our future direction. But what of the interior region? There, we have:
𝒈

(
𝒆 (0) , 𝒆 (0)

)
= −

(
1 − 𝑅𝑆

𝑟

)
> 0

𝒈
(
𝒆 (1) , 𝒆 (1)

)
=

(
1 − 𝑅𝑆

𝑟

)−1
< 0 ,

(4.203)

(4.204)

so that 𝒆 (1) = 𝜕
𝜕𝑟 is timelike while 𝒆 (0) = 𝜕

𝜕𝑡 is spacelike. Therefore, how do we choose a time
orientation to be able to draw the local future lightcones and study causality in this region? Can we
do it in a way that is consistent with the causal structure in the region 𝑟 > 𝑅𝑆 , so that we can ”glue”
these regions smoothly through the hypersurface 𝑟 = 𝑅𝑆 and obtain one spacetime covering both
regions?
We won’t be able to address these questions in (𝑡, 𝑟) coordinates because they are pathological as
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Figure 4.14: Radial null geodesics of the Schwarzschild metric both in the exterior region, 𝑟 > 𝑅𝑆
and the interior region, 0 < 𝑟 < 𝑅𝑆 . The hypersurface at 𝑟 = 𝑅𝑆 is represented in green. Black
solid curves are outward (d𝑟/d𝑡 > 0) while dashed red ones are inward (d𝑟/d𝑡 < 0).

we approach 𝑟 = 𝑅𝑆 . Before we explain the strategy we are going to follow to tackle these questions,
we need to make sure that they may even be tackled. Let us consider a massive object free falling
radially onto the central region from infinity, where it started at rest. Then, we have d𝑡/d𝜏 = 1 at
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infinity and 𝑒 = 1, where 𝜏 is the proper time along the object’s geodesic. Since 𝑙 = 0, we get that
(the minus sign means it is infalling):

d𝑟
d𝜏

= −
√
𝑅𝑆
𝑟
. (4.205)

The 4-velocity along the geodesics is then:

𝒖 =

(
1 − 𝑅𝑆

𝑟

)−1
𝜕

𝜕𝑡
−

√
𝑅𝑆
𝑟

𝜕

𝜕𝑟
. (4.206)

The local inertial frame of the free-falling observer is
{
𝒖 = 𝜕

𝜕𝜏 , 𝒆 (1) =
𝜕
𝜕𝑅 ,

1
𝑟
𝜕
𝜕𝜃 ,

1
𝑟 sin 𝜃

𝜕
𝜕𝜙

}
where

we define the new coordinate 𝑅 such that:

𝜕

𝜕𝑅
= 𝐴

𝜕

𝜕𝑡
+ 𝐵 𝜕

𝜕𝑟
(4.207)

with:

𝒈

(
𝜕

𝜕𝑅
,
𝜕

𝜕𝑅

)
=1 (4.208)

𝒈

(
𝜕

𝜕𝜏
,
𝜕

𝜕𝑅

)
=0 . (4.209)

This gives:
𝜕

𝜕𝑅
= −

(
1 − 𝑅𝑆

𝑟

)−1 √
𝑅𝑆
𝑟

𝜕

𝜕𝑡
+ 𝜕

𝜕𝑟
. (4.210)

In this coordinate system, the non-zero components of the Riemann curvature tensor read⁶:

𝑅0̂
1̂0̂1̂ =

𝑅𝑆
𝑟3 , 𝑅0̂

2̂0̂2̂ = 𝑅0̂
3̂0̂3̂ = − 𝑅𝑆

2𝑟3 (4.211)

𝑅2̂
3̂2̂3̂ =

𝑅𝑆

𝑟5 , 𝑅1̂
2̂1̂2̂ = 𝑅1̂

3̂1̂3̂ = − 𝑅𝑆
2𝑟3 . (4.212)

Thus, the geodesic deviation equation for the deviation vector 𝝃 that describes the deformation of
the object by tidal forces becomes:

d2𝜉 𝛼̂

d𝜏2 =𝑅 𝛼̂ 0̂0̂𝛾̂𝜉
𝛾̂ (4.213)

= −𝜂 𝛼̂𝛽𝑅0̂𝛽0̂𝛾̂𝜉
𝛾̂ (4.214)

= 𝜂 𝛼̂𝛽𝑅0̂
𝛽0̂𝛾̂𝜉

𝛾̂ . (4.215)

⁶This result is quite cumbersome to obtain. One first needs to calculate the components of the Riemann tensor in
Schwarzschild coordinates and then apply the law of transformations for the components of a tensor.
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These forces remains thus completely finite in the neighbourhood of the hypersurface 𝑟 = 𝑅𝑆 . A
free falling observer that approaches that hypersurface does not experience any special gravitational
effect so it looks like from a physical point of view, we may be able to bring the hypersurface 𝑟 = 𝑅𝑆
back into the physical spacetime by a clever change of coordinates and some continuation procedure.
As you can see, this is clearly not the case for the 𝑟 = 0 singularity: a similar change of coordinate
in the 𝑟 < 𝑅𝑆 region shows that tidal forces diverge as one approaches 𝑟 = 0. We say that 𝑟 = 0
is a physical singularity. Strictly speaking it does not even belong to the spacetime and General
Relativity fails there.

4.6.2 Exploring the Schwarzschild black hole

Eddington-Filkenstein coordinates

We can now turn to the main issue of this section: the construction of a consistent geometry span-
ning both the exterior and interior region of the Schwarzschild spacetime. We are going to construct
a new coordinate system that patches together interior and exterior regions in a continuous way, cov-
ering the 𝑟 = 𝑅𝑆 region in a smooth, regular way.
The strategy consists in exploring the causal structure of spacetime, i.e. in following lightlike
geodesics and connecting them across the apparent singular region. We start in the exterior re-
gion, 𝑟 > 𝑅𝑆 and we follow the (future-directed) radial lightlike geodesics. Because we want to
extend our spacetime towards the 𝑟 < 𝑅𝑆 region, we focus on infalling radial null geodesics. We
will talk about the outgoing ones later. We define the infalling Eddington-Filkenstein coordinate 𝑣
to be constant along the inward radial geodesics in the exterior region:

𝑣 = 𝑡 + 𝑟 + 𝑅𝑆 ln
���� 𝑟𝑅𝑆 − 1

���� . (4.216)

This definition is valid in both exterior and interior region ans this will be useful later. If we construct
the chart (𝑣, 𝑟, 𝜃, 𝜙), then at constant 𝜃 and 𝜙, 𝑣 = constant lines will correspond to light rays. In
the exterior regions, these will be the infalling rays (red dashed curves on Fig. 4.14) What does the
metric look like in this chart? We have:

d𝑣 =d𝑡 +
(
1 − 1

1 − 𝑟/𝑅𝑆

)
d𝑟 (4.217)

=d𝑡 + 1
1 − 𝑅𝑆/𝑟

d𝑟 . (4.218)
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Thus:

d𝑡2 = d𝑣2 − 2
(
1 − 𝑅𝑆

𝑟

)−1
d𝑣d𝑟 +

(
1 − 𝑅𝑆

𝑟

)−2
d𝑟 . (4.219)

Substituting in the line element (4.42), we get it expressed in the new coordinate system, known as
the Eddington-Finkelstein infalling coordinates :

d𝑠2 = −
(
1 − 𝑅𝑆

𝑟

)
d𝑣2 + 2d𝑣d𝑟 + 𝑟2 [

d𝜃2 + sin2 𝜃 d𝜙
]
., (4.220)

with the bounds 𝑣 ∈ R, 𝑟 ∈ R∗+, 𝜃 ∈ [0, 𝜋) and 𝜙 ∈ [0, 2𝜋).
First let us note that the metric is perfectly regular at 𝑟 = 𝑅𝑆 . The determinant of 𝒈 is given by:

det 𝒈 = −𝑟4 sin2 𝜃 , (4.221)

so that the metric is invertible at all points with 𝑟 > 0 (the apparent singularity at 𝜃 = 0 and 𝜋/2
is an artefact of the spherical coordinates). The chart (𝑣, 𝑟, 𝜃, 𝜙) covers the interior, exterior and
𝑟 = 𝑅𝑆 regions in a perfectly smooth way. The coordinate 𝑣 tends to +∞ when 𝑡, or 𝑟, or both, tend
to +∞, and to −∞ when 𝑡 → −∞ at fixed 𝑟 .

Causal structure

What do radial lightlike geodesics look like? Let us set:

d𝑠2 = −
(
1 − 𝑅𝑆

𝑟

)
d𝑣2 + 2d𝑣d𝑟 = 0 . (4.222)

We have two sets of radial lightlike geodesics:


Type Iv: d𝑣 = 0 ⇒ ∀𝑟 ∈ R∗+, 𝑣 = cst

Type IIv: d𝑟 =
1
2

(
1 − 𝑅𝑆

𝑟

)
d𝑣 ⇒ 𝑣 = 2𝑟 + 2𝑅𝑆 ln

���� 𝑟𝑅𝑆 − 1
���� + cst .

(4.223)

(4.224)

Type Iv corresponds to the inward radial geodesics in the region 𝑟 > 𝑅𝑆 and to the outward ones in
the region 𝑟 < 𝑅𝑆 (to see that, you can express 𝑣 = cst in terms of (𝑡, 𝑟)). Therefore, in terms of
the parameter 𝑣, these two geodesics connect through the hypersurface 𝑟 = 𝑅𝑆 . Photons travelling
radially from the 𝑟 > 𝑅𝑆 region towards the central region cross the hypersurface 𝑟 = 𝑅𝑆 and
continue towards 𝑟 = 0. The outward geodesics in the region 𝑟 < 𝑅𝑆 are travelled from 𝑟 = 𝑅𝑆
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down to 𝑟 = 0, with d𝑟/d𝜆 < 0. How can we understand this counter-intuitive fact?
If wewant to speak of direction of travel along (timelike or lightlike) geodesics, we need to introduce
a time orientation. Since we already chose one outside by requiring that future-directed vectors be
”aligned” with 𝒆 (0) = 𝜕

𝜕𝑡 , we need to choose an orientation inside that is compatible with this. First,
since we have two sets of coordinates, we need to be a bit careful here. Remember that truly:

𝒆 (1) =
𝜕

𝜕𝑟

����
(𝑡 , 𝜃 ,𝜙)

, (4.225)

while, if we call 𝒆 (𝝁) the coordinate basis associated to the chart (𝑣, 𝑟, 𝜃, 𝜙), we have:

𝒆 (1) =
𝜕

𝜕𝑟

����
(𝑣, 𝜃,𝜙)

≠ 𝒆 (1) . (4.226)

In fact, we have that 𝒆 (1) is globally lightlike:

𝒈
(
𝒆 (1) , 𝒆 (1)

)
= 0 . (4.227)

Therefore, ±𝒆 (1) can be used to define a time-orientation in the 𝑟 < 𝑅𝑆 region. To decide which sign
to use, we need to ensure that whichever we choose to be future directed inside is also future-directed
outside. Since for 𝑟 > 𝑅𝑆 and for any function 𝑓 independent of 𝜃 and 𝜙:

𝜕 𝑓

𝜕𝑡

����
(𝑟 , 𝜃 ,𝜙)

=
𝜕𝑣

𝜕𝑡

����
(𝑟 , 𝜃 ,𝜙)

𝜕 𝑓

𝜕𝑣

����
(𝑟 , 𝜃 ,𝜙)

+ 𝜕𝑟
𝜕𝑡

����
(𝑟 , 𝜃 ,𝜙)

𝜕 𝑓

𝜕𝑟

����
(𝑣, 𝜃,𝜙)

(4.228)

=
𝜕 𝑓

𝜕𝑣

����
(𝑟 , 𝜃 ,𝜙)

, (4.229)

we have 𝒆 (0) = 𝒆 (0) . Thus:

𝒈
(
−𝒆 (1) , 𝒆 (0)

)
= 𝒈

(
−𝒆 (1) , 𝒆 (0)

)
= −1 < 0 , (4.230)

we see that −𝒆 (1) is future-directed in the exterior region. We can then pick it as our future direc-
tion inside. Clearly, that means that photons on the 𝑣 = cst curves in the interior region fall towards
decreasing 𝑟 . Physically, −𝒆 (1) is oriented along the future-travelling photons’ path both outside
and inside.

On the other hand, type IIv corresponds to outward geodesics in the region 𝑟 > 𝑅𝑆 and to the
inward ones in the region 𝑟 < 𝑅𝑆 (again just re-express the condition in terms of 𝑡 and 𝑟). This
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translates the fact that lightcones bend as they approach the hypersurface 𝑟 = 𝑅𝑆 and flips once they
pass that limit. Actually, 𝑟 = 𝑅𝑆 is itself generated by type IIv lightlike geodesics. The future light
rays of type IIv in the region 𝑟 < 𝑅𝑆 are oriented upward because denoting 𝑲 their tangent vector
we have that:

𝒈
(
𝑲,−𝒆 (1)

)︸         ︷︷         ︸
<0

= −𝑔𝑣𝑟𝐾𝑣 = −𝐾𝑣 = −d𝑣
d𝜆

= − d𝑣
d𝑟︸︷︷︸
<0

d𝑟
d𝜆

, (4.231)

so that d𝑟
d𝜆 = 𝑈𝑟 < 0. All this is summarized on Fig. 4.15.

The event horizon and the nature of a black hole

The hypersurface 𝑟 = 𝑅𝑆 , that we will denote H is called the event horizon. The vector 𝒆 (0) = 𝜕
𝜕𝑣

is lightlike at 𝑟 = 𝑅𝑆 and it is both orthogonal and tangent to H which makes this hypersurface
a lightlike one. The event horizon, not the central singularity is what makes of the Schwarzschild
spacetime a black hole. Although future-directed curves in the region 𝑟 > 𝑅𝑆 can either enter the
interior region or escape to infinity, future-directed curves in the interior region and on the horizon
are trapped. This can be summarised by the following result:

Characterisation of the event horizon H

Let 𝑥𝜇 (𝜆) be any future-directed causal curve (not necessarily a geodesic). If 𝑟 (𝜆0) ≤ 𝑅𝑆 for
some 𝜆0, then 𝑟 (𝜆) ≤ 𝑅𝑆 for any 𝜆 ≥ 𝜆0.

Indeed, let us pick up one such future-directed curve parametrised by 𝜆, with 𝑟 (𝜆0) ≤ 𝑅𝑆 and a
non-zero tangent vector𝑼. Since it is future directed, we have:

𝒈
(
−𝒆 (1) ,𝑼

)
= −𝑔𝑟𝜇𝑈𝜇 = −𝑈𝑣 = −d𝑣

d𝜆
≤ 0 . (4.232)

Along the curves, 𝑣 is thus constant or increasing. Besides, we have:

𝒈 (𝑼,𝑼) = −
(
1 − 𝑅𝑆

𝑟

) (
d𝑣
d𝜆

)2
+ 2

d𝑣
d𝜆

d𝑟
d𝜆

+ 𝑟2
(
dΩ
d𝜆

)2
, (4.233)

where: (
dΩ
d𝜆

)2
=

(
d𝜃
d𝜆

)2
+ sin2 𝜃

(
d𝜙
d𝜆

)2
. (4.234)
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Figure 4.15: Radial null geodesics of the Schwarzschild metric in Eddington-Filkenstein infalling
coordinate. Type Iv geodesics are represented in dashed red and type IIv in solid black. We see that
local lightcones gradually bend towards the central singularity as one moves along infalling radial
geodesics. When they pass 𝑟 = 𝑅𝑆 , no radial light rays are outgoing and the entire lightcone points
towards the central singularity at 𝑟 = 0. At 𝑟 = 𝑅𝑆 , the type IIv align with the hypersurface at
𝑟 = 𝑅𝑆: these light rays get trapped at constant 𝑟.
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Thus:

−2
d𝑣
d𝜆

d𝑟
d𝜆

= −𝒈 (𝑼,𝑼) −
(
1 − 𝑅𝑆

𝑟

) (
d𝑣
d𝜆

)2
+ 𝑟2

(
dΩ
d𝜆

)2
. (4.235)

In the region 𝑟 ≤ 𝑅𝑆 all the terms on the RHS are positive or zero so that we have:

d𝑣
d𝜆

d𝑟
d𝜆

≤ 0 . (4.236)

If d𝑟
d𝜆 > 0, then we must have d𝑣

d𝜆 = 0 to satisfy Eq. (4.232). But then, Eq. (4.235) imposes that

𝒈 (𝑼,𝑼) =
(

dΩ
d𝜆

)2
= 0. Thus:

𝑼 =
d𝑟
d𝜆

𝒆 (1) , (4.237)

the coefficient being positive, so that 𝑼 is past -directed, which is a contradiction. Thus, we must
have:

d𝑟
d𝜆

≤ 0 (4.238)

for any future-directed causal curve in the interior region. This inequality must actually be strict for
𝑟 < 𝑅𝑆 , otherwise, the vector would be identically zero, a contradiction. Therefore, we have shown
that in the region 𝑟 < 𝑅𝑆 𝑟 (𝜆) is a monotonously decreasing function along any future-directed
causal curve.
For 𝑟 = 𝑅𝑆 , things need to be studied separately. Let us assume that 𝑟 (𝜆0) = 𝑅𝑆 . If d𝑟

d𝜆 < 0 at
𝜆 = 𝜆0, then we get 𝑟 < 𝑅𝑆 immediately after and we are back to the previous reasoning. Thus, we
can restrict our analysis to d𝑟

d𝜆 = 0 at 𝜆 = 𝜆0. If d𝑟
d𝜆 = 0 for any 𝜆 > 𝜆0, then the curve stays trapped

on 𝑟 = 𝑅𝑆 and we are done. So let us assume that d𝑟
d𝜆 > 0 for any 𝜆 slightly ”later” that 𝜆0 (if it

became negative we would be back to the case 𝑟 < 𝑅𝑆). At 𝜆 = 𝜆0, we have d𝑣
d𝜆 ≠ 0 (otherwise 𝑼

would be identically zero), so it must be d𝑣
d𝜆 > 0 at 𝜆 = 𝜆0. Locally, we can thus use 𝑣 as a parameter

along the curve. Denoting 𝑣0 = 𝑣 (𝜆0) and dividing Eq. (4.235) by
(

d𝑣
d𝜆

)2
, we get:

−2
d𝑟
d𝑣

≥ 𝑅𝑆
𝑠

− 1 ⇒ 2
d𝑟
d𝑣

≤ 1 − 𝑅𝑆
𝑠
. (4.239)

So for 𝑣2 > 𝑣1 > 𝑣0:

2
ˆ 𝑟 (𝑣2 )

𝑟 (𝑣1 )

d𝑟
1 − 𝑅𝑆/𝑟

≤ 𝑣2 − 𝑣1 . (4.240)

In the limit 𝑣1 → 𝑣0, 𝑟 (𝑣1) → 𝑅𝑆 and the LHS diverges while the RHS remains finite. This is a
contradiction and thus, the condition d𝑟

d𝜆 > 0 in the neighbourhood of 𝜆 = 𝜆0 is impossible. This
concludes the proof.
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What we have shown is that one cannot find a future-directed causal curve, geodesic or not, con-
necting an event with 𝑟 ≤ 𝑅𝑆 to another event with 𝑟 > 𝑅𝑆 . Causal curves can cross H from the
exterior to the interior but not the other way around: the event horizon protects causally the exterior
region from the interior one. This is what we call a black hole. Note that the central singularity
𝑟 = 0 is not part of the spacetime. It should also not be thought of as a point lying ”somewhere” in
space at the centre of the black hole. Indeed, as we saw, it is rather in the future of the causal curves
that cross the horizon and of those who start inside the horizon so it has to be thought of as lying
”sometime” in the future of the other points in the Schwarzschild spacetime.

Motion of a massive particle in the black hole region

Consider a massive test particle inside the event horizon. It is not necessarily in free fall and
we call 𝜏 its proper time.

(a) Show that its radial coordinate must decrease at a minimum rate given by:����d𝑟d𝜏

���� ≥ √
𝑅𝑆
𝑟

− 1 . (4.241)

1. (b) Determine the maximum lifetime for such a particle starting at 𝑟 = 𝑅𝑆 before it
reaches the singularity at 𝑟 = 0.
Hint: We have: ˆ √

𝑥

1 − 𝑥 d𝑥 = arcsin(
√
𝑥) −

√
(1 − 𝑥)𝑥 . (4.242)

(c) Show that this maximum lifetime is attained for a certain class of free-falling particles
in radial orbits. Comment.

4.6.3 Extending the trip: the white hole region

Starting in the exterior region 𝑟 > 𝑅𝑆 and following ingoing radial lightlike geodesics into the future,
we arrived in the black hole region by crossing the 𝑟 = 𝑅𝑆 event horizon. Following outgoing radial
lightlike geodesics, we would have ended ”at infinity” into the Minkowski region. But what if we
followed these geodesics into the past? Specifically, where do photons escaping to infinity come
from? To do that, it is better to introduce the outgoing Eddington-Filkenstein coordinate:

𝑢 = 𝑡 − 𝑟 − 𝑅𝑆 ln
���� 𝑟𝑅𝑆 − 1

���� , (4.243)
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that is constant along outgoing lightlike rays in the region 𝑟 > 𝑅𝑆 . The metric becomes:

d𝑠2 = −
(
1 − 𝑅𝑆

𝑟

)
d𝑢2 − 2d𝑢d𝑟 + 𝑟2dΩ2 . (4.244)

Radial light rays are thus of two types:

• Type Iu. These are the rays with:

d𝑢
d𝑟

= −2
(
1 − 𝑅𝑆

𝑟

)−1
. (4.245)

Integrating this equation leads to the equation of the rays and one sees that they correspond
to the ingoing rays at d𝑣 = 0, i.e. to type Iv.

• Type IIu. These obey d𝑢 = 0, i.e. 𝑢 = cst and they correspond to the outgoing rays, by
construction, i.e. to type IIv.

If we follow type Iu rays into the future, we arrive in the black hole region, as we saw in the previous
subsection. Following them into the past lead us to the asymptotically flat Minkowski region far
from the black hole so we do not learn anything (see more on that later). Following type IIu rays
into the future also leads us to this Minkowski region, although in a different corner (see below).
But what if we follow them into the past?⁷

We denote by 𝒆 (0) = 𝜕
𝜕𝑢 and 𝒆 (1) = 𝜕

𝜕𝑟

����
(𝑢,𝜃,𝜙)

, and we can see that in the region 𝑟 > 𝑅𝑆 , 𝒆̃ (0) = 𝒆 (0) .

Following the rays at 𝑢 = cst into the past amounts to decreasing 𝑟 along the geodesics while also
decreasing 𝑡: d𝑟

d𝜆 < 0 and d𝑡
d𝜆 < 0. These can be followed backwards up to 𝑟 = 0, crossing a 𝑟 = 𝑅𝑆

hypersurface smoothly. But you can see that the region 𝑟 < 𝑅𝑆 in which we arrive is not the same
as the black hole region. Indeed, if we now run the film towards the future, we see radial lightlike
geodesics escape from the 𝑟 < 𝑅𝑆 region into the 𝑟 > 𝑅𝑆 one. This can not happen in the black
hole region, as we have seen above. We have discovered a new region of spacetime! It can also
be covered by local (𝑡, 𝑟), Schwarzschild coordinates, with the usual metric components, but its
nature is completely unexpected. To get a time orientation in this region that is consistent with the

one outside we must now choose +𝒆̃ (1) = 𝜕
𝜕𝑟

����
(𝑢,𝜃,𝜙)

so that future-directed photons on the d𝑢 = 0

⁷Be careful, we are talking about radial rays here. Clearly some infalling non-radial light rays do not end up in the
black hole; think about those that scatter back to infinity and for which we calculated a deviation angle; some are also
trapped in orbit.
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curves must move towards larger values of 𝑟. Moreover, let us call 𝑲 the future-directed tangent
vector to a type Iu ray. In the 𝑟 > 𝑅𝑆 region, we have:

𝒈
(
𝑲, 𝒆 (0)

)︸       ︷︷       ︸
<0

=𝑔𝑢𝑢𝐾
𝑢 (4.246)

= −
(
1 − 𝑅𝑆

𝑟

)
d𝑢
d𝜆

(4.247)

=2
d𝑟
d𝜆

< 0 , (4.248)

so these rays are ingoing. Similarly, in the 𝑟 < 𝑅𝑆 region:

𝒈
(
𝑲, 𝒆 (1)

)︸       ︷︷       ︸
<0

=𝑔𝑢𝑟𝐾
𝑟 (4.249)

=2
(
1 − 𝑅𝑆

𝑟

)−1

︸        ︷︷        ︸
<0

d𝑟
d𝜆︸︷︷︸
>0

, (4.250)

so the ray are outgoing.
It is a white hole. It is a region of spacetime from which future-directed causal curves can

escape but which cannot be entered by them. It lies into the past of the rest of the Schwarzschild
spacetime, including the black hole region and its asymptotically Minkowski surroundings. It con-
tains a singularity at 𝑟 = 0 in local Schwarzschild coordinates; this is not the same set as the one
with 𝑟 = 0 in the black hole region. The situation is depicted in Fig. 4.16·

4.6.4 A bird’s eye view of the Schwarzschild geometry

Let us recap what we have learned about Schwarzschild spacetime, i.e. the unique spherically sym-
metric, vacuum and asymptotically flat spacetime.

1. It has an exterior region, 𝑟 > 𝑅𝑆 that is asymptotically Minkowski. This is the region we
studied when probing the behaviour of matter and light around a compact object such as a
star. We can call it region I.

2. If one follows the radial light rays emanating from that region and falling towards the 0 <

𝑟 < 𝑅𝑆 region, one ends up in a trapped region of spacetime, from which no future-directed
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Figure 4.16: The white hole region of the Schwarzschild spacetime. Radial lightrays with d𝑢 = 0
are in dashed red and type I ones in solid black. Future-directed lightcones open up while exiting
the white hole region, here spanned by 0 < 𝑟 < 𝑅𝑆 so that the exterior region lies in the future of
the interior one. The white hole singularity at 𝑟 = 0 is in the past of the Schwarzschild spacetime.

causal curve, timelike of lightlike, can escape. This region is bounded by a lightlike surface,
the event horizon H , at 𝑟 = 𝑅𝑆 that acts as a fictitious one-way membrane. It contains a true
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singularity that sits in the future of all events inside the horizon and of all infalling geodesics
emanating from region I. This is the black hole region; let us call it region II.

3. If one follows radial light rays emanating from region I and going away from the black hole
region by tracing them back into the past, one arrives at a new region that can also be spanned
by 0 < 𝑟 < 𝑅𝑆 but that is not the black hole region. Rather, it is in the past of regions I and
II. Let us call it region III. It contains a singularity at 𝑟 = 0 that is in the past of some causal
curves ending up in regions I and II. It is surrounded by a hypersurface at 𝑟 = 𝑅𝑆 that acts as
a membrane in the opposite way to the horizon H : no future-directed causal curve can cross
it from region II. It is called the white hole region.

To discover these regions, we used two sets of coordinates, one to look into the future of region
I (using the infalling Eddington-Filkenstein coordinate 𝑣) and one to look into its past (using the
outgoing Eddington-Filkenstein coordinate 𝑢). Here, we would like to find a coordinate system that
allows us to cover all those regions at once. A first attempt might be to use 𝑢 and 𝑣 to get a chart, i.e.
to use radial light rays to label points in spacetime. In that case, we obtain the following expression
for the line element:

d𝑠2 = −
(
1 − 𝑅𝑆

𝑟

)
d𝑢d𝑣 + 𝑟2(𝑢, 𝑣)dΩ2 . (4.251)

The problem is that the hypersurfaces at 𝑟 = 𝑅𝑆 , which are so important to understanding this
spacetime are sent to infinity in these coordinates: 𝑢(𝑟 → 𝑅𝑆) = +∞ going towards the black hole
regions and 𝑣(𝑟 → 𝑅𝑆) = −∞ going towards the white hole region. This is most unsavoury and we
will want to ”bring them back closer”. Therefore, let us introduce the coordinates (𝑈,𝑉) defined in
patches. For region I: {

𝑈 = −e−𝑢/2𝑅𝑆

𝑉 = e𝑣/2𝑅𝑆 ,

(4.252)

(4.253)

for region II: {
𝑈 = e−𝑢/2𝑅𝑆

𝑉 = e𝑣/2𝑅𝑆 ,

(4.254)

(4.255)

and for region III: {
𝑈 = −e−𝑢/2𝑅𝑆

𝑉 = −e𝑣/2𝑅𝑆 .

(4.256)

(4.257)
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In terms of (𝑡, 𝑟) in region I, we get:
𝑈 = −

√
𝑟

𝑅𝑆
− 1e(𝑟−𝑡 )/2𝑅𝑆

𝑉 =

√
𝑟

𝑅𝑆
− 1e(𝑡+𝑟 )/2𝑅𝑆 ,

(4.258)

(4.259)

and similar expressions for the other regions. The limits above are clearly satisfied, the crossing from
one region to another happens smoothly, and we retain that radial light rays fall into two categories:
𝑈 = cst or 𝑉 = cst. Note that in all regions:

𝑈𝑉 =

(
1 − 𝑟

𝑅𝑆

)
e𝑟/𝑅𝑆 , (4.260)

so that 𝑟 = 𝑅𝑆 corresponds to 𝑈𝑉 = 0. We have 𝑈 = 0 if e(𝑟−𝑡 )/2𝑅𝑆 does not diverge when we
approach 𝑟 = 𝑅𝑆 , i.e. we must have 𝑡 → +∞: this is the event horizon H . Conversely, 𝑉 = 0
happens on the white hole ”anti-horizon”. The line element then becomes (exercise):

d𝑠2 = −
4𝑅3

𝑆

𝑟 (𝑈,𝑉) e−𝑟 (𝑇,𝑅)/𝑅𝑆d𝑈d𝑉 + 𝑟2(𝑈,𝑉)dΩ2 , (4.261)

and it is perfectly regular for (𝑈,𝑉) ∈ R2. But regions I, II and III only cover three quadrants in
the plane and there is thus a fourth one that is accessible in these coordinates and that we have not
explored yet, with𝑈 > 0 and 𝑉 < 0. What is it?
𝑈 and𝑉 are null coordinates and it would be nice, for intuition purposes to get timelike and spacelike
coordinates instead. Let us simply write:

𝑇 =
1
2
(𝑉 +𝑈)

𝑅 =
1
2
(𝑉 −𝑈) .

(4.262)

(4.263)

Then, we have:
−d𝑇2 + d𝑅2 = −d𝑈d𝑉 , (4.264)

so that the line element in Kruskal coordinates becomes:

d𝑠2 =
4𝑅3

𝑆

𝑟 (𝑇, 𝑅) e−𝑟 (𝑇,𝑅)/𝑅𝑆

(
−d𝑇2 + d𝑅2

)
+ 𝑟2(𝑇, 𝑅)dΩ2 . (4.265)
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Finally note the useful relation:

𝑇2 − 𝑅2 = 𝑈𝑉 =

(
1 − 𝑟

𝑅𝑆

)
e𝑟/𝑅𝑆 . (4.266)

These coordinates are extremely powerful because as long aswe ignore the angular part of themetric,
which is fine for a spherically symmetric spacetime when we want to study the causal structure, the
spacetime is conformally related to Minkowski spacetime, i.e. conformally flat. Then, for radial
light rays: d𝑠2 = 0 and we simply have: d𝑇2 = d𝑅2. This means that the conformal spacetime
diagram, obtained by setting dΩ = 0 in Eq. (4.265) and by ignoring the non-zero prefactor, is going
to look very simple since local lightcones will always be straight lines at ±𝜋/4. Let us construct
this diagram and for that, list a few properties:

• Radial null geodesics are given by 𝑇 = ±𝑅 + cst.

• Hypersurfaces 𝑟 = 𝑅𝑆 are given by 𝑇2 − 𝑅2 = 0, i.e. 𝑇 = ∓𝑅.

• Hypersurfaces 𝑟 = cst, i.e. worldline of static observers are hyperbolæ with 𝑇2 − 𝑅2 =(
1 − 𝑟

𝑅𝑆

)
e𝑟/𝑅𝑆 .

• Hypersurfaces 𝑡 = cst, are at:

𝑇

𝑅
= tanh

(
𝑡

2𝑅𝑆

)
if 𝑟 > 𝑅𝑆 (4.267)

= 1/tanh
(
𝑡

2𝑅𝑆

)
if 𝑟 < 𝑅𝑆 . (4.268)

• The coordinates 𝑇 and 𝑅 are not allowed to run in the all of R2 because of the physical
singularity at 𝑟 = 0. Imposing 𝑟 > 0 results in:

𝑇2 − 𝑅2 =

(
1 − 𝑟

𝑅𝑆

)
e𝑟/𝑅𝑆 < 1 , (4.269)

so that, for any value of 𝑅 ∈ R, we must have:

𝑇2 < 𝑅2 + 1 . (4.270)

This is summarised in the Kruskal diagram, Fig. 4.17. We discover that there is a fourth region
in the Schwarzschild spacetime, that denoted region IV on the diagram, corresponding to {𝑈 >
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Figure 4.17: The Kruskal diagram of the Schwarzschild spacetime. Blue dashed lines represent
hypersurfaces with 𝑟 = cst and dashed orange ones hypersurfaces with 𝑡 = cst. Local lightcones are
always at an angle of ±𝜋/4 and are lines with 𝑈 = cst or 𝑉 = cst; a few are represented in green
here. The 𝑈 and 𝑉 axes represent the surfaces 𝑟 = 𝑅𝑆 , clearly showing their lightlike nature. The
singularities are in dot-dashed red. The four regions are shown as quadrants in the planes, marked
𝐼, 𝐼 𝐼, 𝐼 𝐼 𝐼 and 𝐼𝑉 . The grey, shaded regions are not part of the spacetime. The purple curve is a
timelike curve emerging from the white hole singularity into the exterior region I before plunging
into the black hole region and hitting the black hole singularity.

0 , 𝑉 < 0}. It is completely identical, locally, to region 𝐼, i.e. the exterior region we started from: it
is asymptotically Minkowski and it continues to the black hole region in the future and to the white
hole region in the past. We can say that it is another exterior ”Universe”. Note that no causal signal
or observer can cross from region II to region IV or the other way around so these two ”Universes”
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are completely isolated⁸.
The fact that the black hole and white hole singularities are extended curves located respectively

in the future and past of region I and IV is now completely apparent. Look at the purple curve, which
represents the trajectory of a massive particle (not in free fall) emerging from the white hole and
plunging into the black hole. The Kruskal coordinate system gives the maximal extension of the
Schwarzschild spacetime in the sense that it covers all the points accessible by following causal
curves: we have extended timelike and lightlike geodesics as far as we could. It corresponds to the
spacetime of an eternal black hole.
As it turns out, there are still points whose status is a bit unclear on this diagram: the end points
of geodesics that escape to infinity in regions II and IV. There is a technique to bring them back at
”finite distance” on paper, called the construction of the Carter-Penrose diagram of the spacetime.
These very useful object will not be studied here, by lack of time.

4.6.5 Astrophysical black holes

As we have seen, the Kruskal extension corresponds to an eternal black hole. Astrophysical black
holes, on the other hand, are formed by the collapse of a star. Thismeans that the causal past of points
in the exterior region 𝐼 𝐼 does not contain a white hole. Instead. it contains... a star. Besides, the
event horizon will only form when the radius of this star passes below 𝑟 = 𝑅𝑆 . The Kruskal diagram
will thus look something like what is show in Fig 4.18. Regions III and IV have disappeared.

⁸They are, in fact, connected by an Einstein-Rosen bridge, or Schwarzschild wormhole that can be constructed by
slicing the Kruskal diagram with 𝑡 = cst straight lines. Since these are spatial hypersurfaces though, the brigde, which
connects both regions at𝑈 = 𝑉 = 0 is spacelike and cannot be crossed.
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Figure 4.18: Collapse of a star in Kruskal coordinates. The shaded region corresponds to the inside
of the star and is not described by the Schwarzschild solution. The black hole only forms when the
star collapses below its Schwarzschild radius, at event 𝐹, the event horizon then appears (blue thick
line). Before that, the spacetime is just exterior Schwarzschild with a star at its centre. The green
lines at an angle ±𝜋/4 represent the radial light rays reaching or leaving the event 𝐸 outside the star.
We see that outgoing rays do not fall into a white hole in the past, but rather intersect the surface of
the star. Only regions I and II of the Kruskal extension survive.
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Free field solutions: gravitational waves
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5.1 Introduction

In this chapter, we first need to understand what it means for a spacetime with a given geometry
to be ”close” to another one. That will lead us to the notion of a gauge¹. As an application, we
will see how to recover the weak field geometry we have been using in these notes so far. Then,
we will develop the theory of gravitational waves. As every classical field theory, for example elec-
tromagnetism, General Relativity admits freely propagating solutions in vacuum, aka free waves.
But unlike electromagnetic waves, which can be produced by charge dipoles, gravitational waves
can only be produced by at least quadrupolar distributions of mass-energy. We will show that they
have two degrees of polarisation, study how they impact matter, and try to understand how they
are produced. Gravitational waves are very, very weak, and only those produced by extreme astro-
physical systems like merging binary black holes or binaries made of neutron stars and black holes
can be detected on Earth. Actually, these have only been detected for the first time in 2015 by the
LIGO experiment [1], despite having been predicted by Einstein in 1916 [9] (article amended in
1918 [10]). However, for the past 6 years, we have been detecting them almost routinely, and we
start being able to do some astrophysics with their observations. Perturbation theory is also central
to the development of modern cosmology, as we will see in M2.

5.2 Perturbation theory

5.2.1 Perturbing a spacetime

It is usual in physics to try and approach complex systems lacking any apparent symmetry by trying
to describe them as only slightly non-symmetrical, and related to a highly symmetrical, well-known,
physical system by a small perturbation. For example, as a first approximation, the surface of the
Earth is well-approximated by a sphere, and departures from sphericity such as ellipticity due to
rotation, mountains and valleys etc. can be described as small hierarchical perturbations around a
perfectly spherical, idealised Earth. The spherical Earth model is what we will call a background
geometry, while the corrections to sphericity will be called perturbations of the geometry. The
advantage of such a description is that a sphere is a highly symmetrical object, thus quantities and
dynamics can be easily calculated exactly on it (equations are easier to solve on a sphere that on a gen-

¹Be careful: this is a related, but distinct concept from the usual ”gauge” of field theory.
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eral ”bumpy” surface). Then corrections to these quantities and dynamics due to the non-sphericity
can be calculated order by order in importance of the perturbers on various relevant scales.
Now, there is an ambiguity here due to the very symmetric nature of a sphere. One can label points
on the sphere by their latitude and longitude but of course, these are completely arbitrary in the
sense that latitudes depend on identifying poles, while longitudes depend on selecting a reference
meridian. Thus, given a mountain on Earth considered as a small perturbation on the shape of
the surface, locating it at a given latitude and longitude is completely arbitrary. This means that
whatever impact the mountain has on physical quantities cannot depend on the point of the ide-
alised spherical model at which we have anchored it: the symmetries of the ”background” model
introduce some indetermination in the perturbed model, and this indetermination has to be removed
(physicists say ”gauged” out) once physical quantities are constructed. In essence this is the gauge
problem in General Relativity. Let us see how it works in details.
We start with a highly-symmetrical background spacetime (𝑀̄, 𝒈̄), where 𝑀̄ is a differentiable mani-
fold and 𝒈̄ a Lorentzian metric on𝑀 which is a known, exact solution of the Einstein Field equations.
𝒈̄ is usually highly symmetrical, e.g. Minkowski, Schwarzschild, Friedmann-Lemaître-Robertson-
Walker etc. We consider a second differentiable manifold 𝑀 , which is diffeomorphic to 𝑀̄ so they
could be treated as the same manifold, up to identifying points in 𝑀 and points in 𝑀̄ . Let us pick
such an identification by selecting a specific diffeomorphism 𝜙 : 𝑀̄ → 𝑀 . This choice is arbitrary,
and this will be important in what follows. Next, we pick a Lorentzian metric 𝒈 on 𝑀 . We would
like to make precise the following statement:

The manifold (𝑀, 𝒈) is close to the manifold
(
𝑀̄, 𝒈̄

)
.

Let 𝑝 ∈ 𝑀̄ and a local chart (𝑈, 𝜑̄) around 𝑝 such that 𝜑̄(𝑝) = 𝑥. Let (𝑉, 𝜑) be a local chart of 𝑀
containing 𝜙 (𝑈), such that 𝜑 (𝜙(𝑝)) = 𝑥. In order to compare the metric 𝒈 to the metric 𝒈̄, we are
going to pullback 𝒈 onto 𝑀̄ , using our selected diffeomorphism 𝜙. A pictorial representation of the
set-up can be found in figure 5.1. Given:

𝒈 = 𝑔𝛼𝛽d𝑥𝛼 ⊗ d𝑥𝛽 , (5.1)

we get the pullback metric on 𝑀̄ , 𝝓∗𝒈 defined, for any two vector fields 𝑿̄ and 𝒀̄ on 𝑀̄ , by:

(𝝓∗𝒈)
(
𝑿̄, 𝒀̄

)
≡ 𝒈

(
𝝓∗ 𝑿̄, 𝝓∗𝒀̄

)
, (5.2)

where 𝝓∗ 𝑿̄ and 𝝓∗𝒀̄ are the pushforward of 𝑿̄ and 𝒀̄ onto 𝑀; see appendix B. Then, the symmetric,
rank 2 tensor 𝝓∗𝒈 is well-defined on 𝑀̄ and defines a new metric tensor on the background, which
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Figure 5.1: Sets and maps necessary to set-up the gauge transformations.
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can thus be compared to the background metric 𝒈̄ pointwise. We define the difference between the
two metrics as:

𝒉 = 𝝓∗𝒈 − 𝒈̄ (5.3)

as a symmetric rank-two tensor on the background 𝑀̄ , such that:

ℎ𝜇𝜈 (𝑥) d𝑥𝜇 ⊗ d𝑥𝜈 =
[
(𝜙∗𝑔)𝜇𝜈 (𝑥) − 𝑔̄𝜇𝜈 (𝑥)

]
d𝑥𝜇 ⊗ d𝑥𝜈 . (5.4)

Wewill say that (𝑀, 𝒈) is close to (𝑀̄, 𝒈̄), or is a perturbed spacetimewith respect to the background
(𝑀̄, 𝒈̄) if and only if we can find one diffeomorphism 𝜙 between 𝑀̄ and𝑀 such that the components
of 𝒉 are small (compared to 1). In that case, 𝒉 is called a perturbation to the background metric 𝒈̄.
Note that there is no reason whatsoever for the components

��ℎ𝜇𝜈 �� to be small for an arbitrary diffeo-
morphism 𝜙. Nevertheless, if we assume that there is such a 𝜙 that leads to a small difference tensor
𝒉, then there is an infinite number of diffeomorphisms between 𝑀̄ and 𝑀 which keep the metrics
𝒈 and 𝒈̄ close. Indeed, consider an arbitrary vector field on 𝑀̄:

𝝃 = 𝜉𝜇
𝜕

𝜕𝑥𝜇
. (5.5)

Let 𝜖 ∈ R, small. Then we can define a one-parameter family of diffeomorphisms 𝜓𝜖 : 𝑀̄ → 𝑀̄ by
displacing points of 𝑀̄ along the flow of 𝝃 by an amount 𝜖 :

∀𝑥 = 𝜑̄(𝑝) ∈ 𝜑̄(𝑈), 𝑦̄𝜇 = [𝜑̄(𝑝 + 𝛿𝑝)]𝜇 = 𝑥𝜇 + 𝛿𝑥𝜇 = 𝑥𝜇 + 𝜖𝜉𝜇 . (5.6)

Then, by construction, 𝜙 ◦ 𝜓𝜖 will also be a diffeomorphism between 𝑀̄ and 𝑀 , for |𝜖 | � 1. Thus
we can pick up any one of those to define our metric perturbation 𝒉, so that we are left with a family
of perturbations, indexed by a choice of the vector field 𝝃:

𝒉(𝝐 ) ≡ (𝝓 ◦ 𝝍𝝐 )∗𝒈 − 𝒈̄ (5.7)

=
(
𝝍∗
𝝐

(
𝝓∗𝒈

))
− 𝒈̄ . (5.8)

How are members of this family of perturbations related to each other?
We can notice that:

𝒉(𝝐 ) = 𝜓∗
𝜖 (𝒉 + 𝒈̄) − 𝒈̄ (5.9)

= 𝝍∗
𝝐 𝒉 + 𝝍∗

𝝐 𝒈̄ − 𝒈̄ (linearity of pullback) (5.10)

= 𝒉 + 𝝍∗
𝝐 𝒈̄ − 𝒈̄

(
𝝍∗
𝝐 𝒉 = 𝒉 at leading order since𝜖, ‖𝒉‖ � 1

)
(5.11)

= 𝒉 + 𝜖 𝝍
∗
𝝐 𝒈̄ − 𝒈̄

𝜖
. (5.12)
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Note that we see the Lie derivative of 𝒈̄ along 𝝃 appear. Indeed, by definition:

L𝝃 𝒈̄ = lim
𝜖→0

𝝍∗
𝝐 𝒈̄ − 𝒈̄

𝜖
. (5.13)

Let us calculate this term. For the ease of notation, let us define:

𝑮𝝐 = 𝝍∗
𝝐 𝒈̄ . (5.14)

Then, by definition for two arbitrary vector fields 𝑋̄ and 𝑌 on 𝑀̄:

𝑮𝝐 | 𝑝
(
𝑿̄, 𝒀̄

)
≡ 𝒈̄ | 𝑝+𝛿𝑝

(
𝝍𝝐 ,∗ 𝑿̄,𝝍𝝐 ,∗𝒀̄

)
. (5.15)

Then, we also have: [
𝝍𝝐 ,∗ 𝑿̄

] 𝜇
=

𝜕
(
𝑥𝜇 + 𝜖𝜉𝜇

)
𝜕𝑥𝜈

𝑋̄𝜈 (5.16)

=

(
𝛿
𝜇
𝜈 + 𝜖

𝜕𝜉𝜇

𝜕𝑥𝜈

)
𝑋̄𝜈 (5.17)

= 𝑋̄𝜇 + 𝜖 𝑋̄𝜈 𝜕𝜉
𝜇

𝜕𝑥𝜈
. (5.18)

In particular: [
𝜓𝜖 ,∗

𝜕

𝜕𝑥𝜇

] 𝛼
= 𝛿𝛼𝜇 + 𝜖 𝜕𝜉

𝛼

𝜕𝑥𝜇
. (5.19)

Finally:

(𝐺 𝜖 )𝜇𝜈 ≡ 𝑮𝝐

(
𝜕

𝜕𝑥𝜇
,
𝜕

𝜕𝑥𝜈

)
(5.20)

= 𝒈̄(𝑝 + 𝛿𝑝)
[
𝜓𝜖 ,∗

𝜕

𝜕𝑥𝜇
, 𝜓𝜖 ,∗

𝜕

𝜕𝑥𝜈

]
(5.21)

= 𝑔̄𝛼𝛽
(
𝑥𝜎 + 𝜖𝜉𝜎

) [
𝛿𝛼𝜇 + 𝜖 𝜕𝜉

𝛼

𝜕𝑥𝜇

] [
𝛿
𝛽
𝜈 + 𝜖

𝜕𝜉𝛽

𝜕𝑥𝜈

]
(5.22)

=

(
𝑔̄𝛼𝛽

(
𝑥𝜎 + 𝜖𝜉𝜎

𝜕𝑔̄𝛼𝛽

𝜕𝑥𝜎

)) (
𝛿𝛼𝜇 𝛿

𝛽
𝜈 + 𝜖𝛿𝛽𝜈

𝜕𝜉𝛼

𝜕𝑥𝜇
+ 𝜖𝛿𝛼𝜇

𝜕𝜉𝛽

𝜕𝑥𝜈

)
(5.23)

= 𝑔̄𝜇𝜈 (𝑥) + 𝜖
[
𝜉𝜎
𝜕𝑔̄𝜇𝜈

𝜕𝑥𝜎
+ 𝑔̄𝛼𝜈

𝜕𝜉𝛼

𝜕𝑥𝜇
+ 𝑔̄𝜇𝛼

𝜕𝜉𝛼

𝜕𝑥𝜈

]
(5.24)

= 𝑔̄𝜇𝜈 (𝑥) + 2∇(𝜇𝜉𝜈) . (5.25)

Thus, we see that:
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Gauge transformation

ℎ (𝜖 )𝜇𝜈 = ℎ𝜇𝜈 + 2𝜖∇(𝜇𝜉𝜈) . (5.26)

Note that this change at order 𝜖 vanishes if 𝝃 is a Killing vector field of the background metric
𝒈̄; see appendix B. Such changes in the components of the metric perturbation under an infinites-
imal diffeomorphism of 𝑀̄ along a vector field that is not a Killing vector field of 𝒈̄ are called
gauge transformations for the perturbation. Every two metric perturbations related to each other
by a gauge transformation (5.26) for an appropriate choice of field 𝝃 represent the same physical
configuration, since physical properties cannot depend on the arbitrary choice of 𝝃. Therefore, one
usually performs perturbative calculations in a specific gauge, i.e. choosing a specific form of the
perturbation 𝒉, but in the end, one must make sure to relate everything that has been calculated to
observables from which gauge degrees of freedom have been removed.
Finally, note that we have chosen to present gauge transformations from an active viewpoint, i.e.
by shifting points of 𝑀̄ around while keeping the local charts fixed. One could arrive at the same
gauge transformations (5.26) by adopting a passive viewpoint and changing the local charts along
the flow of 𝝃 while keeping the points fixed, via: 𝑥𝜇 ↦→ 𝑥𝜇 − 𝜖𝜉𝜇.
In the rest of this chapter, we will be interested in perturbations around a Minkowski background,
so we will set 𝒈̄ = 𝜼.

Gauge transformation: the passive viewpoint

Instead of adopting the active viewpoint exposed above, one could use a passive gauge trans-
formation:

𝑥𝜇 ↦→ 𝑥𝜇 − 𝜖𝜉𝜇 . (5.27)

This amounts to keeping points fixed but changing the local chart along the flow of −®𝜉. Then:

𝒈 =
[
𝑔̄𝛼𝛽 (𝑥) + ℎ𝛼𝛽 (𝑥)

]
d𝑥𝛼 ⊗ d𝑥𝛽 (5.28)

=

[
𝑔̄𝛼𝛽 (𝑥) − 𝜀𝜉𝛾

𝜕𝑔̄𝛼𝛽

𝜕𝑥𝛾
(𝑥) + ℎ𝛼𝛽 (𝑥)

]
×

[
d𝑥𝛼 + 𝜀 𝜕𝜉

𝛼

𝜕𝑥𝛾
d𝑥𝛾

]
⊗

[
d𝑥𝛽 + 𝜀 𝜕𝜉

𝛽

𝜕𝑥 𝛿
d𝑥 𝛿

]
. (5.29)
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Expanding at first order in 𝜀 and relabelling dummy indices, we get:

𝒈 =
[
𝑔̄𝛼𝛽 (𝑥) + ℎ (𝜀)𝛼𝛽 (𝑥)

]
d𝑥𝛼 ⊗ d𝑥𝛽 , (5.30)

with:
ℎ (𝜖 )𝜇𝜈 = ℎ𝜇𝜈 + 2𝜖∇(𝜇𝜉𝜈) . (5.31)

5.2.2 Perturbative degrees of freedom

Scalar, vector, tensor decomposition

By construction, the perturbation tensor 𝒉 is a symmetric rank (0, 2) tensor so that it has 10 inde-
pendent components. In an arbitrary coordinate system, the line element reads:

d𝑠2 =
(
𝜂𝜇𝜈 + ℎ𝜇𝜈

)
d𝑥𝜇d𝑥𝜈 . (5.32)

If we choose the coordinate system (𝑡, 𝑥𝑖) so that 𝜂𝜇𝜈 = diag(−1, 1, 1, 1), i.e. to be orthonormal,
we can then write:

d𝑠2 = (−1 + ℎ00) d𝑡2 + 2ℎ0𝑖d𝑥𝑖d𝑡 +
(
𝛿𝑖 𝑗 + ℎ𝑖 𝑗

)
d𝑥𝑖d𝑥 𝑗 . (5.33)

For clarity and convenience, since the problem is invariant under under spacelike rotations in the
hypersurface spanned by

{
𝒆 (𝒊)

}
𝑖∈{1,2,3} , the perturbations can be decomposed into scalars, vectors

and tensors².

• First, we have a scalar under rotations Φ:

ℎ00 = −2Φ . (5.34)

• Then, we have:
ℎ0𝑖 = 𝜕𝑖𝑤 + 𝑤̂𝑖 , (5.35)

where 𝑤 is a scalar and 𝑤̂𝑖 is a divergence-free (also known as transverse) vector:

𝜕𝑖𝑤̂
𝑖 = 0 . (5.36)

This is the usual decomposition of a 3-vector into a gradient and a divergence-free vector
(Helmholtz theorem).

²Technically, these are the irreducible representations of the action of the rotation group 𝑆𝑂 (3) on the span of{
𝒆 (𝒊)

}
𝑖∈{1,2,3} .
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• Finally:

ℎ𝑖 𝑗 = −2Ψ𝛿𝑖 𝑗 + 2𝑠𝑖 𝑗 , (5.37)

where Tr[ℎ𝑖 𝑗] = −6ΨwithΨ a scalar and 𝑠𝑖 𝑗 is a traceless tensor which is further decomposed
into:

𝑠𝑖 𝑗 = 𝐷𝑖 𝑗𝐸 + 𝜕(𝑖 𝐸̂ 𝑗 ) + 𝐸̂𝑖 𝑗 , (5.38)

with 𝐸 a scalar, 𝐸̂ 𝑗 a divergence-less vector with 𝜕𝑖 𝐸̂ 𝑖 = 0 and 𝐸𝑖 𝑗 a divergence-less and
tracefree tensor: 𝜕𝑖 𝐸̂ 𝑖 𝑗 = 0 and 𝐸̂ 𝑖 𝑖 = 0. We have also defined the traceless differential
operator:

𝐷𝑖 𝑗𝐸 = 𝜕𝑖𝜕 𝑗𝐸 − 1
3
Δ𝐸𝛿𝑖 𝑗 . (5.39)

If we count the degrees of freedom, we thus have:

• 4 scalars which are 4 functional degrees of freedom: Φ, Ψ, 𝑤, 𝐸 ;

• 2 transverse vectors which are 4 functional degrees of freedom (3 components with a con-
straint each): 𝑤̂𝑖 and 𝐸̂ 𝑖;

• 1 symmetric transverse trace-free tensor which is 2 degrees of freedom (9 components with
3 (symmetry)+3 (transverse)+1 (trace-free)=7 constraints): 𝐸̂𝑖 𝑗 .

This leaves us with 10 functional degrees of freedom. The advantage of this decomposition is that,
at linear order in the perturbations, the Einstein field equations separate into scalar, (transverse)
vector and (transverse and trace-free) tensor parts that are satisfied separately so that these are gen-
uinely the true, independent degrees of freedom. Since we have 10 Einstein field equations, it may
look like we have a perfectly well-defined system to determine the metric degrees of freedom. Of
course, the Einstein field equations are actually separated into evolution and constraints because the
invariance of physics under the choice of coordinates, which, in perturbation theory reduces to the
gauge freedom we explored in the previous section, allows us to fix 4 functional degrees of freedom,
leaving us with only 6 truly independent functions among the 10 we identified previously. Let us
see how it works by working out how the scalar, vector and tensor degrees of freedom transform
under a gauge transformation³. Let us choose a vector field 𝝃 so that. We decompose it, like our

³Note that we restrict ourselves to gauge transformations because we want to stay ”close to Minkowski”. A general,
non infinitesimal transformation may lead to metric components that are large, thus breaking the perturbative approach
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perturbations, into two scalars 𝜉0 and 𝜉 and a transverse vector 𝜉:

𝝃 = 𝜉0𝒆 (0) +
(
𝜕𝑖𝜉 + 𝜉𝑖

)
𝒆 (𝒊) with 𝜕𝑖𝜉𝑖 = 0 . (5.40)

Then, using Eq. (5.26), we get: 

Φ′ =Φ + 𝜀𝜕0𝜉
0

𝑤′ =𝑤 + 𝜀𝜕0𝜉 − 𝜀𝜉0

𝑤̂′
𝑖 =𝑤̂𝑖 + 𝜀𝜕0𝜉𝑖

Ψ′ =Ψ − 𝜀

3
Δ𝜉

𝐸 ′ =𝐸 + 𝜀𝜉

𝐸̂ ′
𝑖 =𝐸̂𝑖 + 𝜀𝜉𝑖

𝐸̂ ′
𝑖 𝑗 =𝐸̂𝑖 𝑗 .

(5.41)

(5.42)

(5.43)

(5.44)

(5.45)

(5.46)

(5.47)

We see that the tensor degree of freedom is gauge invariant while everything else is affected in a
general gauge transformation.

Einstein field equations for perturbations

The Einstein field equations:
𝐺𝜇𝜈 + Λ𝑔𝜇𝜈 = 8𝜋𝐺𝑇𝜇𝜈 (5.48)

can be written for a generic energy momentum tensor:

𝑇𝜇𝜈 = (𝜌 + 𝑃) 𝑢𝜇𝑢𝜈 + 𝑃𝑔𝜇𝜈 + 2𝑞 (𝜇𝑢𝜈) + Π𝜇𝜈 , (5.49)

where 𝑢𝜇 is the 4-velocity of the matter fluid, 𝜌 and 𝑃 its energy density and pressure respectively;
𝑞𝜇 = 𝑞𝑖𝛿𝑖𝜇, a 3-vector is its heat flux and Π𝜇𝜈 = Π𝑖 𝑗𝛿𝑖𝜇𝛿

𝑗
𝜈 its anisotropic stress, which is a traceless

3-tensor. However, since we are interested in a spacetime that can be written as a perturbation of
the vacuum Minkowski spacetime, the sources of the field ought to be weak as well. This means
that: 

𝜌, 𝑃 =𝑂 (Φ)

𝑢𝜇 =𝛿𝜇0 + 𝑣𝜇 with 𝑣𝜇 = 𝑂 (Φ)

𝑞𝑖 =𝜕𝑖𝑞 + 𝑞𝑖 with 𝜕𝑖𝑞𝑖 = 0 and 𝑞, 𝑞𝑖 = 𝑂 (Φ)

Π𝑖 𝑗 =𝐷𝑖 𝑗Π + 𝜕(𝑖Π̂ 𝑗 ) + Π̂𝑖 𝑗 with Π, Π̂𝑖 , Π̂𝑖 𝑗 = 𝑂 (Φ) .

(5.50)

(5.51)

(5.52)

(5.53)
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One could write the Einstein field equations in an arbitrary gauge, keeping all 10 metric degrees of
freedom but it is quite cumbersome. It is better to first define a specific gauge and then write the
field equations in that particular gauge.

Some gauges

To illustrate how to pick up a gauge, let us give two examples here. We start with a description of
a spacetime ”close to Minkowski” in an arbitrary gauge defined through Eqs. (5.34)-(5.37). Then,
we construct the vector field 𝝃 necessary to get to the get we wish to define.
Our first example is the synchronous gauge. It is defined as the gauge in which observers comoving
with the coordinate system (𝑢𝑖 = 0 ⇔ 𝑣𝜇 = 0) have proper timer 𝑡. This implies that, in that gauge
Φsync = 0. This can clearly be achieved by choosing 𝜉0 such that:

𝜀𝜕0𝜉
0 = −Φ . (5.54)

Clearly, this is not enough to fix a gauge completely since we still have 3 degrees of freedom to fix.
We do this by requiring:

𝑤𝑖sync = 0 , (5.55)

i.e.:
𝑤sync = 0 and 𝑤̂𝑖sync = 0 . (5.56)

this can be done by imposing:

𝜀
[
𝜕0𝜉 − 𝜉0] = −𝑤 and 𝜀𝜕0𝜉𝑖 = −𝑤̂𝑖 . (5.57)

In the end, the line element reads:

d𝑠2 = −d𝑡2 +
(
(1 − 2Ψsync)𝛿𝑖 𝑗 + 2𝐷𝑖 𝑗𝐸sync + 2𝜕(𝑖 𝐸̂

sync
𝑗 ) + 2𝐸̂𝑖 𝑗

)
d𝑥𝑖d𝑥 𝑗 . (5.58)

Another useful gauge is known as the transverse gauge or longitudinal gauge. It is the gauge in
which the field equations look the closest to the Newtonian equations (see below). It is obtained by
imposing:

𝜕𝑖𝑠
𝑖 𝑗
trans = 0 and 𝜕𝑖𝑤𝑖sync = 0 , (5.59)

which completely fixes the gauge. In details, we have:

𝐸trans = 0 , 𝐸̂ 𝑗trans = 0 and 𝑤trans = 0 . (5.60)
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This is achieved by specifying the gauge transformation:

𝜀𝜉 = −𝐸 (5.61)

𝜀𝜉𝑖 = −𝐸̂ 𝑖 (5.62)

𝜀
[
𝜕0𝜉 − 𝜉0] = −𝑤 . (5.63)

The line element then becomes:

d𝑠2 = − (1 + 2Φtrans) d𝑡2 + 2𝑤̂trans
𝑖 d𝑥𝑖d𝑡 +

[
(1 − 2Ψtrans) 𝛿𝑖 𝑗 + 2𝐸̂𝑖 𝑗

]
d𝑥𝑖d𝑥 𝑗 . (5.64)

5.2.3 Quasi-Newtonian limit

We can now prove that the line element in a weak, slowly varying gravitational field is given, as we
claimed by:

d𝑠2 = − (1 + 2Φ𝑁 ) d𝑡2 + (1 − 2Φ𝑁 ) 𝛿𝑖 𝑗d𝑥𝑖d𝑥 𝑗 , (5.65)

where Φ𝑁 is the Newtonian gravitational potential.
We work in the transverse (longitudinal) gauge in which the metric is given by Eq. (5.64). We drop
the label trans and use:

d𝑠2 = − (1 + 2Φ) d𝑡2 + 2𝑤̂𝑖d𝑥𝑖d𝑡 +
[
(1 − 2Ψ) 𝛿𝑖 𝑗 + 2𝐸̂𝑖 𝑗

]
d𝑥𝑖d𝑥 𝑗 . (5.66)

Writing the Einstein field equations in absence of the cosmological constant we get, at first order
and separating the degrees of freedom:



ΔΨ =4𝜋𝐺𝜌

Δ𝑤̂𝑖 = − 16𝜋𝐺𝑞𝑖

𝜕𝑖 [𝜕0Ψ − 4𝜋𝐺𝑞] =0(
𝛿𝑖 𝑗Δ − 𝜕𝑖𝜕 𝑗

)
(Φ − Ψ) + 2𝜕2

0Ψ𝛿𝑖 𝑗 =8𝜋𝐺
[
𝑝𝛿𝑖 𝑗 + 𝐷𝑖𝐷 𝑗Π

]
𝜕0𝜕(𝑖𝑤̂ 𝑗 ) =8𝜋𝐺𝜕(𝑖Π̂ 𝑗 )

2𝐸̂𝑖 𝑗 = −8𝜋𝐺Π̂𝑖 𝑗 .

(5.67)

(5.68)

(5.69)

(5.70)

(5.71)

(5.72)

In the Newtonian limit, we assume that the fields are varying much more slowly in time than in
space: 𝑐 |𝜕0 𝑓 | � |𝜕𝑖 𝑓 |, and the source is non relativistic, so that: 𝑃 ' 0, 𝑞𝑖 ' 0, Π𝑖 𝑗 ' 0. The
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equations then become simply:



ΔΨ =4𝜋𝐺𝜌(
𝛿𝑖 𝑗Δ − 𝜕𝑖𝜕 𝑗

)
(Φ − Ψ) =0

Δ𝑤̂𝑖 =0

Δ𝐸̂𝑖 𝑗 =0

(5.73)

(5.74)

(5.75)

(5.76)

If we impose that the solutions are regular at infinity and do not diverge, the only solutions to
Eqs. (5.75)-(5.76) are:

𝑤̂𝑖 =0 (5.77)

𝐸̂𝑖 𝑗 =0 . (5.78)

Besides, Eq.(5.75) implies thatΦ−Ψ is a pure function of time which can always be reabsorbed by
a redefinition of the time coordinate, so that:

Φ = Ψ . (5.79)

Since Eq. (5.73) is simply the Poisson equation with solution the Newtonian potential, the result
follows.

5.3 Gravitational waves: the plane wave solution

We have seen, at the end of the previous section, that the weak field limit of General Relativity for a
slowlymoving, non-relativistic matter source was fully characterised by the Newtonian gravitational
potential via the perturbed metric (5.65). In the rest of this chapter, we want to study the somewhat
opposite end of the spectrum among weak field solutions of Einstein field equations: the freely
propagating waves. We could start from the analysis in terms of degrees of freedom presented in
the previous section, but we will follow a more classical approach when dealing with gravitational
waves and start anew.

5.3.1 The field equations for freely propagating gravitational radiation

We seek a solution of the Einstein field equations in absence of the cosmological constant far from
the source, i.e. in vacuum:

𝑅𝜇𝜈 = 0 , (5.80)
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when the geometry is assumed ”close” to Minkowski:

d𝑠2 = 𝑔𝜇𝜈d𝑥𝜇d𝑥𝜈 =
(
𝜂𝜇𝜈 + ℎ𝜇𝜈

)
d𝑥𝜇d𝑥𝜈 , (5.81)

for
��ℎ𝜇𝜈 �� � 1 in some appropriate gauge. To simplify calculations, we restrict our analysis to

orthonormal coordinates, such that 𝜂𝜇𝜈 = diag(−1, 1, 1, 1).
First, let us notice that, by expanding 𝑔𝜇𝜌𝑔𝜌𝜈 = 𝛿𝜌𝜈 , we have:

𝑔𝜇𝜈 = 𝜂𝜇𝜈 − ℎ𝜇𝜈 , (5.82)

where:
ℎ𝜇𝜈 = 𝜂𝜇𝜌𝜂𝜈𝜎ℎ𝜌𝜎 . (5.83)

Since 𝜂𝜇𝜈 = diag(−1, 1, 1, 1), we have that ∀(𝜈, 𝛼, 𝛽), 𝜕𝜈𝑔𝛼𝛽 = 𝜕𝜈ℎ𝛼𝛽 , so that, at first order in the
perturbation ℎ:

Γ𝜇𝜈𝜌 =
1
2
𝜂𝜇𝜎

[
𝜕𝜈ℎ𝜎𝜌 + 𝜕𝜌ℎ𝜈𝜎 − 𝜕𝜎ℎ𝜈𝜌

]
+𝑂 (ℎ2) . (5.84)

The Riemann tensor at first order is then given by:

𝑅𝜇𝜈𝜌𝜎 =𝜕𝜌Γ
𝜇
𝜈𝜎 − 𝜕𝜎Γ𝜇𝜈𝜌 + Γ𝜇 𝜀𝜌Γ

𝜀
𝜈𝜎 − Γ𝜇 𝜀𝜎Γ

𝜀
𝜈𝜌︸                          ︷︷                          ︸

=𝑂(ℎ2)

(5.85)

=𝜕𝜌Γ
𝜇
𝜈𝜎 − 𝜕𝜎Γ𝜇𝜈𝜌 +𝑂

(
ℎ2

)
(5.86)

=
1
2
𝜂𝜇𝜆𝜕𝜌 [𝜕𝜈ℎ𝜆𝜎 + 𝜕𝜎ℎ𝜈𝜆 − 𝜕𝜆ℎ𝜈𝜎]

− 1
2
𝜂𝜇𝜆𝜕𝜎

[
𝜕𝜈ℎ𝜆𝜌 + 𝜕𝜌ℎ𝜈𝜆 − 𝜕𝜆ℎ𝜈𝜌

]
+𝑂

(
ℎ2

)
(5.87)

=
1
2
𝜂𝜇𝜆

[
𝜕𝜌𝜕𝜈ℎ𝜆𝜎 − 𝜕𝜎𝜕𝜈ℎ𝜆𝜌 − 𝜕𝜌𝜕𝜆ℎ𝜈𝜎 + 𝜕𝜎𝜕𝜆ℎ𝜈𝜌

]
+𝑂

(
ℎ2

)
. (5.88)

Therefore, the Ricci tensor is:

𝑅𝜈𝜎 =𝑅𝜇𝜈𝜇𝜎 (5.89)

=
1
2

[
𝜕𝜇𝜕𝜈ℎ

𝜇
𝜎 − 𝜕𝜎𝜕𝜈ℎ𝜇𝜇 −2ℎ𝜈𝜎 + 𝜕𝜎𝜕𝜇ℎ𝜈𝜇

]
+𝑂

(
ℎ2

)
, (5.90)

where, as usual, 2· = 𝜂𝜇𝜈𝜕𝜇𝜕𝜈 · = 𝜕𝜆𝜕𝜆·. Dropping the 𝑂
(
ℎ2) from now on and working consis-

tently at linear order, the Einstein Field equations (5.80) become:

1
2

[
𝜕𝜆𝜕𝜇ℎ

𝜆
𝜈 + 𝜕𝜈𝜕𝜆ℎ𝜆𝜇 −2ℎ𝜇𝜈 − 𝜕𝜈𝜕𝜇ℎ𝜆𝜆] = 0 . (5.91)
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Rearranging the terms, we get:

2ℎ𝜇𝜈 − 𝜕𝜇
[
𝜕𝜆ℎ

𝜆
𝜈 −

1
2
𝜕𝜈ℎ

𝜆
𝜆

]
− 𝜕𝜈

[
𝜕𝜆ℎ

𝜆
𝜇 −

1
2
𝜕𝜇ℎ

𝜆
𝜆

]
= 0 . (5.92)

Therefore, we have:

Gravitational wave equations

2ℎ𝜇𝜈 − 2𝜕(𝜇𝑉𝜈) = 0 , (5.93)

with:
𝑉𝛼 = 𝜕𝜆ℎ

𝜆
𝛼 − 1

2
𝜕𝛼ℎ

𝜆
𝜆 . (5.94)

So far, we have worked in an arbitrary gauge, so that Eq. (5.93) contains non-physical degrees
of freedom. The one-form 𝑽 defined by Eq. (5.94) has exactly 4 degrees of freedom, so we can fix
a gauge by requiring:

𝑉𝛼 = 𝜕𝜆ℎ
𝜆
𝛼 − 1

2
𝜕𝛼ℎ

𝜆
𝜆 = 0 . (5.95)

If we denote by ℎ̃ the original perturbation, this can be achieved by choosing a vector 𝝃 such that:

𝜕𝜆ℎ
𝜆
𝛼 − 1

2
𝜕𝛼ℎ

𝜆
𝜆 = 0 (5.96)

𝜕𝜆
[
ℎ̃𝜆𝛼 + 𝜕𝜆𝜉𝛼 + 𝜕𝛼𝜉𝜆

]
− 1

2
𝜕𝛼

[
ℎ̃𝜆𝜆 + 2𝜕𝜆𝜉𝜆

]
=0 (5.97)

𝜕𝜆 ℎ̃
𝜆
𝛼 +2𝜉𝛼 + 𝜕𝜆𝜕𝛼𝜉𝜆 −

1
2
𝜕𝛼 ℎ̃

𝜆
𝜆 − 𝜕𝛼𝜕𝜆𝜉𝜆 =0 . (5.98)

Rearranging this we get:
2𝜉𝛼 =

1
2
𝜕𝛼 ℎ̃

𝜆
𝜆 − 𝜕𝜆 ℎ̃𝜆𝛼 = −𝑉̃𝛼 . (5.99)

In that new gauge, let us call it the Lorenz gauge, we have the equations:

Gravitational wave equations in Lorenz gauge

2ℎ𝜇𝜈 = 0 , (5.100)

with the constraints:
𝜕𝜇ℎ

𝜇
𝜈 −

1
2
𝜕𝜈ℎ = 0 , (5.101)
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where we defined the trace ℎ = ℎ𝜆𝜆. To simplify the following discussion, let us define:

ℎ̄𝜇𝜈 = ℎ𝜇𝜈 −
1
2
ℎ𝜂𝜇𝜈 , (5.102)

called the opposite trace perturbations because ℎ̄ = ℎ̄𝜇𝜇 = ℎ − 2ℎ = −ℎ. In terms of this new
variable, Eqs.(5.100)-(5.101) become:

2ℎ̄𝜇𝜈 =0 (5.103)

𝜕𝜇 ℎ̄
𝜇
𝜈 =0 . (5.104)

In principle, we have fixed our gauge by selecting a gauge transformation vector 𝝃 via Eq. (5.99).
However, let us apply another gauge transformation, generated by a second vector 𝜉. Under this
transformation, the variable ℎ̄𝜇𝜈 transforms as:

ℎ̄𝜇𝜈 → ℎ̄𝜇𝜈 + 2𝜕(𝜇𝜉𝜈) − 𝜕𝛼𝜉𝛼𝜂𝜇𝜈 , (5.105)

so that:
𝜕𝜇 ℎ̄𝜇𝜈 → 𝜕𝜇 ℎ̄𝜇𝜈 +2𝜉𝜈 + 𝜕𝜇𝜕𝜈𝜉𝜇 − 𝜕𝜈𝜕𝜇𝜉𝜇︸                 ︷︷                 ︸

=0

. (5.106)

But this means that any vector field such that 2𝜉𝜈 = 0 preserves both the field equations 2ℎ̄𝜇𝜈 = 0
and the constraints 𝜕𝜇 ℎ̄𝜇𝜈 = 0. Since it also preserves the original gauge change (5.99), that means
that instead of 𝝃 prescribed by solving this equation, we could have chosen 𝝃 + 𝝃 with 2𝜉𝛼 = 0.
Thus, we have 4 extra free degrees of freedom that we can get rid of by a gauge choice. We will get
back to that later.

5.3.2 Plane wave solution

Let us look for a solution to Eqs (5.103)-(5.104) in the form of a plane wave:

ℎ̄𝜇𝜈 = 𝐴𝜇𝜈ei𝑘𝜇𝑥𝜇 , (5.107)

where 𝐴𝜇𝜈 is a constant tensor and 𝒌 = 𝑘𝜇𝒆 (𝝁) is the wave vector. Plugging this in Eqs (5.103)-
(5.104) we get: {

𝑘𝜇𝑘
𝜇 =0 : the wave propagates at the speed of light;

𝑘𝜇𝐴𝜇𝜈 =0 : the wave is transverse.

(5.108)

(5.109)
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The fact that the wave is transverse does reduce the number of free parameters in the solution from
10 to 6 as expected. But as we know, there is an extra freedom in this solution, given by any harmonic
vector field: 2𝜉𝜇 = 0. Certainly,

𝜉𝜇 = 𝐵𝜇ei𝑘𝜇𝑥𝜇 , (5.110)

with 𝐵𝜇 constants is an harmonic vector field. Let us remember that under a gauge transformation
generated by 𝝃, ℎ̄𝜇 transforms as (see Eq. (5.105)):

ℎ̄′𝜇𝜈 = ℎ̄𝜇𝜈 + 2𝜕(𝜇𝜉𝜈) − 𝜕𝛼𝜉𝛼 . (5.111)

Substituting the solution and the harmonic gauge vector (5.110) in this, we get:

𝐴′
𝜇𝜈 = 𝐴𝜇𝜈 + 𝑖

[
𝑘𝜇𝐵𝜈 + 𝑘𝜈𝐵𝜇 − 𝑘𝛼𝐵𝛼𝜂𝜇𝜈

]
. (5.112)

Let us try to impose:

𝜂𝜇𝜈𝐴′
𝜇𝜈 =0 i.e. that ℎ̄′𝜇𝜈 is traceless (5.113)

𝐴′
0𝑖 =0 . (5.114)

This leads to a system of 4 equations for the 4 unknowns 𝐵𝜇:
𝑘𝛼𝐵

𝛼 = − 𝑖

2
𝐴
𝜇
𝜇

−𝑘 𝑗𝐵0 + 𝑘0𝐵 𝑗 =𝑖𝐴0𝑖 .

(5.115)

(5.116)

The determinant of the system is 𝑘2
0
(
𝑘2

0 + 𝑘2
1 + 𝑘2

2 + 𝑘2
3
)
= 2𝑘4

0 ≠ 0 so there is always a unique
solution for the vector components 𝐵𝜇 and thus for the vector 𝝃. This shows that we are allowed to
suppose (suppressing the prime for ease of notations):

{
ℎ̄0𝑖 =0 ⇒ 𝐴0𝑖 = 0

ℎ̄𝜇𝜇 =0 ⇒ 𝐴𝜇𝜇 = 0 .

(5.117)

(5.118)

This is known as the radiation gauge or the TT gauge for transverse traceless. Indeed ℎ̄𝜇𝜇 = 0 implies
ℎ
𝜇
𝜇 = 0 and thus ℎ̄𝜇𝜈 = ℎ𝜇𝜈 , so that the Lorenz gauge condition can be read:

𝜕𝜇ℎ
𝜇
𝜈 = 0 . (5.119)
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In particular, for 𝜈 = 0, we get that:

𝜕𝜇ℎ
𝜇

0 = 𝜕𝑖 ℎ𝑖0︸︷︷︸
=0

+𝜕0ℎ
0

0 = 0 , (5.120)

But this reads:

𝑘0𝐴
0

0 = 0 , (5.121)

and since 𝑘0 ≠ 0, we have 𝐴00 = 0, i.e. ℎ00 = 0. To sum up, the plane wave solution in the TT
gauge reads:

Gravitational wave solution in the TT gauge

ℎ𝜇𝜈 = 𝐴𝜇𝜈e𝑖𝑘𝛼𝑥
𝛼
, (5.122)

with:

𝑘𝜇𝑘
𝜇 =0 , 𝑘𝜇𝐴𝜇𝜈 = 0 , (5.123)

𝐴0𝜇 =0 , 𝐴𝜇𝜇 = 0 . (5.124)

This is a total of 9 constraints on 𝐴𝜇𝜈 , but they are not all independent since making 𝜈 = 0 in
𝑘𝜇𝐴𝜇𝜈 = 0 results in an equation that is true by virtue of 𝐴0𝜇 = 0 and is thus not independent.
Therefore, we have 8 constraints on 10 degrees of freedom, so we are left with 2 independent degrees
of freedom. This is a very important result:

Gravitational waves degrees of freedom

A freely propagating plane gravitational wave is fully determined by two independent degrees
of freedom, called its polarisation states.

To try and be more specific, let us pick up a direction of propagation, say along 𝒆 (3) , then:
𝑘1 = 𝑘2 = 0 and 𝑘0 = ±𝑘3 = −𝜔. Let us restrict our attention to 𝑘3 = −𝑘0 = 𝜔, so that
𝑘𝜇𝑥

𝜇 = 𝜔(𝑡 − 𝑧) where we have also relabelled 𝑥1 = 𝑥, 𝑥2 = 𝑦 and 𝑥3 = 𝑧. The Lorenz gauge
condition reads:

0 = 𝜔 (−𝐴0𝜈 + 𝐴3𝜈) = 𝜔𝐴3𝜈 , (5.125)
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so we have that 𝐴30 = 𝐴31 = 𝐴32 = 𝐴33 = 0 and by symmetry 𝐴23 = 𝐴13 = 0. The only non-zero
components are thus 𝐴11, 𝐴22 and 𝐴12 = 𝐴21. Besides, since 𝐴𝜇𝜇 = 0, we must have 𝐴22 = −𝐴11.
Denoting 𝐴11 = ℎ+ and 𝐴12 = ℎ×, we arrive at the plane wave solution propagating along the 𝑧-axis:

ℎ𝜇𝜈 =

©­­­­­­«
0 0 0 0
0 ℎ+ ℎ× 0
0 ℎ× −ℎ+ 0
0 0 0 0

ª®®®®®®¬
ei𝜔 (𝑡−𝑧/𝑐) + c.c. . (5.126)

ℎ+ and ℎ× are the two canonical polarisation states of the freely propagating plane gravitational
wave.

5.4 Physical effects of gravitational waves

Let us turn to the problem of the effects gravitational waves such as the one described by Eq. (5.126)
have on physical observables.

5.4.1 Effects of a gravitational wave on matter

Consider some massive test particle with worldline 𝑥𝜇 (𝜏) in the TT gauge. We denote its 4-velocity
by:

𝑢𝜇 =
d𝑥𝜇

d𝜏
= 𝑢̄𝜇 + 𝛿𝑢𝜇 , (5.127)

where 𝑢̄𝜇 is its 4-velocity in the Minkowski background, in absence of gravitational wave, and 𝛿𝑢𝜇

the perturbation induced by the wave. Let us assume that the particle is at rest in Minkowski: 𝑢̄0 = 1
and 𝑢̄𝑖 = 0. Then expanding 𝒈 (𝒖, 𝒖) = −1 at first order, we get 𝛿𝑢0 = 0. Moreover, the geodesic
equation gives:

d𝑢𝑖

d𝑡
+ Γ𝑖00 = 0 , (5.128)

and since Γ𝑖00 = 0, we get: 𝑢𝑖 = 0. In other words, a particle initially at rest (before the wave
passes through) stays at rest. Is there a problem? Does it mean that gravitational waves do not have
any observational effects? Certainly not. It simply means that the coordinates of the TT gauge are
comoving by construction: free-falling particles remain at constant values of the TT coordinates.
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But coordinate systems do not encode any physics. What matters, when we talk about gravitational
effects is curvature and tidal forces, i.e. the geodesic deviation equation. However, the geodesic
deviation equation written in the TT gauge is not of much help.
Indeed, let us consider an infinitesimal ring of free-falling, massive test particles centred on a co-
moving observer in the TT gauge. What we have is a bundle of matter around a timelike geodesics
with 4-velocity 𝒖 = 𝒆 (0) and proper time 𝜏 = 𝑡. The deviation vector 𝝃, connecting the reference
geodesics to the one of the nearby test particles and that describes how these geodesics move with
respect to each other, tells us how the small ring of matter is deformed in the field of the wave; it
obeys the geodesic deviation equation:

D2𝜉𝜇

D𝜏2 = 𝑅𝜇𝜈𝜌𝜎𝑢
𝜇𝑢𝜌𝜉𝜎 . (5.129)

Note that the LHS of this equation must be understood as a double covariant derivative of the devia-
tion vector components along the central geodesics, so that, using that 𝑢𝜈 = 𝛿𝜈0 and Γ𝜇0𝜌 = 1

2𝜕𝑡ℎ
𝜇
𝜌,

and developing at first order in 𝒉:

d2𝜉𝜇

d𝜏2 =𝑢𝜈∇𝜈
[
𝑢𝜌∇𝜌𝜉𝜇

]
(5.130)

=𝑢𝜈∇𝜈
[
d𝜉𝜇

d𝑡
+ 1

2
𝜉𝜌𝜕𝑡ℎ

𝜇
𝜌

]
(5.131)

=
d2𝜉𝜇

d𝑡2
+ 1

2
𝜉𝜌𝜕2

𝑡 ℎ
𝜇
𝜌 + 𝜕𝑡ℎ𝜇𝜌

d𝜉𝜌

d𝑡
. (5.132)

Thus, we have:
d2𝜉𝜇

d𝑡2
+ 1

2
𝜉𝜌𝜕2

𝑡 ℎ
𝜇
𝜌 + 𝜕𝑡ℎ𝜇𝜌

d𝜉𝜌

d𝑡
= 𝑅𝜇00𝜎𝜉

𝜎 , (5.133)

with, from Eq. (5.88):
𝑅𝜇00𝜎 =

1
2
𝜂𝜇𝜆𝜕2

0 ℎ𝜆𝜎 . (5.134)

For the spatial displacements, we thus get:

d2𝜉𝑖

d𝑡2
= −𝜕𝑡ℎ𝑖 𝑗

d𝜉 𝑗

d𝑡
. (5.135)

Therefore, if the particles are initially at rest in the TT gauge, which they must be for them to be on
geodesics, as we have seen, then, the only solution is for the spatial deviation 𝜉𝑖 to remain constant:
in the TT gauge, the physical effects of gravitational waves are locally fully re-absorbed in a change
of coordinates. On the other hand, in General Relativity, when we want to talk about distances
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between objects, we need to do it with respect to a specific frame, for example, one in which some
rulers are kept fixed. Such rulers cannot be rigidly free-falling in the laboratory if the gravitational
field varies on the scales of the experiment. Thus, let us assume that the local free-falling observer
O at the centre of the ring of particles uses their local inertial frame constructed as Fermi normal
coordinates as in subsection 3.7.4,

{
𝒆 (𝜇)

}
such that 𝒆 (0) = 𝒖 and 𝒆 (𝒊) are three orthonormal vectors

spanning the local rest frame of O. We denote by
{
𝑡, 𝑥𝑖

}
local coordinates in that frame, such that

𝑥𝑖 = 0 at O(𝜏). Then, at O, the metric takes its Minkowski form:

d𝑠2| O = −d𝑡2 + 𝜂𝑖 𝑗d𝑥𝑖d𝑥 𝑗 , (5.136)

with 𝜕𝜇𝑔̂𝜌𝜎
(
𝑡, ®0

)
= 0: this is the equivalence principle. The linear coordinate transformation is

actually easy to find and we get:

𝑥0 =𝑥0 = 𝑡 (5.137)

𝑥𝑖 =𝑥𝑖 + 1
2
ℎ𝑖 𝑗

(
𝑡, ®0

)
𝑥 𝑗 , (5.138)

at leading order in 𝑥𝑖 . The metric in the neighbourhood of O then differs from theMinkowski metric
by terms of order 𝑥𝜇𝑥𝜈 at most. These are examples of local Fermi coordinates; see subsection 3.7.4.
Free-falling masses following timelike geodesics will not remain at rest in these coordinates.
Let us imagine that the wave propagates in the 𝑥3 = 𝑧 direction, like in Eq. (5.126) and that the ring
of matter is in the plane 𝑧 = 0. Then, the deformation of this ring in the local Fermi coordinates is
determined by the timelike geodesic deviation equation written in these coordinates:

D2𝜉𝜇

D𝜏2 = 𝑅̂𝜇00𝜈𝜉
𝜈 , (5.139)

where we used that on the central worldline of O, 𝑢̂𝜇 = 𝛿𝜇0 . However, note that, at first order in 𝒉,
the Riemann tensor is invariant by a change of coordinates (it is gauge-invariant), so that:

𝑅̂𝜇𝜈𝜌𝜎 = 𝑅𝜇𝜈𝜌𝜎 , (5.140)

where the RHS are the components of the Riemann tensor in the TT gauge. Moreover, in the Fermi
coordinates, the connection coefficients are zero along the central worldline, by construction. There-
fore, we can write:

D2𝜉𝜇

D𝜏2 =
d2𝜉𝜇

d𝜏2 . (5.141)
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Finally, we obtain the evolution of the spatial displacements between the masses and the centre in
local Fermi coordinates:

d2𝜉𝑖

d𝜏2 = 𝑅𝑖00 𝑗𝜉
𝑗 , (5.142)

or, equivalently:
d2𝜉𝑖

d𝑡2
=

1
2
𝜕2
𝑡 ℎ
𝑖
𝑗 (𝑡, 0)𝜉 𝑗 . (5.143)

Let us solve Eq. (5.143) for each polarisation state separately⁴. We will take or wave to be:

ℎ𝜇𝜈 =

©­­­­­­«
0 0 0 0
0 ℎ+ ℎ× 0
0 ℎ× −ℎ+ 0
0 0 0 0

ª®®®®®®¬
sin (𝜔(𝑡 − 𝑧)) , (5.144)

so that:
𝜕2
𝑡 ℎ
𝑖
𝑗 (𝑡, 0) = −𝜔2𝐻 sin (𝜔𝑡) , (5.145)

for 𝐻 = ±ℎ+ or 𝐻 = ℎ× appropriately. First, let us assume that ℎ× = 0. Then, we get:
d2𝜉1

d𝑡2
= − 𝜔2

2
ℎ+ sin (𝜔𝑡) 𝜉1

d2𝜉2

d𝑡2
=
𝜔2

2
ℎ+ sin (𝜔𝑡) 𝜉2 .

(5.146)

(5.147)

This can be solved at leading order in the perturbation ℎ+. Let us write 𝜉𝑖 (𝑡) = 𝜉𝑖 (0) + 𝛿𝜉𝑖 since
clearly the solution for ℎ+ = 0 is constant. Then, plugging this into the equations and expanding at
first order, we get: 

d2𝛿𝜉1

d𝑡2
= − 𝜔2

2
ℎ+ sin (𝜔𝑡) 𝜉1(0)

d2𝛿𝜉2

d𝑡2
=
𝜔2

2
ℎ+ sin (𝜔𝑡) 𝜉2(0) .

(5.148)

(5.149)

These are readily solved to give:

⁴Note that the solution to the geodesic deviation equation in the local Fermi frame could also have been obtained by
a change of coordinates from the TT gauge, in which the components 𝜉𝑖 are constants. However, the integration directly
in the Fermi frame has some pedagogical values.
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Deformation of a small ring of matter in the + polarisation state
𝜉1(𝑡) =

(
1 + 1

2
ℎ+ sin (𝜔𝑡)

)
𝜉1(0)

𝜉2(𝑡) =
(
1 − 1

2
ℎ+ sin (𝜔𝑡)

)
𝜉2(0) .

(5.150)

(5.151)

A similar approach gives the solution for the other polarisation state:

Deformation of a small ring of matter in the × polarisation state
𝜉1(𝑡) =𝜉1(0) + 1

2
ℎ× sin (𝜔𝑡) 𝜉2(0)

𝜉2(𝑡) =𝜉2(0) + 1
2
ℎ× sin (𝜔𝑡) 𝜉1(0) .

(5.152)

(5.153)

These deformations are illustrated on Fig. 5.2 if the particles are initially distributed on a circle. It

Figure 5.2: A small ring (red line) of test particles (black dots) in the 𝑧 = 0 plane is deformed
by the passing of a gravitational wave propagating along the 𝑧-axis with period 𝑇 = 2𝜋/𝜔. Each
polarisation mode is depicted separately.

is easy to prove that the ring deforms into ellipses. Indeed, let us assume that 𝜉1(0) = 𝑅 cos 𝜃 and
𝜉2(0) = 𝑅 sin 𝜃. Then, for the + polarisation, we clearly have that:(

𝜉1(𝑡)
)2

𝑅2
[
1 + 1

2ℎ+ sin𝜔𝑡
]2 +

(
𝜉2(𝑡)

)2

𝑅2
[
1 − 1

2ℎ+ sin𝜔𝑡
]2 = 0 , (5.154)
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which is the equation of an ellipse with semi-minor and semi-major axes along the coordinate axes
and alternating over time. The semi-major axis is along the 𝑥1-axis when sin𝜔𝑡 = 1 is maximum, i.e.
at 𝑡 = (2𝑘+1)𝜋/2𝜔 = (2𝑘+1)𝑇/4 for 𝑘 ∈ Z, at which times, the semi-minor axis is along the 𝑥2-axis.
When sin𝜔𝑡 = −1, the situation is reversed and this happens at 𝑡 = 3(2𝑘 + 1)𝜋/2𝜔 = 3(2𝑘 + 1)𝑇/4
for 𝑘 ∈ Z. In between, at 𝑡 = 𝑘𝑇/2 for 𝑘 ∈ Z, sin𝜔𝑡 = 0 and the ring is a circle. The same thing
happens for the × polarisation but the axes are rotated by 𝜋/4.

5.4.2 Effects on the path of light

We see that gravitational waves do have an impact on the local distribution of matter but as usual
in General Relativity, if we want to measure this effect, we need to design an operational way to
measure distances (which is an ambiguous concept). Let us assume that we have two masses 𝐴
and 𝐵 that are free-falling in the local gravitational field determined by the plane gravitational wave
of Eq. (5.126). An observer O attached to 𝐴 sends a light signal towards 𝐵 at a proper time 𝑡1
along its worldline (event 𝐴 (𝑡1)). This light signal is received at 𝐵 (𝑡′) at a proper time 𝑡′ along the
worldline of 𝐵 and reflected towards 𝐴, where it is again received at a proper time 𝑡2 as measured by
O (event 𝐴 (𝑡2)); see Fig. 5.3. We can then define the distance travelled by the light signal between
the masses 𝐴 and 𝐵 using Einstein’s simultaneity and converting the time of flight into a distance
using the speed of light :

𝐿 =
𝑐

2
(𝑡2 − 𝑡1) . (5.155)

This says that 𝐵 (𝑡′) is simultaneous (In Einstein’s sense) to the event 𝐴(𝑡): 𝑡 = 𝑡′ in TT gauge.
Note that if 𝐴 and 𝐵 are infinitesimally close, then 𝐿2 = 𝒈 (𝑨(𝒕)𝑩 (𝒕′), 𝑨(𝒕)𝑩 (𝒕′)), i.e. that 𝐿 is
indeed the distance between 𝐴(𝑡) and 𝐵 (𝑡′) as measured locally using the metric 𝒈. Let us centre
our TT coordinates on O so that 𝑥𝑖𝐴 = 0 = cst and 𝑥𝑖

𝐵(𝑡 ′ ) = cst ≠ 0. Thus, using 𝑥0
𝐴(𝑡 ) = 𝑥

0
𝐵(𝑡 ′ ) = 0 ,

and denoting 𝐵′ = 𝐵 (𝑡′) and 𝐴 = 𝐴(𝑡) for simplicity, we can write:

𝐿2 =𝑔𝜇𝜈
(
𝑥
𝜇
𝐵′ − 𝑥𝜇𝐴

) (
𝑥𝜈𝐵′ − 𝑥𝜈𝐴

)
(5.156)

=
(
𝛿𝑖 𝑗 + ℎ𝑖 𝑗

)
𝑥𝑖𝐵′𝑥

𝑗
𝐵′ . (5.157)

If we let 𝑥𝑖𝐵′ = 𝐿0𝑛
𝑖 , where 𝒏 is the spatial vector connecting 𝐴 and 𝐵′ and 𝐿0 = 𝛿𝑖 𝑗𝑥𝑖𝐵′𝑥

𝑗
𝐵′ is

the distance travelled by the light signal in absence of gravitational wave, then, we get:

𝛿𝐿

𝐿0
=

1
2
ℎ𝑖 𝑗𝑛

𝑖𝑛 𝑗 . (5.158)
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Figure 5.3: Using the Einsteinian definition of simultaneity to define ameasurable notion of distance
and to study the effects of gravitational waves, calculated in the TT gauge. 𝐴 sends light towards 𝐵
at 𝑡1. This light is instantaneously reflected back towards 𝐴 who receives it at 𝑡2. It defines the time
𝑡 = (𝑡1 + 𝑡2) /2, which in the TT gauge is the time at which 𝐵 reflected the light back. Then, 𝐿 = 𝑐𝑡.

This change in travel length is what the interferometers such as LIGOmeasure. It is called the strain.
You can see one of the two LIGO detectors on Fig. 5.4: it is a giant interferometer with arms 4 km
long. Note that what is really measured by the interferometer is a difference in (proper) time of
arrival at the centre of the interferometer, not a length. This is in line with the fact that observers
can only measure things along their worldline.

Figure 5.4: Photography of the Hanford detector of LIGO. Credit: LIGO Laboratory
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5.5 Sources of gravitational waves: the quadrupole formula

5.5.1 General expression

Now, we are able to describe the propagation of a plane gravitational wave in vacuum, and we
understand its physical effect on matter and light travel. How are these waves generated? What kind
of sources canwe studywith them and how dowe link properties of the sourceswith properties of the
waves generated? We will consider only weakly-gravitating sources, so that our linear perturbation
theory remains valid, even at the sources. In the previous section, we determined Eqs. (5.93)-(5.94)
that govern the general propagation equations for gravitational waves in vacuum, before fixing any
gauge, and we introduced the opposite trace perturbations:

ℎ̄𝜇𝜈 = ℎ𝜇𝜈 −
1
2
ℎ𝜂𝜇𝜈 , (5.159)

with ℎ = ℎ𝛼𝛼. It turns out that, like in the vacuum case, this opposite trace perturbation is more
suited to the study of gravitational waves in presence of some sources, which is what we will focus
on in this section. However, we have to be careful with gauge fixing. Indeed, we have that the Ricci
tensor, Eq. (5.90) reads:

𝑅𝜇𝜈 =
1
2

[
−2ℎ𝜇𝜈 + 2𝜕(𝜇𝑉𝜈)

]
, (5.160)

and thus:

𝑅 = 𝑅𝜇𝜈𝜂
𝜇𝜈 =

1
2

[
−2ℎ + 2𝜕𝜇𝑉 𝜇

]
. (5.161)

Therefore:

𝐺𝜇𝜈 =𝑅𝜇𝜈 −
1
2
𝑅𝜂𝜇𝜈 (5.162)

=
1
2

[
−2ℎ𝜇𝜈 + 2𝜕(𝜇𝑉𝜈)

]
− 1

4
[−2ℎ + 2𝜕𝛼𝑉 𝛼] (5.163)

= − 1
2
2

[
ℎ𝜇𝜈 −

1
2
ℎ𝜂𝜇𝜈

]
+ 𝜕(𝜇𝑉𝜈) −

1
2
𝜕𝛼𝑉

𝛼𝜂𝜇𝜈 (5.164)

= − 1
2
2ℎ̄𝜇𝜈 + 𝜕(𝜇𝑉𝜈) − 1

2
𝜕𝛼𝑉

𝛼𝜂𝜇𝜈 . (5.165)

Let us also recall that:

𝑉𝜇 = 𝜕𝛼 ℎ̄
𝛼
𝜇 . (5.166)

Therefore, the Einstein field equations read:
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2ℎ̄𝜇𝜈 − 2𝜕(𝜇𝑉𝜈) + 𝜕𝛼𝑉 𝛼𝜂𝜇𝜈 = −16𝜋𝐺𝑇𝜇𝜈 , (5.167)

with:
𝑉𝜇 = 𝜕𝛼 ℎ̄

𝛼
𝜇 . (5.168)

Under a gauge transformation generated by a vector field 𝝃, we have:

ℎ̄𝜇𝜈 ↦→ ℎ̄𝜇𝜈 + 2𝜕(𝜇𝜉𝜈) − 𝜕𝛼𝜉𝛼𝜂𝜇𝜈 (5.169)

𝑉𝜇 ↦→ 𝑉𝜇 +2𝜉𝜇 . (5.170)

Hence, given a perturbative spacetime, by choosing 𝝃 such that:

2𝜉𝜇 = −𝑉 𝜇 = −𝜕𝛼 ℎ̄𝛼𝜇 , (5.171)

we can set the Lorenz gauge:
𝜕𝜇 ℎ̄

𝜇
𝜈 = 0 . (5.172)

Then the Einstein field equations in the Lorenz gauge are:

{ 2ℎ̄𝜇𝜈 = − 16𝜋𝐺𝑇𝜇𝜈

𝜕𝜇 ℎ̄
𝜇
𝜈 =0 .

(5.173)

(5.174)

So far, this is identical to what we did in vacuum. However, we cannot make the extra jump to
the TT gauge. Indeed, taking the trace of Eq. (5.173), we get:

2ℎ = 16𝜋𝐺𝑇 𝜇𝜇 . (5.175)

Generically, the source is not of zero trace and scalar modes of perturbations are sourced, so we
cannot set ℎ = 0 without neglecting some physics⁵: we cannot focus solely on the freely propagating
degrees of freedom encoded in 𝐸̂𝑖 𝑗 ; see subsection 5.2.2. To solve Eq. (5.173), we use the Green’s
function of the d’Alembert’s operator, 2:

𝐺 (𝑥𝜇 − 𝑦𝜇) = − 1
4𝜋 | ®𝑥 − ®𝑦 | 𝛿

(𝐷)
[
| ®𝑥 − ®𝑦 | −

(
𝑥0 − 𝑦0

)]
𝐻 (𝑥0 − 𝑦0) , (5.176)

where 𝛿 (𝐷) (𝑥) is the Dirac delta ”function”, 𝐻 (𝑥) the Heaviside function, and where we used the
notation ®𝑥 =

(
𝑥1, 𝑥2, 𝑥3) .

⁵This is also true for vectors: since, generally, 𝑇0𝑖 ≠ 0, vector modes of perturbations are also sourced.
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Green function of d’Alembert operator

The Green function of the d’Alembert operator is defined as the solution of:

2𝑥𝐺 (𝑥𝜇 − 𝑦𝜇) = 𝛿 (𝐷) (𝑥𝜇 − 𝑦𝜇) , (5.177)

where the subscript in 2𝑥 indicates the variable on which the operator acts. Fo an equation
of the form:

2𝑥 𝑓 (𝑥𝜇) = 𝑆 (𝑥𝜇) , (5.178)

the function:
𝑓 (𝑥𝜇) =

ˆ
𝐺 (𝑥𝜇 − 𝑦𝜇) 𝑆 (𝑦𝜇) d4𝑦 , (5.179)

is a solution. Indeed:

2𝑥𝐺 (𝑥𝜇 − 𝑦𝜇) =𝛿 (𝐷) (𝑥𝜇 − 𝑦𝜇) (5.180)

⇒
ˆ

d4𝑦𝑆 (𝑦𝜇)2𝑥𝐺 (𝑥𝜇 − 𝑦𝜇) =
ˆ

d4𝑦𝑆 (𝑦𝜇) 𝛿 (𝐷) (𝑥𝜇 − 𝑦𝜇) (5.181)

⇒ 2𝑥
ˆ

d4𝑦𝑆 (𝑦𝜇)𝐺 (𝑥𝜇 − 𝑦𝜇) =𝑆 (𝑥𝜇) (5.182)

⇒ 2𝑥 𝑓 (𝑥𝜇) =𝑆 (𝑥𝜇) . (5.183)

The form of theGreen function (5.176) is derived in details in appendix C. Using this Green function,
we find the wave generated by a source 𝑇𝜇𝜈:

ℎ̄𝜇𝜈 (𝑡, ®𝑥) = 4𝐺
ˆ

1
| ®𝑥 − ®𝑦 |𝑇𝜇𝜈 [𝑡 − |®𝑥 − ®𝑦 | , ®𝑦] d3𝑦 . (5.184)

Note the presence in the source of the retarded time: the field at the event (𝑡, ®𝑥) is fully determined
by the source, integrated in space, at the retarded time 𝑡𝑟 = 𝑡− |®𝑥 − ®𝑦 |. This is reminiscent of the fact
that gravitational waves propagate at the speed of light. One can easily check that the Lorenz gauge
condition (5.174) is satisfied by this solution because of the conservation of energy-momentum at
first order: 𝜕𝜇𝑇 𝜇𝜈 = 0.
Let us now assume that we are interested in the expression for the gravitational wave far from the
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source, and that the source is itself isolated and small. Precisely, we assume that:

®𝑦 =®𝑦0 + 𝛿®𝑦 with |𝛿®𝑦 | � |®𝑦0 | (5.185)

𝑟 = | ®𝑥 − ®𝑦0 | � ®𝛿®𝑦 . (5.186)

In that case, denoting ®𝑟 = ®𝑥 − ®𝑦0:

| ®𝑥 − ®𝑦 |2 = (®𝑟 − 𝛿®𝑦) (®𝑟 − 𝛿®𝑦) (5.187)

=𝑟2 − 2®𝑟 · 𝛿®𝑦 +𝑂
(
|𝛿®𝑦 |2

)
. (5.188)

Thus:
1

| ®𝑥 − ®𝑦 | =
1
𝑟
+ ®𝑟 · 𝛿®𝑦

𝑟3 +𝑂
(
|𝛿®𝑦 |2

)
. (5.189)

We can also neglect the term in 1/𝑟3 and write:

1
| ®𝑥 − ®𝑦 | ∼

1
𝑟
. (5.190)

Then:
ℎ̄𝜇𝜈 =

4𝐺
𝑟

ˆ
𝑇𝜇𝜈 [𝑡 − 𝑟, ®𝑦] d3𝑦 . (5.191)

Now, let us consider the energy-momentum conservation at first order:

𝜕𝜇𝑇
𝜇𝜈 = 0 . (5.192)

For 𝜈 = 0, we get:

𝜕𝑇00

𝜕𝑡
+ 𝜕𝑇

𝑖0

𝜕𝑥𝑖
= 0 (5.193)

⇒ 𝜕2𝑇00

𝜕𝑡2
= − 𝜕

𝜕𝑡

𝜕𝑇 𝑖0

𝜕𝑥𝑖
= − 𝜕

𝜕𝑥𝑖
𝜕𝑇0𝑖

𝜕𝑡
. (5.194)

On the other hand, for 𝜈 = 𝑖:

𝜕𝑇0𝑖

𝜕𝑡
+ 𝜕𝑇

𝑘𝑖

𝜕𝑥𝑘
= 0 (5.195)

⇒ 𝜕𝑇0𝑖

𝜕𝑡
= −𝜕𝑇

𝑘𝑖

𝜕𝑥𝑘
. (5.196)

Hence:
𝜕2𝑇00

𝜕𝑡2
=
𝜕2𝑇 𝑙𝑘

𝜕𝑥𝑙𝜕𝑥𝑘
. (5.197)



Gravitational waves 252

We can then multiply this relation by 𝑥𝑖𝑥 𝑗 and integrate over space (going back to ®𝑦 to label points
of the source):

𝜕2

𝜕𝑡2

ˆ
𝑦𝑖𝑦 𝑗𝑇00 (𝑡𝑟 , ®𝑦) d3𝑦 =

ˆ
𝑦𝑖𝑦 𝑗

𝜕2

𝜕𝑦𝑙𝜕𝑦𝑘
𝑇 𝑙𝑘 (𝑡𝑟 , ®𝑦) d3𝑦 (5.198)

= −
ˆ

𝜕

𝜕𝑦𝑙
(
𝑦𝑖𝑦 𝑗

) 𝜕𝑇 𝑙𝑘
𝜕𝑦𝑘

d3𝑦 (5.199)

= −
ˆ (

𝑦𝑖𝛿 𝑗 𝑙 + 𝑦 𝑗𝛿𝑖 𝑙
) 𝜕𝑇 𝑙𝑘
𝜕𝑦𝑘

d3𝑦 (5.200)

=
ˆ (

𝛿𝑖 𝑘𝛿
𝑗
𝑙 + 𝛿 𝑗 𝑘𝛿𝑖 𝑙

)
𝑇 𝑙𝑘d3𝑦 (5.201)

=2
ˆ
𝑇 𝑖 𝑗 (𝑡𝑟 , ®𝑦) d3𝑦 . (5.202)

Note that when performing integrations by parts, we assumed the source isolated, so that the bound-
ary terms vanish. We conclude that:

2
ˆ
𝑇𝑖 𝑗 [𝑡 − 𝑟, ®𝑦] d3𝑦 =

d2

d𝑡2

ˆ
𝑇00 [𝑡 − 𝑟, ®𝑦] 𝑦𝑖𝑦 𝑗d3𝑦 . (5.203)

If the source we consider is non-relativistic, we can write:

𝑇00 [𝑡 − 𝑟, ®𝑦] = 𝜌 [𝑡 − 𝑟, ®𝑦] , (5.204)

where 𝜌 is the mass density of the source. Then, we introduce the second mass moment of the source
(or tensor of inertia):

𝐼𝑖 𝑗 [𝑡′] =
ˆ
𝜌 [𝑡′, ®𝑦] 𝑦𝑖𝑦 𝑗d3𝑦 , (5.205)

as well as the total mass of the source:

𝑀 (𝑡′) =
ˆ
𝜌 [𝑡′, ®𝑦] d3𝑦 . (5.206)

Thus, far from the source, and placing the source at the origin of the coordinates to simplify the
expressions (®𝑦0 = ®0), we have :
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Gravitational wave far from the source
ℎ̄00 (𝑡, ®𝑟) =

4𝐺𝑀 (𝑡 − 𝑟)
𝑟

ℎ̄𝑖 𝑗 (𝑡, ®𝑟) =
2𝐺
𝑟

¥𝐼𝑖 𝑗 (𝑡 − 𝑟) ,

(5.207)

(5.208)

where a dot denotes a derivative of the function 𝐼𝑖 𝑗 with respect to its argument.

The ℎ00 component is exactly −2Φ𝑁 , i.e. twice the opposite of the retarded Newtonian potential
generated by the source considered as a point mass, as expected. For a source that is very far,
this is almost constant in space and by the equivalence principle, it should not play any role in the
physics of the wave, locally. It can be re-absorbed in the local definition of the time coordinate. We
can therefore set it to zero without loss of generality. Finally, let us conclude this calculation by
remembering that we are interested in the wave in the TT gauge, since this is the one we know how
to relate to observables. We can obtain it from Eq. (5.208) by using the projection operator on the
plane orthogonal to ®𝑛 = ®𝑟/𝑟:

𝑃𝑖 𝑗 = 𝛿𝑖 𝑗 − 𝑛𝑖𝑛 𝑗 . (5.209)

𝑃𝑖 𝑗 gives the components of vectors and tensors in the plane orthogonal to the vector ®𝑛. Thus, by
removing the trace, we obtain the perturbation that is traceless and transverse to the direction of
propagation ®𝑛:

ℎ𝑇𝑇𝑖 𝑗 (𝑡, ®𝑟) =
(
𝑃𝑘𝑖𝑃

𝑘
𝑗 −

1
2
𝑃𝑘𝑙𝑃𝑖 𝑗

)
ℎ̄𝑖 𝑗 (𝑡, ®𝑟) . (5.210)

Finally, instead of using 𝐼𝑖 𝑗 , it is often better to use its traceless part only, which will not affect
Eq. (5.210):

𝑄𝑖 𝑗 = 𝐼𝑖 𝑗 −
1
3
𝐼 𝑖 𝑖𝛿𝑖 𝑗 , (5.211)

which can be written:

𝑄𝑖 𝑗 (𝑡′) =
ˆ
𝜌 [𝑡′, ®𝑦]

(
𝑦𝑖𝑦 𝑗 −

1
3
| ®𝑦 |2 𝛿𝑖 𝑗

)
d3𝑦 , (5.212)

and is known as the mass quadrupolar moment of the source. This is the quantity that naturally
appears in the multipolar development of the source Newtonian potential:

Φ𝑁 (𝑡, ®𝑟) = −𝐺𝑀
𝑟

+
3𝑄𝑖 𝑗𝑛𝑖𝑛 𝑗

2𝑟3 + . . . . (5.213)
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In the end, we obtain the Quadrupole formula

ℎ𝑇𝑇𝑖 𝑗 (𝑡, ®𝑟) = 2𝐺
𝑟

(
𝑃𝑘𝑖𝑃

𝑘
𝑗 −

1
2
𝑃𝑘𝑙𝑃𝑖 𝑗

)
¥𝑄𝑖 𝑗 (𝑡 − 𝑟) . (5.214)

5.5.2 Example: binary stars

Consider two identical stars 𝐴 and 𝐵, of mass 𝑀 in circular orbit in the
(
𝑥1, 𝑥2)-plane, at a distance

𝑅 from their centre-of-mass, taken as origin of the coordinate system. Then, assuming the dynamics
of the source is Newtonian, we have their velocity:

𝑣 =

√
𝐺𝑀

2𝑅
. (5.215)

Orbits have a period of 𝑇 = 2𝜋𝑅/𝑣, which gives the angular frequency:

Ω =

√
𝐺𝑀

2𝑅3 . (5.216)

Thus, the stars have positions:

𝑥1
𝐴 = 𝑅 cosΩ𝑡 ; 𝑥2

𝐴 = 𝑅 sinΩ𝑡 (5.217)

𝑥2
𝐵 = −𝑅 cosΩ𝑡 ; 𝑥2

𝐵 = −𝑅 sinΩ𝑡 , (5.218)

and we get the mass density:

𝜌 (𝑡, ®𝑥) = 𝑀𝛿𝐷
(
𝑥3

) [
𝛿𝐷

(
𝑥1 − 𝑅 cosΩ𝑡

)
𝛿𝐷

(
𝑥2 − sinΩ𝑡

)
+ 𝛿𝐷

(
𝑥1 + 𝑅 cosΩ𝑡

)
𝛿𝐷

(
𝑥2 + sinΩ𝑡

)]
.

(5.219)
This allows one to calculate the quadrupolar moment:

𝑄𝑖 𝑗 (𝑡𝑟 ) = 𝑀𝑅2
©­­­«
2/3 + cos 2Ω𝑡 sin 2Ω𝑡 0

sin 2Ω𝑡 −2/3 − cos 2Ω𝑡 0
0 0 0

ª®®®¬ . (5.220)

And finally:

ℎ𝑇𝑇𝑖 𝑗 (𝑡, ®𝑟) = −8𝐺𝑀𝑅2Ω2

𝑟

©­­­«
cos [2Ω(𝑡 − 𝑟)] sin [2Ω(𝑡 − 𝑟)] 0
sin [2Ω(𝑡 − 𝑟)] − cos [2Ω(𝑡 − 𝑟)] 0

0 0 0

ª®®®¬ , (5.221)
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or, equivalently:

ℎ𝑇𝑇𝑖 𝑗 (𝑡, ®𝑟) = −4(𝐺𝑀)2

𝑟𝑅

©­­­«
cos [2Ω(𝑡 − 𝑟)] sin [2Ω(𝑡 − 𝑟)] 0
sin [2Ω(𝑡 − 𝑟)] − cos [2Ω(𝑡 − 𝑟)] 0

0 0 0

ª®®®¬ . (5.222)

A few comments are in order.

• The strain of the gravitational wave, as measured in a detector, is given by Eq. (5.158):

ℎ =
𝛿𝐿

𝐿0
= ℎ𝑇𝑇𝑖 𝑗 (𝑡, ®𝑟) 𝑁 𝑖𝑁 𝑖 , (5.223)

where 𝑁 𝑖 is the direction of the arm of the interferometer. Let uswrite ®𝑁 = (sin 𝜃 cos 𝜙, sin 𝜃 sin 𝜙, cos 𝜃)
by introducing spherical coordinates centred on the source. Clearly:

ℎ = −4(𝐺𝑀)2

𝑟𝑅
cos [2Ω(𝑡 − 𝑟) − 2𝜙] sin2 𝜃 . (5.224)

It is maximum for 𝜃 = 𝜋/2, i.e. when the arms are in a plane parallel to the source plane, i.e.
orthogonal to the 𝑥3-axis and cancels for planes orthogonal to the source plane: most of the
gravitational wave is emitted in the direction orthogonal to the plane of motion.

• Let us pick up a binary made of neutron stars at a cosmological distance, say 𝑟 ' 100 Mpc '
3 × 1025 m, with 𝑀 ' 2𝑀�, so that 𝐺𝑀 ' 2 × 103 m . Let us assume that they orbit at
approximately 𝑅 ' 10𝑅𝑆 ' 4 × 104 m. Then, the strain of the gravitational wave is:

ℎ =
��ℎ𝑖 𝑗 �� ' 10−23 . (5.225)

This is very small. For an interferometer with an arm length 𝐿0 ' 10 km, we get 𝛿𝐿 '
10−20m � 𝑎0 ' 5 × 10−11 m, the Bohr radius, which is the typical size of an atom. Not that
this apparent paradox (measuring a displacement smaller than the typical size of an atom)
is only really apparent: what is measured by interferometers like LIGO is not a length but a
time, namely the proper time, for a free-falling observer at the centre of the interferometer,
that it takes photons to traverse an arm and come back.

• The frequency of the gravitational wave is:

𝑓 =
Ω
𝜋

= 𝑐

√
𝐺𝑀

2𝜋2𝑅3 . (5.226)

With the previous numbers, we get 𝑓 ' 378 Hz.
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Of course, the binary system loses energy via emission of gravitational waves, which means that
over time, the binary becomes harder and harder until the objects merge. This is what is actually
observed by gravitational wave detectors but our perturbative analysis can only cover the early stage
of the inspiral. The late stages are highly non-linear and need to be modelled via numerical sim-
ulations. Figure 5.5 shows mass characteristics of the gravitational wave sources observed in the
third campaign of LIGO, Virgo and KAGRA. Each triplet of points show the masses of the binary
objects infalling and the mass of the final product of the merger, usually a black hole.

Figure 5.5: Catalogue of sources of gravitational waves observed by LIGO-Virgo-KAGRA during
their third round of observations. Mergers are shows as triplets of points with two points showing
the masses of the black holes or neutron stars before merger, and the third point showing the mass
of the remnant black hole. Credit: LIGO-Virgo/Aaron Geller/Northwestern
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The purpose of this chapter is to introduce the basic properties of the modern description of the
Universe on large scales. The second year Cosmology course will go into much more details. In
particular, in these notes we will stick to the homogeneous and isotropic Universe.

6.1 What is cosmology, and what is it not?

What is the world made of? What is its shape? Did it have a beginning or always existed? Does it
have boundaries or not? What is its size? What is its fate? Where are we in it?
All these questions have helped shape human cultures. They are questions about the Universe and
our place inside it. They are at the heart of Cosmology: they are central to any attempt, mythical,
mystical, religious, metaphysical etc., at finding our place in existence. However with the advent of
modern science in the 17𝑡ℎ century, some of these questions have started to receive scientific, rather
than metaphysical or mythical answers, they have be incorporated into the scientific discourse. Of
course, to this day, some of those questions have remained outside the purview of science, such as,
e.g. the notion of origin of the Universe. The story these notes aim to tell is about the ones who can,
partially or in full, receive scientific answers, within the context of current physical theories. This
means answers that are revocable, subject to the tribunal of observations, experiments and theoret-
ical arguments. This means that the model presented here is only temporary and constantly being
tested and revised, at least in its minute details.
For all those scientific questions, we can use the word cosmology, dropping the capital letter.¹
Before we start diving into physical cosmology, it is worth reflecting on the origin and meaning
of the word cosmology. ’Cosmos’ is a Greek word (’𝜅ó𝜎𝜇𝑜𝜍’) that originally means order, good
order, but also jewellery or (physical) ornament. This makes for an a priori surprising relation that
we still encounter today in the proximity of words such as cosmology and cosmetics. This probably
comes from an analogy drawn between the bright stars ’embellishing’ the night sky and jewellery
such as pearl necklaces etc., also used to embellish the earthly body.
The Universe is full of these wondrous embellishments and I hope this course will help illuminate
some of those: behind the sometimes dry and tedious calculations, one must try never to forget the
magnificent and awesome realities that we are trying to describe.

¹Thanks are due to J.-P. Uzan for having introduced this use in his book ’Big-bang, Comprendre l’univers depuis ici
et maintenant’, Flammarion 2018.
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In this short introduction, we will list a few basic observational facts about our Universe. Primar-
ily this will be useful to set the characteristic scales that will be studied in the notes. In addition, the
two main facts we will encounter, i.e. the recession of distant galaxies and the statistical isotropy of
the distribution of matter around us, will be the basic starting points for the construction of a model
of the Universe that will be explored in the rest of these notes.

6.2 The Observed Universe: basic facts

Admittedly, modern cosmology started with the discovery by Slipher, Hubble and others at the
beginning of the XX𝑡ℎ century, that the distant nebulæ of old times were in fact distant galaxies, in
all points similar to our own². Very quickly, these first physical cosmologists measured the velocities
of these galaxies using the redshift experienced by spectroscopic lines in the light they emit. This
led to the discovery of the universal recession of distant galaxies: seen from our point of view,
distant galaxies appear to be moving away from us, with a velocity proportional to their distance to
us. This is Hubble-Lemaître’s law; see Fig. 6.1:

𝑣 = 𝐻0𝑑 , (6.1)

where 𝐻0 is known as the Hubble constant. Its modern value is currently the topic of a controversy
but it is in the range:

𝐻0 = 65 − 75km/s/Mpc. (6.2)

It means that an object located at a distance from us of 1Mpc, moves away from us with a velocity of
65 to 75 km/s. This law tells us that the Universe is expanding around us: it is a dynamical, evolving
object for which we can try and uncover a history. Writing this history is the task of cosmology. As
you can see, a new unit has appeared here: the parsec, symbol pc. It is a very useful and common
unit in cosmology. It is defined as the distance at which an ”object” that measures 1 AU subtends
an angle on the sky of 1 arcsecond:

1 pc =
648000
𝜋

AU ' 3.1 × 1013 m ' 3.26 light-years. (6.3)

²Kant contemplated such an idea with his island Universes, presented in one of his first book: ”Universal Natural
History and Theory of the Heavens”, published in 1755; this was the first attempt to apply Newton’s theory of gravitation
to the building of a cosmology.
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Figure 6.1: The Hubble law, then and now. Recent measurements from [11].

The star nearest to the Sun, Proxima Centauri, is at 1.3 pc from here. The disk of the Milky Way is
some 30 kpc wide, and the Sun is located approximately 8 kpc from the centre of the Milky Way.
The nearest galaxy is Andromeda, and it is about 780 kpc from us. Going further away, the nearest
large cluster of galaxy, the Virgo cluster is about 17 Mpc from here. It has a typical size of 1 Mpc.
Large scale structures such as filaments and walls along which galaxies align in the Universe can be
several Gpc across, and the visible Universe has a radius of approximately 50 Gpc. These notes are
concernedwith the dynamics of the Universe and structures found in it on scales typically larger than
1Mpc, all the way up to the size of the visible Universe. This means that the physics wewill describe
has to span approximately 4 orders of magnitude in physical size today. What happens when we look
on the largest of these scales, that is if we are only concerned with describing the Universe smoothed
on scales of a few hundreds of Mpc? The Universe appears extremely regular, when looked at on
such large enough scales. This is visible in surveys of galaxies, which simply count the number of
distant objects; see Fig. 6.2. But this is evenmore stricking when looking as far back as possible, and
measuring the background relic radiation known as the CosmicMicrowave Background (CMB), the
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remnant of an epoch known as decoupling, when photons decoupled frommatter and became free to
propagate in the Universe, creating a thermal bath which today consists of approximately 400 to 500
photons per cubic cm3 all over the Universe; see Fig. 6.2. This background radiation corresponds
to a black body radiation of temperature 𝑇0 ' 2.725 K, which is extraordinarily isotropic around
us: fluctuations in this temperature do not exceed 1 part in 100 000. Therefore the Universe is
statistically isotropic around us. Observed on large enough scales, it is isotropic, and on top of
this isotropic background, one can detect small fluctuations on small scales which average out when
smoothed appropriately.

Figure 6.2: Top left: Combination of SDSS normal galaxies (yellow dots), SDSS Luminous Red
Galaxies (white dots) and BOSS LUminous Red Galaxies (red dots). Each point is a galaxy. On
such diagrams, we are located at the centre and the distance to this centre denotes the redshift, which
is linked to the distance to us; see later: the farther an object, the larger its redshift. Top Right: Same
as top left, but with BOSS quasars added (blue dots), probing a much deeper Universe. Credit: M.
Blanton/SDSS. Bottom: Temperature anisotropies in the CosmicMicrowave Background measured
by PLANCK.

So here is our task: building a cosmological model that can describe a Universe smooth on large
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scales, but full of structures on small scales. Let us start our journey.

6.3 The Friedmann-Lemaître-Robertson-Walker Universe

6.3.1 Metric

As emphasised in the previous section, on large enough scales, the Universe appears remarkably
isotropic around us: the temperature of the cosmic microwave background radiation does not vary
by more that one part in 100000 over the whole sky, and the distribution of galaxies in the late
Universe is also very isotropic when smoothed on sufficiently large scales. This fact will be of great
use to simplify the description of our Universe on large scales. Indeed, the prospect of solving the
equations of General Relativity without any hypothesis on the symmetries of the solution is abso-
lutely daunting (6 independent, coupled, non-linear partial differential equations!), so any guidance
towards simplifying assumptions is very welcome indeed. Let us thus assume the following:

Observed isotropy

On average, our Universe is statistically isotropic around us.

Unfortunately, we do not have any direct access to what the Universe could look like to distant ob-
servers, located in other galaxies and to move forward, we have to assume the Copernican principle
that is not directly based on as simple observational facts as isotropy³:

The Copernican principle

We are typical cosmological observers; i.e. we do not occupy a special spatial location in our
Universe.

This means that whatever properties of our Universe we observe, on average, any other observer
should observe the same properties. In particular, since we have assumed average isotropy around
us, the Universe must appear isotropic, on average, to any other typical observer. This is known as
the cosmological principle and as we are going to see, taken as a strong statement, it determines the
geometry of our Universe unambiguously.
Let us, for now, simplify our description a bit further and drop the ”average” qualification from these

³However, one can now try and test this principle; see, e.g. [8] for a review.
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statements. That is, let us assume that the Universe is perfectly isotropic for any typical observer.
Let us populate our spacetime with a family of such typical observers, each with its own worldline
thus defining a field of timelike vectors 𝑢 that are the 4-velocities of these observers. This preferred
set of observers is really important and is also known as the set of fundamental observers. Let us
call 𝑡 the proper time measured by these observers along their worldlines. Their flow in spacetime
defines a preferred foliation of spacetime into hypersurfaces Σ𝑡 orthogonal to the field 𝑢 at every
point, such that the metric tensor takes the form:

𝒈 = −𝒖 ⊗ 𝒖 + 𝜸(𝑡) , (6.4)

where 𝜸(𝑡) is the induced metric on the spatial slice Σ𝑡 at fixed proper time 𝑡. According to the
cosmological principle, the hypersurfaces Σ𝑡 ought to be isotropic around each of their points. This
means that any quantity defined on Σ𝑡 is spherically symmetric around each point. But this implies
that the hypersurfaces Σ𝑡 are also homogeneous, i.e. that each quantity defined on them is invariant
by translation as well. Thus the Copernican principle, combined with isotropy around fundamen-
tal observers implies that the hypersurfaces Σ𝑡 are invariant under rotations and translations, i.e.
maximally symmetric; see appendix B for details about such 3 dimensional hypersurfaces. Com-
bining all this, on large enough scales, the geometry of the Universe is well-approximated by the
Friedmann-Lemaître-Robertson Walker metric (hereafter FLRW metric):

The Friedmann-Lemaître-Robertson Walker (FLRW) metric

𝒈 = −d𝑡 ⊗ d𝑡 + 𝑎2(𝑡)
[

1
1 − 𝐾𝑟2 d𝑟 ⊗ d𝑟 + 𝑟2

(
d𝜃 ⊗ d𝜃 + sin2 𝜃 d𝜙 ⊗ d𝜙

)]
(6.5)

d𝑠2 = −d𝑡2 + 𝑎2(𝑡)
[

d𝑟2

1 − 𝐾𝑟2 + 𝑟2
(
d𝜃2 + sin2 𝜃 d𝜙2

)]
, (6.6)

where:

1. 𝑡 is the proper time measured by fundamental observers (those seeing an isotropic and homo-
geneous Universe);

2. 𝑟 is the coordinate radial distance;

3. dΩ2 = d𝜃2+sin2 𝜃 d𝜙2 is the roundmetric on the 2-sphere 𝑆2, also called the ”celestial sphere”
(sky) of fundamental observers;
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4. 𝑎(𝑡)is the scale factor;

5. 𝐾 ∈ R is the scalar curvature of space.

These coordinates are not the ones we introduce in appendix B, but we will see how they are mapped
into each other below. The non-zero connection coefficients of the FLRW metric in (𝑡, 𝑟, 𝜃, 𝜙)
coordinates are:

Connection coefficients of the FLRWmetric in (𝑡, 𝑟, 𝜃, 𝜙) coordinates

Γ0
𝑖 𝑗 =

¤𝑎
𝑎
𝑔𝑖 𝑗 ; Γ1

01 = Γ1
10 =

¤𝑎
𝑎

(6.7)

Γ1
11 =

𝐾𝑟

1 − 𝐾𝑟2 ; Γ1
22 = −𝑟 (1 − 𝐾𝑟2) ; Γ2

33 = −𝑟 (1 − 𝐾𝑟2) sin2 𝜃 (6.8)

Γ2
02 = Γ2

20 =
¤𝑎
𝑎

; Γ2
12 = Γ2

21 =
1
𝑟

; Γ2
33 = − sin 𝜃 cos 𝜃 (6.9)

Γ3
03 = Γ3

30 =
¤𝑎
𝑎

; Γ3
13 = Γ3

31 =
1
𝑟

; Γ3
23 = Γ3

32 =
cos 𝜃
sin 𝜃

. (6.10)

Here and afterwards, a dot will denote a derivative with respect to the time coordinate 𝑡.

6.3.2 Kinematics

We can now explore the basic geometric properties of the FLRW metric. 𝑡 is the proper time mea-
sured by fundamental observers along their worldlines defined by d𝑟 = d𝜃 = d𝜙 = 0. It is often
called the cosmic time. The 4-velocity of fundamental observers is then simply, in those coordinates:

𝑢𝜇 = 𝛿𝜇0 . (6.11)

In the following, we will denote by 𝛾𝑖 𝑗 the components of the metric of conformal space:

𝛾𝑖 𝑗 =
1

√
1 − 𝐾𝑟2

𝛿𝑟𝑖 𝛿
𝑟
𝑗 + 𝑟2𝛿𝜃𝑖 𝛿

𝜃
𝑗 + 𝑟2 sin2 𝜃𝛿

𝜙
𝑖 𝛿

𝜙
𝑗 . (6.12)

Now, consider two fundamental observers, spatially separated (d𝑡 = 0), and located at 𝑟 and 𝑟 + Δ𝑟 ,
𝜙 = 𝜙0 and 𝜃 = 𝜃0, with Δ𝑟 � 1. Then, the physical distance between these observers is given by:

Δ𝑑phys(𝑟, 𝑡) = 𝑎(𝑡)
Δ𝑟

√
1 − 𝐾𝑟2

. (6.13)
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The number 𝐾 represents the curvature of the spacelike hypersurfaces at constant 𝑡 (denoted 𝜅 in
subsection B.5.2 of appendix B) and we can already see that for physical reasons, 𝑟 has a finite range
in the case 𝐾 > 0. Although this coordinate system, (𝑡, 𝑟, 𝜃, 𝜙) is natural from a physical point of
view, one can introduce a new set of coordinates that proves much more useful from a mathematical
and physical point of view. First, let us introduce the conformal time 𝜂, such that:

d𝜂 =
d𝑡
𝑎(𝑡) , (6.14)

or in integral form:

𝜂 − 𝜂0 =
ˆ 𝑡

𝑡0

d𝑡′

𝑎(𝑡′) . (6.15)

This time coordinate allows one to ”factor out” the scale factor and rewrite the line element:

d𝑠2 = 𝑎2(𝜂)
[
−d𝜂2 + d𝑟2

1 − 𝐾𝑟2 + 𝑟2
(
d𝜃2 + sin2 𝜃 d𝜙2

)]
, (6.16)

where, as usual, we have used the physicist’s abuse of notation and set 𝑎(𝜂) ≡ 𝑎 (𝑡 (𝜂)), with 𝑡 (𝜂) ob-
tained by inverting the relation 𝜂(𝑡) coming from Eq. (6.15). Next, we introduce a radial coordinate
𝜒 adapted to the type of spatial curvature 𝐾 , such that:

d𝜒 =
d𝑟

√
1 − 𝐾𝑟2

, (6.17)

or equivalently, setting 𝜒 = 0 for 𝑟 = 0:

𝜒 =
ˆ 𝑟

0

d𝑟 ′
√

1 − 𝐾𝑟 ′2
. (6.18)

As a matter of fact, the integration in this case is quite easy to perform, and one gets:

𝑟 (𝜒) ≡ 𝑆𝐾 (𝜒) =


1√
𝐾

sin
(√
𝐾𝜒

)
for 𝐾 > 0

𝜒 for 𝐾 = 0
1√
−𝐾 sinh

(√
−𝐾𝜒

)
for 𝐾 < 0

. (6.19)

Note that this makes apparent what the admissible range of the radial coordinate is:

• For 𝐾 > 0, as 𝑟 ∈
[
0, 1/

√
𝐾
]
, 𝜒 ∈ [0, 𝜋];

• For 𝐾 ≤ 0, as 𝑟 ∈ [0, +∞), 𝜒 ∈ [0, +∞).
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This is the same 𝜒 than the one introduced in subsection B.5.2 of appendix B. Then, the line element
finally reads:

d𝑠2 = 𝑎2(𝜂)
[
−d𝜂2 + d𝜒2 + 𝑆2

𝐾 (𝜒)
(
d𝜃2 + sin2 𝜃 d𝜙2

)]
. (6.20)

This form is both remarkable and convenient for various reasons.

• Spatial hypersurfaces of constant 𝜂 are, up to a conformal factor 𝑎2(𝜂) the simplest constant
curvature 3-dimensional manifolds. For 𝐾 = 0, we recover the standard Euclidean ”flat”
space with its flat metric in spherical coordinates, E3. For 𝐾 > 0, this is simply the round
metric on a 3-sphere S3 of radius 1/

√
𝐾 . And, finally, for 𝐾 < 0, this is the standard metric

on hyperbolic space H3. Note that this form also makes it clear that the radius of a 2-sphere
at coordinate distance 𝜒 from the origin is given by 𝑆𝐾 (𝜒) in the sense that the physical area
of such a 2-sphere (at d𝜂 = d𝜒 = 0) is exactly 4𝜋𝑆2

𝐾 (𝜒).

• Radial light rays (d𝑠2 = d𝜃 = d𝜙 = 0) are straight lines at ±𝜋/4 angles: 𝜒 − 𝜒0 = ± (𝜂 − 𝜂0).

In these coordinates, the non-zero connection coefficients are: (symmetry in lower indices is im-
plicit)

Connection coefficients of the FLRWmetric in (𝜂, 𝜒, 𝜃, 𝜙) coordinates

Γ0
11 =

𝑎′

𝑎
; Γ0

22 =
𝑎′

𝑎
𝑆2
𝐾 ; Γ0

33 = sin2 𝜃 Γ0
22 (6.21)

Γ1
01 =

𝑎′

𝑎
; Γ1

22 = −𝑆𝐾
d𝑆𝐾
d𝜒

; Γ1
33 = sin2 𝜃 Γ1

22 (6.22)

Γ2
02 =

𝑎′

𝑎
; Γ2

12 =
1
𝑆𝐾

d𝑆𝐾
d𝜒

; Γ2
33 = − sin 𝜃 cos 𝜃 (6.23)

Γ3
03 =

𝑎′

𝑎
; Γ3

13 =
1
𝑆𝐾

d𝑆𝐾
d𝜒

; Γ3
23 =

cos 𝜃
sin 𝜃

. (6.24)

Here and from now on, a prime will denote a derivative with respect to conformal time, 𝜂. Fun-
damental observers have 4-velocity 𝒖 = 𝜕

𝜕𝑡 with components (1, 0, 0, 0) (𝑡 ,𝑟 , 𝜃 ,𝜙) , thus, in this new
coordinate system, 𝑢𝜇 =

(
1
𝑎 , 0, 0, 0

)
= 1
𝑎 𝛿

𝜇
0 . If we consider two such fundamental observers located

in space at ®𝑥1 and ®𝑥2, their physical separation at time 𝑡 is given by:

®𝑟12 = 𝑎(𝑡) (®𝑥1 − ®𝑥2) . (6.25)
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The position vectors ®𝑥1 and ®𝑥2 are constant in time by definition of fundamental observers.Thus:

d
d𝑡
®𝑟12 = ¤𝑎 (®𝑥1 − ®𝑥2) =

¤𝑎
𝑎
®𝑟12. (6.26)

The function:
𝐻 (𝑡) ≡ ¤𝑎

𝑎
(6.27)

is called the Hubble rate and Eq. (6.26) is the Hubble-Lemaître’s law. Written at present time,
𝑡 = 𝑡0 ∼ 13.7 Gyr, it gives the historical Hubble-Lemaître’s law, and reads:

®𝑣 = 𝐻0®𝑟 , (6.28)

with 𝐻0 = 𝐻 (𝑡0) the Hubble constant. It expresses the fact that cosmological objects like galaxies
move with respect to each other with a velocity that is greater the farther they are from each other.
In an expanding Universe, 𝐻0 > 0 and the velocity is a recession velocity: distant galaxies move
away from each other.
Finally, let us focus on the trajectories and properties of light rays in the FLRW Universe. In the
geometric optics limit (i.e. when the wavelength of the light considered is small with respect to
the typical curvature radius of spacetime), valid in the cosmological context, the propagation of
electromagnetic waves is well-approximated by the properties of light rays, i.e. null curves with
tangent vector field 𝒌 with components 𝑘𝜇 = d𝑥𝜇

d𝜆 satisfying:

{
𝒈 (𝒌, 𝒌) = 𝑘𝜇𝑘𝜇 = 0

∇𝒌 𝒌 = 𝑘𝜈∇𝜈𝑘𝜇 = 0 .

(6.29)

(6.30)

Here, 𝜆 is an affine parameter along the light ray considered. Let ℎ𝜇𝜈 = 𝑔𝜇𝜈 + 𝑢𝜇𝑢𝜈 be the
components of the projection tensor 𝒉 = 𝒈 + 𝒖 ⊗ 𝒖 which projects orthogonally on hypersurfaces
of constant 𝑡 (or equivalently constant 𝜂). Then, in cosmic time coordinates:

ℎ𝜇𝜈 = 𝑔𝜇𝜈 + 𝛿𝜇0𝛿𝜈0 , (6.31)

so that ℎ0𝜇 = 0. Then, let 𝐸 = −𝑘𝜇𝑢𝜇 and 𝑝𝜇 = ℎ𝜇𝜈𝑘
𝜈 . For a future directed light ray, 𝐸 is the

energy of the light ray (for a past directed light ray it is minus the energy) as measured in the rest-
frame of the fundamental observer, and 𝑝𝜇/𝐸 are the components of the instantaneous direction of
propagation of the light ray in the same rest frame; it is everywhere orthogonal to the 4-velocity of
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the observers: 𝑝𝜇𝑢𝜇 = 0. 𝑝𝜇 are simply the components of the 3-momentum of the photons. Then,
as we have seen in chapter 3, we can write uniquely:

𝑘𝜇 = 𝐸𝑢𝜇 + 𝑝𝜇 . (6.32)

Using 𝒈 (𝒌, 𝒌) = 0, we get:
−𝐸2 + 𝑎2𝛾𝑖 𝑗 𝑝

𝑖𝑝 𝑗 = 0. (6.33)

Then, projecting the null geodesic equation along 𝒖:

𝑢𝜈
(
𝑘𝜇∇𝜇𝑘𝜈

)
= 0 , (6.34)

we get:
𝐸 ¤𝐸 + 𝑎2𝐻𝛾𝑖 𝑗 𝑝

𝑖𝑝 𝑗 = 0 . (6.35)

Hence, using Eq. (6.33), we obtain:
¤𝐸
𝐸

= −𝐻 = − ¤𝑎
𝑎
, (6.36)

which is trivial to integrate, to get:
𝐸 =

𝐶0

𝑎
, 𝐶0 ∈ R . (6.37)

For a light ray with frequency 𝜈, the energy of a photon is given by 𝐸 = ℎ𝜈, so that the frequency
of light is affected by cosmic expansion along the trajectory of photons, according to:

𝜈(𝑡) = 𝑎 (𝑡𝑒)
𝑎(𝑡) 𝜈 (𝑡𝑒) , (6.38)

where 𝑡𝑒 is the time at which the photons have been emitted by their source located at (𝑡𝑒, 𝜒𝑒, 𝜃𝑒, 𝜙𝑒).
If a fundamental observer located at the centre of the coordinate system (𝜒 = 0) receives this light
today, at 𝑡 = 𝑡0, the redshift 𝑧 is defined by:

𝑧 ≡ 𝜆 (𝑡0) − 𝜆 (𝑡𝑒)
𝜆 (𝑡𝑒)

, (6.39)

and in the FLRW context:

1 + 𝑧 = 𝑎 (𝑡0)
𝑎 (𝑡𝑒)

. (6.40)

The name redshift is justified by the fact that, in an expanding universe, 𝑎 (𝑡0) > 𝑎 (𝑡𝑒), so that
𝜆 (𝑡0) > 𝜆 (𝑡𝑒): the wavelength of the light has been moved to higher values, towards the redder
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part of the spectrum. In a purely expanding FLRW Universe, there is a one-to-one and onto rela-
tionship between times of emission and redshifts at observation, so that one can interchangeably use
either 𝑡 or 𝑧(𝑡) = 𝑎 (𝑡0) /𝑎 (𝑡) − 1 to characterise past events. We will use this freedom extensively
in what follows. Moreover, note that scale factor and coordinate radial distance are only defined
simultaneously up to an overall scaling. This means that by setting the units for radial distances
appropriately at time 𝑡 = 𝑡0 (”today”), one can always set 𝑎0 = 𝑎 (𝑡0) = 1. From now on, we will
fix units this way. We will also, by convention, agree that a subscript 0 attached to any function
corresponds to the value of that function at the value of the proper time today, 𝑡0, or equivalently at
the present value of the conformal time 𝜂0 (or equivalently at 𝑧 = 0).

6.3.3 Distances

The coordinate distances given by the radial coordinates 𝑟 and 𝜒, such as the one used to derive the
Hubble-Lemaître’s law are not measurable quantities in General Relativity, as they are calculated
purely by the spacelike separation of two events in spacetime.Physically meaningful distances ought
to be related to observable quantities involving causal processes; in cosmology such physically
relevant distances are obtained by determining distances measured down the past lightcone of an
observer, because almost every piece of information we get about the distant Universe is obtained
via electromagnetic observations. We will define two relevant distances, related respectively to the
luminosity of sources and to their angular size. But before we define these physical distances, it is
convenient to introduce one coordinate distance that is important in deriving them: the comoving
radial distance.

Comoving radial distance

Consider a fundamental observer located at 𝜒 = 0, receiving at 𝜂 = 𝜂0 light that was emitted by a
distant source at a time 𝑡 corresponding to a redshift 𝑧. By an appropriate choice of our coordinate
system, we can ensure that the light ray propagates radially, with d𝜃 = d𝜙 = 0. Then, along the light
ray propagating from the source to the observer, we have d𝑠2 = 0, i.e.:

d𝜒 = − d𝑡
𝑎(𝑡) = − d𝑎

𝑎2𝐻
. (6.41)

The minus sign ensures that the ray propagates forward in time from the source at 𝜒 > 0 to the
observer at 𝜒 = 0. Using 𝑎 as a ”time” variable instead of 𝑡 is safe as long as they are related
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Figure 6.3: Definition of the comoving radial distance.

in a monotonous way, which is true in an expanding Universe (see dynamics below). Then, using
1 + 𝑧 = 1/𝑎, we get:

d𝜒 =
d𝑧
𝐻 (𝑧) . (6.42)

The comoving radial distance between the source and the observer is then simply the change in 𝜒
along the light ray between source and observer (see Fig. 6.3), and it is obtained by integrating the
previous differential relation:

𝜒(𝑧) ≡
ˆ 𝑧

0

d𝑧′

𝐻 (𝑧′) . (6.43)

It is not an observable. It can be used to defined another unobservable, but important distance:
the comoving angular distance. Consider the comoving 2-sphere at d𝜂 = d𝜒 = 0 at 𝜒 = 𝜒(𝑧), then,
its round metric gives the line element (it is comoving so we ignore the scale factor):

d𝑠2𝑐𝑜𝑚 = 𝑆2
𝐾 (𝜒(𝑧))

(
d𝜃2 + sin2 𝜃 d𝜙2

)
. (6.44)

A small source located on that sphere and observed at the centre under a small solid angle dΩ2
𝑜𝑏𝑠

subtends a small transverse area portion of the sphere d𝑆𝑠𝑜𝑢𝑟𝑐𝑒𝑐𝑜𝑚 such that:

d𝑆𝑠𝑜𝑢𝑟𝑐𝑒𝑐𝑜𝑚 = 𝑆2
𝐾 (𝜒(𝑧))dΩ2

𝑜𝑏𝑠 ; (6.45)
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Figure 6.4: Definition of the comoving angular distance.

see Fig. 6.4 for a detail of the geometry.

The comoving angular distance between the source at redshift 𝑧 and the observer is then defined
as the ratio:

𝑅2
𝑎𝑛𝑔 (𝑧) ≡

d𝑆𝑠𝑜𝑢𝑟𝑐𝑒𝑐𝑜𝑚

dΩ2
𝑜𝑏𝑠

. (6.46)

Thus:

𝑅𝑎𝑛𝑔 (𝑧) = 𝑆𝐾 (𝜒(𝑧)) . (6.47)

The effect of curvature on this comoving angular distance is summarised on Fig. 6.5. The green
curves represent light rays coming from the boundary of the small distant object and reaching the
observer at the point of convergence. An object of the same size, located at the same coordinate
distance 𝜒(𝑧) will have a different observed angular size in spaces of different curvature. The black
dotted lines represent the opening angle observed in each case. We see that because sin(𝑢)/𝑢 < 1
and sinh 𝑢/𝑢 > 1, the observed angle will be larger in the 𝐾 > 0 case and smaller in the 𝐾 < 0 case,
compared to the 𝐾 = 0 case.
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Figure 6.5: Effect of spatial curvature on the angular size of distant objects.

Angular diameter distance

The comoving angular distance is not directly observable because it depends on the comoving (co-
ordinate) size of the source which is not observable. However, by relating this comoving size the
the actual, physical transverse size of the source:

d𝑆𝑠𝑜𝑢𝑟𝑐𝑒𝑝ℎ𝑦𝑠 = 𝑎2d𝑆𝑠𝑜𝑢𝑟𝑐𝑒𝑐𝑜𝑚 , (6.48)

one can obtain an observable distance: the angular diameter distance 𝐷𝐴(𝑧) of an object located
at redshift 𝑧 with respect to the observer, defined as:

𝐷2
𝐴 ≡

d𝑆𝑠𝑜𝑢𝑟𝑐𝑒𝑝ℎ𝑦𝑠

dΩ2
𝑜𝑏𝑠

. (6.49)

This is measurable in principle. Indeed, if the observer can measure the apparent angular size of
the source on their sky and if they have an independent knowledge of the absolute physical size
of the source (from theoretical modelling), they can deduce the angular diameter distance. This is
why measurements of the angular diameter distance require the knowledge of standard rulers, i.e.
object whose physical size is stable over time and known to great accuracy. We see that the angular
diameter distance to a source located at redshift 𝑧 is thus:

𝐷𝐴(𝑧) = 𝑎𝑅𝑎𝑛𝑔 (𝑧) =
1

1 + 𝑧 𝑆𝐾 (𝜒(𝑧)) . (6.50)
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Luminosity distance

The other distance that turns out to be useful in cosmology makes use of another class of objects
called standard candles. These are objects whose absolute luminosity is assumed well known and
stable from independent theoretical models. So assume that an observer at 𝜒 = 0 and 𝑡 = 𝑡0

observes such a source located at a comoving radial distance 𝜒(𝑧) with absolute luminosity 𝐿𝑠𝑜𝑢𝑟𝑐𝑒.
Assuming that the source radiates isotropically, the observed flux, Φ𝑜𝑏𝑠 will correspond to the
isotropic flux through a sphere of radius 𝐷𝐿 (𝑧):

Φ𝑜𝑏𝑠 =
𝐿𝑠𝑜𝑢𝑟𝑐𝑒

4𝜋𝐷2
𝐿

. (6.51)

This 𝐷𝐿 is the luminosity distance between the source and the observer. By definition, the luminos-
ity is the rate of change of energy by units of time:

𝐿𝑠𝑜𝑢𝑟𝑐𝑒 =
Δ𝐸𝑒𝑚𝑖𝑡
Δ𝑡𝑒𝑚𝑖𝑡

=
Δ𝐸 (𝑧)
Δ𝑡 (𝑧) . (6.52)

Because of the redshift experienced by light between emission and observation, the change of energy
observed is given by:

Δ𝐸𝑜𝑏𝑠 =
Δ𝐸𝑒𝑚𝑖𝑡
1 + 𝑧 . (6.53)

Moreover, For two light rays emitted from the source in an interval of conformal time Δ𝜂𝑒𝑚𝑖𝑡 and
arriving at the observer in an interval Δ𝜂0, we have: Δ𝜂0 = Δ𝜂𝑒𝑚𝑖𝑡 (light rays are straight lines in
𝜂 − 𝜒 coordinates). Thus, going to proper time:

Δ𝑡0 =
1
𝑎
Δ𝑡𝑒𝑚𝑖𝑡 = (1 + 𝑧)Δ𝑡𝑒𝑚𝑖𝑡 . (6.54)

Therefore, the observed luminosity is given by:

𝐿𝑜𝑏𝑠 =
Δ𝐸𝑜𝑏𝑠
Δ𝑡0

=
1

(1 + 𝑧)2
Δ𝐸𝑒𝑚𝑖𝑡
Δ𝑡𝑒𝑚𝑖𝑡

=
1

(1 + 𝑧)2 𝐿𝑠𝑜𝑢𝑟𝑐𝑒 . (6.55)

On the other hand, the observed flux is the ratio of the total luminosity at the time of observation by
the surface area over which this luminosity is distributed, 𝑆𝑝ℎ𝑦𝑠. This surface area is the physical
area today of the sphere centred on the source of comoving radius 𝑅𝑎𝑛𝑔 (𝑧) = 𝑆𝐾 (𝜒(𝑧)):

𝑆𝑝ℎ𝑦𝑠 = 𝑎2
0𝑆
𝑐𝑜𝑚 = 4𝜋𝑆2

𝐾 (𝜒(𝑧)) . (6.56)

Thus:
Φ𝑜𝑏𝑠 =

𝐿𝑠𝑜𝑢𝑟𝑐𝑒

(1 + 𝑧)2 × 4𝜋𝑆2
𝐾 (𝜒(𝑧))

. (6.57)
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Equating the two expression for the observed flux, we get:

𝐷𝐿 (𝑧) = (1 + 𝑧)𝑆𝐾 (𝜒(𝑧)) . (6.58)

Note that the angular and luminosity distances are related by the distance-duality relation:

𝐷𝐿 (𝑧) = (1 + 𝑧)2𝐷𝐴(𝑧) . (6.59)

This relation is actually true in any spacetime, in any metric theory of gravity, as long as the number
of photons is conserved during the propagation of light between source and observer.
In a flat FLRW universe, these distances take the simple integral expressions:

Angular and luminosoty distances in flat FLRW

𝐷𝐴(𝑧) =
1

1 + 𝑧

ˆ 𝑧

0

𝑑𝑧′

𝐻 (𝑧′) (6.60)

𝐷𝐿 (𝑧) = (1 + 𝑧)
ˆ 𝑧

0

𝑑𝑧′

𝐻 (𝑧′) . (6.61)

These various notions of distance are all equally valid and their use depend on the physical
system we want to evaluate the distance to. Fig 6.6 shows the radial comoving distance 𝜒(𝑧), the
angular distance 𝐷𝐴(𝑧) and the luminosity distance 𝐷𝐿 (𝑧) as functions of redshift for the nominal
cosmology we introduce below; see Eqs. (6.145)-(6.150). Clearly, although they match for small
redshifts (left panel), they differ significantly as soon as we probe further back into the past (right
panel). In particular, the angular diameter distance exhibits a non-monotonous behaviour which
means that after some redshift, objects that are further into the past appear smaller and smaller!
Finally, note that we need knowledge of the dynamics on the FLRW Universe between the source
and the observer, through the Hubble rate 𝐻 (𝑧) to determine the behaviour of these distances. This
dynamics is what we will focus on next.

6.3.4 Dynamics

To determine the dynamics of the FLRW Universe, one needs to write the Einstein Field Equations:

𝑅𝜇𝜈 −
1
2
𝑅𝑔𝜇𝜈 + Λ𝑔𝜇𝜈 = 8𝜋𝐺𝑇𝜇𝜈 , (6.62)
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Figure 6.6: Radial comoving distance 𝜒(𝑧), angular distance 𝐷𝐴(𝑧) and luminosity distance 𝐷𝐿 (𝑧)
as functions of redshift for the nominal cosmology of Eqs. (6.145)-(6.150).

for the FLRWmetric and the appropriate energy-momentum content. For the left-hand side of those
equations, we have, in proper time:

Ricci tensor for the FRLRWmetric in (𝑡, 𝑟, 𝜃, 𝜙) coordinates



𝑅00 = − 3
¥𝑎
𝑎

𝑅𝑖 𝑗 =𝑎
2
(
2𝐻2 + ¥𝑎

𝑎
+ 2

𝐾

𝑎2

)
𝛾𝑖 𝑗

𝑅 =6
(
𝐻2 + ¥𝑎

𝑎
+ 𝐾

𝑎2

)
.

(6.63)

(6.64)

(6.65)

Energy-momentum content

But what of 𝑇𝜇𝜈? In principle, we should include all possible particles and fields present in the
Universe, photons, electrons, protons, all atoms once they have formed, neutrinos, exotic sources
like Dark Matter and Dark Energy (see below) etc. Usually, these are treated as independent, non-
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interacting fluids, with energy densities 𝜌𝑖 (𝑡) and pressure 𝑝𝑖 (𝑡). By symmetry, they ought to be
comoving and their common 4-velocity sets the 4-velocity field of fundamental observers. Then
one can show easily that these fluids ought to be perfect (no heat flux or anisotropic pressure), thus
having energy-momentum tensors:

𝑇 (𝑖)
𝜇𝜈 = (𝜌𝑖 + 𝑝𝑖) 𝑢𝜇𝑢𝜈 + 𝑝𝑖𝑔𝜇𝜈 , (6.66)

which separately obey a conservation equation (non-interacting):

∇𝜇𝑇 (𝑖)𝜇
𝜈 = 0 . (6.67)

Then, for each fluid, we can define an equation of state:

𝑤𝑖 =
𝑝𝑖
𝜌𝑖
, (6.68)

and Eq. (6.67) leads to:

¤𝜌𝑖 + 3 (1 + 𝑤𝑖) 𝐻𝜌𝑖 = 0 , (6.69)

for each individual fluid. The total energy-momentum content is then an effective fluidwith effective,
total density, pressure and equation of state:



𝜌 =
∑
𝑖

𝜌𝑖

𝑝 =
∑
𝑖

𝑝𝑖

𝑤 =
𝑝

𝜌
,

(6.70)

(6.71)

(6.72)

modelled by the total energy-momentum tensor, with components in (𝑡, 𝑟, 𝜃, 𝜙) coordinates:

𝑇𝜇𝜈 = (𝜌 + 𝑝) 𝛿𝜇0𝛿𝜈0 + 𝑝𝑔𝜇𝜈 . (6.73)

The conservation of this total energy-momentum tensor then leads to:

¤𝜌 + 3 (1 + 𝑤) 𝐻𝜌 = 0 . (6.74)

Usually, in cosmology, the various standard fluids are separated into two main classes:
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Non-relativistic fluids: These are fluids whose internal velocity dispersion is small. Individual par-
ticles of the fluid move slowly compared with the speed of light. For these fluids, the pressure
𝑝𝑖 ∼ 0, so that 𝑤𝑖 ∼ 0. Standard baryonic and leptonic matter fall into this category for most
of the history of the Universe. So do neutrinos in the very late-time Universe. Cold Dark
Matter is also non-relativistic throughout the history of the Universe. These non-relativistic
fluids are often called dust or simply matter when the context is clear.

Relativistic fluids: These are fluids with internal particle velocities close to the speed of light. In
that case, 𝑝𝑖 ' 1

3 𝜌𝑖 so that 𝑤𝑖 = 1/3. Photons are such particles. So are neutrinos for most
of the history of the Universe.

But it is common to consider more exotic fluids. For example, taking the cosmological constant
from the LHS to the RHS of the Einstein field equations, one can formally rewrite its effect as that
of a perfect fluid with 𝑝Λ = −𝜌Λ, thus 𝑤Λ = −1. Perfect fluids with a constant equation of state
are called barotropic. So dust and relativistic fluids are barotropic fluids; so is the cosmological
constant if it is interpreted as a fluid. They are widely used in cosmology as they provide gvery
good approximations to the actual content of the Universe.
Solving Eq. (6.69) for non-relativistic and relativistic fluids we see that:

𝜌𝑁𝑅 (𝑎) = 𝜌𝑁𝑅,0𝑎
−3 (6.75)

𝜌𝑅 (𝑎) = 𝜌𝑅,0𝑎
−4 . (6.76)

Therefore, in an expanding universe, dust is diluted by a factor proportional to the volume increase;
this simply means that the number of particles (thus the total energy) in a given physical volume
remains constant while the volume increases. Relativistic matter on the other hand receives an extra
dilution in 1/𝑎; this comes from the redshift of the energy of individual photons in the fluid. It is
common to write a subscript 𝑚 for non-relativistic matter, and 𝑟 for relativistic matter, which is
what we will do from now on. For the cosmological constant, we get:

𝜌Λ = cst =
Λ

8𝜋𝐺
. (6.77)

Dynamical equations

We are now ready to write the equations governing the dynamics of the FLRW Universe with a
total matter content given by 𝜌 and 𝑝. Combining the Ricci tensor and its trace from Eqs. (6.63)-
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(6.65) and the total energy-momemtum tensor, Eq. (6.73) within the Einstein field equations, we
get:

FLRW dynamics in cosmic time

𝐻2 =

(
¤𝑎
𝑎

)2
=

8𝜋𝐺
3

𝜌 − 𝐾

𝑎2 + Λ
3

(Friedmann Eq.) (6.78)

¥𝑎
𝑎
= − 4𝜋𝐺

3
(𝜌 + 3𝑝) + Λ

3
(Raychaudhury Eq.) (6.79)

¤𝜌 = − 3𝐻 (𝜌 + 𝑝) (Continuity Eq.). (6.80)

Note that these three equations are not independent (show it), so we only truly have two independent
equations for three unknown functions. Thus, we need to assume an equation of state 𝑝(𝜌) to be able
to solve this system. In conformal time, using the connection coefficients from Eqs. (6.21)-(6.24)
and introducing the conformal Hubble rate:

H =
𝑎′

𝑎
= 𝑎𝐻 , (6.81)

we obtain the following dynamical equations:

FLRW dynamics in conformal time

H2 =

(
𝑎′

𝑎

)2
=

8𝜋𝐺
3

𝜌𝑎2 − 𝐾 + Λ
3
𝑎2 (Friedmann Eq.) (6.82)

H ′ = − 4𝜋𝐺
3

(𝜌 + 3𝑝) 𝑎2 + Λ
3
𝑎2 (Raychaudhury Eq.) (6.83)

𝜌′ = − 3H (𝜌 + 𝑝) (Continuity Eq.). (6.84)

Let us assume first, for simplicity, that the total fluid is barotropic, i.e. with a constant equation
of state 𝑤: 𝑝 = 𝑤𝜌. Then the continuity equation can be easily solved:

𝜌(𝑎) = 𝜌0𝑎
−3(1+𝑤) . (6.85)
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In that case, assuming 𝐾 = Λ = 0 and 𝑤 ≠ 1, we can solve the Friedmann equation and retain only
the expanding solution:

𝑎(𝑡) =
(
𝑡

𝑡0

) 2
3(1+𝑤)

and 𝑎(𝜂) =
(
𝜂

𝜂0

) 2
1+3𝑤

, (6.86)

and also:
𝐻 (𝑡) = 2

3(1 + 𝑤)𝑡 or H(𝜂) = 2
(1 + 3𝑤)𝜂 . (6.87)

One notes that: {
𝑎 ∝ 𝑡2/3 ∝ 𝜂2 for a non-relativistic fluid

𝑎 ∝ 𝑡1/2 ∝ 𝜂 for a relativistic fluid.

(6.88)

(6.89)

Also, for a cosmological constant Λ ≠ 0 only:

𝑎(𝑡) = exp

[√
Λ
3
(𝑡 − 𝑡0)

]
. (6.90)

These scalings wil be very important throughout.
Let us now introduce dimensionless density parameters:

Ω𝑖 (𝑧) ≡ 8𝜋𝐺𝜌𝑖 (𝑧)
3𝐻2(𝑧)

(6.91)

Ω(𝑧) ≡ 8𝜋𝐺𝜌(𝑧)
3𝐻2(𝑧)

=
∑
𝑖

Ω𝑖 (𝑧) (Total energy content) (6.92)

ΩΛ(𝑧) =
8𝜋𝐺𝜌Λ
3𝐻2(𝑧)

(6.93)

Ω𝐾 (𝑧) = − 𝐾

𝑎2(𝑧)𝐻2(𝑧)
. (6.94)

Then the Friedmann equation becomes simply a balancing equation valid at all time/reshift:

Ω +ΩΛ +Ω𝐾 = 1 . (6.95)

In particular, today: ∑
𝑖

Ω𝑖,0 +ΩΛ,0 +Ω𝐾,0 = 1 . (6.96)

For each barotropic fluid of constant equation of state 𝑤𝑖:

Ω𝑖 (𝑧) = Ω𝑖,0

(
𝐻0

𝐻 (𝑧)

)2
(1 + 𝑧)3(1+𝑤𝑖 ) . (6.97)
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Thus, we can introduce the dimensionless expansion rate:

𝐸 (𝑧) ≡ 𝐻

𝐻0
, (6.98)

so that:

𝐸2(𝑧) =
∑
𝑖

Ω𝑖,0(1 + 𝑧)3(1+𝑤𝑖 ) +Ω𝐾,0(1 + 𝑧)2 +ΩΛ,0 . (6.99)

Cosmological eras

Finally, let us assume that the Universe is filled with a non-relativistic fluid and a relativistic one,
as well as a cosmological constant. For simplicity, let us set 𝐾 = 0. We can introduce the critical
density of the Universe:

𝜌𝑐,0 =
3𝐻2

0
8𝜋𝐺

, (6.100)

so that we have:

𝜌𝑚 = Ω𝑚,0𝜌𝑐,0𝑎
−3 = Ω𝑚,0𝜌𝑐,0(1 + 𝑧)3 (6.101)

𝜌𝑟 = Ω𝑟 ,0𝜌𝑐,0𝑎
−4 = Ω𝑟 ,0𝜌𝑐,0(1 + 𝑧)4 (6.102)

𝜌Λ = ΩΛ,0𝜌𝑐,0 . (6.103)

Thus, as illustrated on Fig. 6.7, we see that in an expanding Universe, for generic choices of the
parameters today, the Universe goes through three distinct phases:

1. 𝜌(𝑎) ∼ 𝑎−4 as 𝑎 → 0. This is a Radiation Dominated Era (RDE): when the energy content
and the dynamics of the Universe are dominated by the relativistic fluid;

2. At some point, the non-relativistic fluid starts to dominate the energy content and 𝜌 ∼ 𝑎−3.
This is a Matter Dominated Era (MDE);

3. Finally, provided one waits for long enough, since all energy densities decay except the one
coming from the cosmological constant, a final epoch starts when the expansion of the Uni-
verse is governed by the cosmological constant. This is the Dark Energy Dominated Era
(ΛDE). In the asymptotic future, when all the fluids have been infinitely diluted, the Universe
is in a steady state called the de Sitter Universe.
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Figure 6.7: Log-log plot of the densities in a cosmology with Ω𝑚,0 = 0.317, ΩΛ = 0.683 and
Ω𝑟 ,0 = 2.10−5. The densities are expressed in units of the critical density. Typical values for the
critical density are of the order 𝜌𝑐 ' 1.10−27 kg.m−3.
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These three phases in the history of an expanding Universe will be key for our analysis of the growth
of large-scale structure next year. A last piece of information we will need about the background
is the only characteristic scale that enters this extremely symmetric model: the Hubble radius. The
physical Hubble radius is the (time-dependent) length:

𝑅𝐻 = 𝑐𝐻−1 . (6.104)

So we see that this scale grows during a MDE and a RDE as: 𝑅𝐻 (𝑡) ∝ 𝑡 and is constant during a
ΛDE. Actually, it will be more natural to consider the comoving Hubble scale:

𝑅H = 𝑐H−1. (6.105)

During a RDE, it goes like 𝑅H = 𝑐𝜂, and during a MDE: 𝑅H = 𝑐𝜂/2. On the other hand, it
decreases in a ΛDE: 𝑅H = 𝑅H,𝑖𝜂𝑖/𝜂. We will see next year that this behaviour is key to the
formation of structure.

6.3.5 The hot Big-Bang model

From the behaviour of the FLRW scale factor in presence of relativistic and non-relativistic matter
fluids, we deduced that an expanding Universe, i.e. a Universe that was smaller with denser fluids in
the past, ought to have undergone a transition between two phases: its early history is characterised
by a Radiation Dominated era, followed by a Matter Dominated era. The relativistic fluid that
dominates the dynamics during the Radiation Dominated era has a density:

𝜌𝑟 ∝ 𝑎−4 ∝ (1 + 𝑧)4 . (6.106)

Assuming that this fluid is in thermodynamical equilibrium at temperature 𝑇 and zero chemical
potential (for simplicity), the energy density in terms of the distribution function, 𝑓 (𝑝, 𝑇), of the
particles in the fluid is given by:

𝜌 =
ˆ

𝑓 (𝑝, 𝑇) 𝐸 (𝑝)𝑑3𝑝 . (6.107)

Thus, for relativistic particles with 𝑇 � 𝑚, whether particles are fermions or bosons:

𝜌 ∝ 𝑇4 . (6.108)
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The expanding Universe was hotter in the past (when it was also denser). This is why one talks of a
Hot Big-Bang model. Thus, the temperature of the relativistic fluid (mostly photons) in the past is
given, in terms of redshift by:

𝑇 (𝑧) = 𝑇0(1 + 𝑧) , (6.109)

where 𝑇0 ' 2.725 K is the temperature of the CMB today. Strictly speaking, this is the common
temperature of all matter species in the Universe only as long as all forms of matter remain in
thermal equilibrium. For example, baryons only remain coupled with photons until recombination
and decoupling, after which their temperature starts to deviate from the one of photons. However,
it is common to call the temperature of the CMB the ’temperature of the Universe’ and to use it as
a clock to describe the thermal history of the Universe. Note that during the Radiation Dominated
era:

𝐻 (𝑇) ∝
√
𝜌(𝑇) ∝ 𝑇2 . (6.110)

Thus the typical timescale of expansion of the Universe evolves as:

𝜏𝐻 = 𝐻−1 ∝ 𝑇−2 . (6.111)

Let us consider an interaction between particles with rate Γ (units of inverse time). As long as
Γ � 𝐻, the interaction remains efficient, the particles involved in the interaction have enough time
to interact before being separated by the cosmic expansion, and they remain in thermal equilibrium.
However, as soon as Γ < 𝐻, the interactions freeze and the various particles involved start evolving
independently: they decouple. Considering that the content of our Universe is well-described by
the standard model of particle physics, this leads to an elegant thermal history of the Universe⁴:

1. 𝑇 > 100 GeV; 𝑧 > 1015; 𝑡 < 20 ps: Quantum Gravity; Inflation; Baryogenesis. This very
early period is not described adequately by the standard model of particle physics and its
details remain the topic of conjectures and speculations. For reasons to be explored later, it
seems to include a phase of accelerated expansion of the Universe called inflation, or some-
thing that would produce similar signatures on the later Universe. It also needs to include a

⁴We used that 𝑇0 = 2.275 K ' 2 · 10−4 eV and that 𝑇 (𝑧) = 𝑇0 (1+ 𝑧) to determine the redshifts from the temperatures.
The time 𝑡 is the cosmic time, conventionally set to 0 at the Big-Bang, i.e. the time at which the model becomes singular.
As will become apparent when we introduce inflation, this reference time is actually quite arbitrary in standard cosmology,
as the Big-Bang singularity disappears from the physical Universe and potentially even completely.



The homogeneous and isotropic universe 284

mechanism responsible for the asymmetry between matter and anti-matter that we observe
today.

2. 𝑇 = 100 GeV; 𝑧 = 1015; 𝑡 = 20 ps: Electroweak phase transition. The electromagnetic and
weak interactions separate via the Higgs mechanism, and particles acquire their masses.

3. 𝑇 = 150 MeV; 𝑧 = 1012; 𝑡 = 20 𝜇s: QCD phase transition. Above that temperature, quarks
are asymptotically free, i.e. they are only subjected to the weak interaction. But below that
temperature, the strong interaction kicks in and quarks and gluons form bound states: baryons
(three quarks) and mesons (pairs quark-antiquark).

4. 𝑇 = 1 MeV; 𝑧 = 6 · 109; 𝑡 = 1 s: neutrinos decoupling. Weak interactions are no longer
fast enough to maintain neutrinos in thermal equilibrium with the rest of matter. They decou-
ple and form an hypothetical cosmic neutrino background that should permeate the whole
Universe today (but has not yet been observed) with its own temperature.

5. 𝑇 = 500 keV; 𝑧 = 2 · 109; 𝑡 = 6 s: electron-positron annihilation. Electrons and positrons
cannot be maintained in thermal equilibrium with photons and annihilate, releasing energies
in the photon fluid (reason why the CMB has a different temperature than the cosmic neutrino
background). A small asymmetry between matter and anti-matter is necessary to keep some
electrons around after this phase.

6. 𝑇 = 100 keV; 𝑧 = 4 · 108; 𝑡 = 3 min: Big Bang Nucleosynthesis (BBN). Some protons
and neutrons escape the thermal equilibrium and bound to form atomic nuclei via a complex
network of nuclear reactions. Only the light elements are formed in any significant quantity:
deuterium, helium, lithium and beryllium. The amount of each element formed during this
primordial phase can be calculated very accurately in the standard model and the agreement
of these predictions with observations constitutes one of the most robust pillar of the Hot
Big-Bang model.

7. 𝑇 = 0.75 eV; 𝑧 = 3400; 𝑡 = 60 kyr: Matter-Radiation Equality. The energy densities of
relativistic and non-relativistic matter coincide.

8. 𝑇 = 0.26 − 0.33 eV; 𝑧 = 1100 − 1400; 𝑡 = 260 − 380 kyr: Recombination. Electrons and
baryons (mostly protons and helium nuclei) combine to form atoms (neutral hydrogen, helium



285 The homogeneous and isotropic universe

atoms) via e.g. 𝑒−+𝑝 → 𝐻+𝛾 once the converse reaction is energetically disfavoured. Matter
becomes neutral and the mean-free path of photons increases rapidly. This leads to:

9. 𝑇 = 0.23 − 0.28 eV; 𝑧 = 1000 − 1200; 𝑡 = 380 kyr: Photon decoupling also called simply
decoupling. Before recombination, photons and electrons are tightly coupled via Thomson
scattering: 𝑒− + 𝛾 → 𝑒− + 𝛾. However, when atoms start to form and matter becomes neutral,
free electrons become scarce and Thomson scattering becomes inefficient. Therefore, the
photons mean free path increases rapidly and they decouple from the rest of matter, forming
a thermal bath of radiation that free streams and permeates the Universe: this is the Cosmic
Microwave Background. In parallel, ordinary matter is now free from the influence of the
radiation fluid and can start falling in the gravitational wells of Dark Matter that have already
started to form under their own gravitational pull: structures start to form in the Universe.

10. 𝑇 = 2.6 − 7 meV; 𝑧 = 11 − 30; 𝑡 = 100 − 400 Myr: Reionisation. The formation of the
first stars lead to bursts of energetic radiation which gradually re-ionise the neutral hydrogen
formed during recombination.

11. 𝑇 = 0.33 meV; 𝑧 = 0.4; 𝑡 = 9 Gyr: Dark Energy-Matter equality. The cosmological constant
starts to dominate the dynamics of the Universe. See below.

12. 𝑇 = 0.24 meV; 𝑧 = 0; 𝑡 = 13.8 Gyr: Today.

6.4 The dark sector

In addition to the matter-energy content provided by the standard model of particle physics, the
standard model of cosmology needs to introduce at least two new sources of the gravitational field
to account for the behaviour of the Universe and objects inside it. Because these new sources are,
to date, only felt through their gravitational interaction, and do not seem to interact significantly via
electromagnetic interactions, they are called dark.

6.4.1 Dark Matter

The first dark component that one needs to introduce is an additional fluid of non-relativistic parti-
cles known as Dark Matter. The nature of Dark Matter has not yet been determined and this is a true
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puzzle for fundamental physics. However, as we will see, it is clear that at cosmological/extragalac-
tic scales, something peculiar happens that needs to be explained. The standard lore is to assume
the presence of DarkMatter and to hope that its constituents will be identified at some point, be they
fundamental particles, condensates of fundamental particles, or even small black holes formed in
the primordial phases of the history of the Universe and remaining to this day. Alternatives consider
that gravity and/or inertia itself is modified to account for the unexpected phenomena. Although
these are puzzling and interesting possibilities, we will not explore them in this introductory course.

The first evidence for Dark Matter comes from the observations of distant spiral galaxies. The
visible part of a spiral galaxy forms a thin disc of radius 𝑅𝑑 ∼ a few kpc, with stars orbiting in
quasi-circular orbits. Newtonian mechanics applied to the motion of these stars leads to a profile of
velocity as a function of the distance to the centre of the galaxy 𝑟 given by:

𝑣2(𝑟)
𝑟

=
𝐺𝑀 (< 𝑟)

𝑟2 , (6.112)

where 𝑀 (< 𝑟) is the total mass contained within a shell of radius 𝑟 . Thus, at distances 𝑟 ≥ 𝑅𝑑

beyond the size of the disc, if all the mass of the galaxy is contained into stars (and interstellar gas),
𝑀 (< 𝑟) → 𝑀 reaches a constant value, and the velocity profile should scale like:

𝑣(𝑟) ∝ 1
√
𝑟
. (6.113)

But observations do not support such a decrease. Instead, the velocity profile reaches a constant
value 𝑣∞ ≠ 0 as 𝑟 becomes large. This is illustrated for a specific galaxy on Fig. 6.8.

Such a profile requires the presence of additionalmatter beyond the observable disc of the galaxy,
with a distribution of mass going as:

𝑀 (𝑟) ∝ 𝑟 for 𝑟 ≥ 𝑅𝑑 , (6.114)

which, for a spherically distributed halo, corresponds to an additional density of matter 𝜌(𝑟) ∼ 1/𝑟2.
This is Dark Matter on galactic scales. The presence of such halos has also been confirmed by
gravitational lensing of distant light by galaxies and clusters of galaxies. Finally, let us mention that
Dark Matter is also needed on cosmological scales:

• BBN gives us a precise measurement of the ratio of baryonic matter to radiation in the Uni-
verse and the amount of radiation can be inferred from observation of the CMB. These facts
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Figure 6.8: Rotation Velocity in the galaxy NGC6503, together with the respective contributions
from diffuse gas, stars (labelled luminous), and the Dark Matter halo necessary to account for the
observed profile. From [3].

in combination lead to a small energy density of baryons, too small to constitute the entire
energy budget in non-relativistic particles.

• We will see that during the Matter Dominated era, small-scale matter overdensities grow like
the scale factor: 𝛿 ∝ 𝑎 ∝ 1/(1 + 𝑧). However, baryons can only start to grow structure after
they decouple from photons This means that, if the non-relativistic fluid only consisted of
baryons, an overdensity of size 1 today should have been of size ∼ 10−3 at decoupling. This is
2 orders of magnitude larger than the overdensities in the photon-baryon plasma at decoupling
inferred from the observations of the CMB. Thus structures have had to start forming earlier,
in a fluid that did not feel the pressure waves of the plasma: a weakly interacting Dark Matter
component does just that.

6.4.2 Late-time Universe: Λ

Dark Matter is thus required to explain the formation and behaviour of structure in the Universe.
On the largest scales and latest times, on the other hand, another problem arises. Let us introduce
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the deceleration parameter:
𝑞0 = − ¥𝑎

𝑎𝐻2 |𝑡=𝑡0
. (6.115)

Note that, neglecting radiation in the late Universe:

𝑞0 =
1
2
Ω𝑚,0 −ΩΛ,0 . (6.116)

We can then Taylor expand all quantities around the present time, e.g., at the relevant, dominant
orders:

𝑎(𝑡) ' 1 + 𝐻0 (𝑡 − 𝑡0) −
1
2
𝑞0𝐻

2
0 (𝑡 − 𝑡0)

2 (6.117)

𝑧(𝑡) ' −𝐻0 (𝑡 − 𝑡0) (6.118)

𝐸 (𝑧) ' 1 + (1 + 𝑞0) 𝑧 . (6.119)

Thus, the luminosity distance of a distant object at small redshift behaves like:

𝐷𝐿 (𝑧) ' 𝐻−1
0

(
𝑧 + 1 − 𝑞0

2
𝑧2

)
. (6.120)

It is possible to calibrate the luminosity curves of Type 1a Supernovæ and use them as standard can-
dles, i.e. as distant objects whose intrinsic luminosity can be determined. Then, one can measure
their apparent luminosity on Earth and determine their luminosity distance. By measuring their red-
shift, one can thus determine a distance-redshift relation 𝐷𝐿 (𝑧) and constrain cosmology. Actually,
the quantity that is usually being reported in the distance modulus:

𝜇(𝑧) − 𝑀 = −2.5 log
[

𝜙(𝑧)
𝜙 (10 pc)

]
, (6.121)

where 𝜙(𝑧) is the flux of a source located at redshift 𝑧 and 𝜙 (10 pc) the one of a source at 10 pc.
The factor −2.5 is arbitrary and was chosen to match the definition of magnitude given by Hipparcos
for stars. 𝜇(𝑧) is the apparent, measured, magnitude of the object, and 𝑀 its absolute magnitude
defined with respect to the magnitude of the Sun:

𝑀 = −2.5 log
(

𝐿

3.8 × 1026 W

)
+ 4.75 . (6.122)

Such observations have been performed with greater and greater accuracy since 1998, and con-
sistently report 𝑞0 < 0, i.e. a relation whose second derivative at the origin is larger than 𝐻−1

0 . But
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Figure 6.9: Distance modulus of distant Supernovæ 1a and residuals with respect to a flat FLRW
Universe with Cold Dark Matter and 𝐾 = 0. From [5].

this is only possible if ΩΛ,0 ≠ 0, in other words, if Λ ≠ 0. Moreover, it means that the expansion of
the Universe is currently accelerating: ¥𝑎 > 0, a phenomenon that cannot emerge from any standard
source of the gravitational field. Thus, if one were to assume Λ = 0, one would have to introduce
some non-standard, exotic matter source (or modify gravity) to ensure ¥𝑎 > 0; this is what is dubbed
Dark Energy. So far, there is no evidence favouring an exotic Dark Energy over a simple cosmo-
logical constant so in what follows we will limit our discussion to this simple scenario. Fig. 6.9
summarises measurements of the distance-redshift relation from various recent projects. Note that
cosmological evidence for the presence of a cosmological constant are now numerous and we do
not only rely on these 𝑚(𝑧) diagrams.

6.5 Limits of the model: Inflation

The hot Big-Bang model we just described has been extraordinarily successful at explaining a wide
range of observations, as well as at predicting some quantities that were measured later. By any
measure, it is a very successful scientific model. However, it suffers from a few shortcomings that
have to do with its initial state. The initial singularity is clearly a problem, but we are going to
see that it is not just a mathematical one. Rather, it comes with some physical implications that
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are quite puzzling and need to be overcome. This will be the role played by a phase in the history
of the Universe taking place before the radiation dominated epoch and known as cosmic inflation.
Let us stress immediately that although the principles of inflation and its overall phenomenology
are very useful in solving the problems of the hot Big-Bang model, inflation as a model does not
enjoy the same status as the rest of the cosmological model. In particular, it is not as well tested
and constrained as the hot Big-Bang phase. There are essentially four problems with the standard
Big-Bang model:

• The causality problem. In the hot Big-Bang, regions of spacetime that appear extremely
similar to us did not have enough time to interact with each other. But then, why are they so
similar?

• The flatness problem. In the standard, ΛCDM model, the Universe appears to be close to
spatially flat today. In the Hot Big-Bang model, that means it must have started extremely flat
at the Big-Bang. How can it be?

• The relic problem. At high energies, close to the initial singularity, phase transitions should
have produced topological defects with very high densities. Why don’t we see them around
us?

• The origin of structures problem. How are the seeds for structure formation generated?

Inflation will somehow solve all these problems at once. In this section, we will highlight the
problems of the standard model listed above and sketch how inflation solves the first three of them,
that is, the ones which have to do with the background expansion history, rather than with structures.
A somewhat more detailed treatment of inflation can be found in Chapter 5, in particular as far as
the origin of structures is concerned (which will not be treated it).

6.5.1 The causality problem

Let us consider an observer 𝑂 (’Us’) today (at 𝜂 = 𝜂0), observing the Cosmic Microwave back-
ground emitted at 𝜂𝑑𝑒𝑐. The situation is summarised on Fig. 6.10 in an (𝜂, 𝜒) diagram. The sur-
face of last scattering for 𝑂⁵ appears as a sphere of radius given by the comoving radial distance

⁵This is the surface obtained as the section of the space at time 𝑡𝑑𝑒𝑐 at which photons decouple from baryonic matter
by the past lightcone of the observer 𝑂. Strictly speaking, decoupling is not instantaneous, and last-scattering for an
observer is not quite a surface, but this does not modify the argument and we will ignore this subtlety.
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Figure 6.10: Spacetime diagram to illustrate the causality problem

𝜒(𝑧𝑑𝑒𝑐) =
´ 𝑧𝑑𝑒𝑐

0 𝑑𝑧′/𝐻 (𝑧′). Thus, the diameter represented on the diagram is given by:

𝑑𝑡𝑜𝑡 ,𝑑𝑒𝑐 = 2
ˆ 𝑧𝑑𝑒𝑐

0
d𝑧′/𝐻 (𝑧′) ' 2 × 1.93𝐻−1

0 , (6.123)

where we used standard values for the cosmological parameters and we neglected the effect of the
cosmological constant on the expansion history (the argument is not affected by this approximation).
Let us now consider events at 𝜂 = 𝜂𝑑𝑒𝑐 located on or inside the past lightcone of 𝑂. The regions of
space at the initial time (at the Big-Bang), 𝜂 = 0, which have had time to influence these events at
𝜂𝑑𝑒𝑐 are balls at 𝜂 = 0 with (comoving) diameters:

𝑑𝑖 = 2
ˆ +∞

𝑧𝑑𝑒𝑐

d𝑧′

𝐻 (𝑧′) ' 2 × 4 · 10−2𝐻−1
0 . (6.124)

On the other hand, the intersection of the past lightcone of 𝑂 with the initial space slice at 𝜂 = 0,
which gives the set of all the points that actually influenced the events on or inside the last scattering
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surface seen by 𝑂, delimits a ball of (comoving) diameter:

𝑑𝑡𝑜𝑡 ,𝑖 = 2
ˆ +∞

0

d𝑧′

𝐻 (𝑧′) ' 2 × 1.98𝐻−1
0 . (6.125)

Therefore, the number of disconnected regions at the Big Bang, each able to influence a different
point on or inside the last scattering surface is roughly given by:

𝑁 '
(
𝑑𝑡𝑜𝑡 ,𝑖
𝑑𝑖

)3
' 105 . (6.126)

The corresponding points at 𝜂𝑑𝑒𝑐 have not had time to interact in any causal way but if we live in
an almost FLRW Universe, they ought to have almost the same temperature, as seen in the CMB
temperature anisotropies which are of the order of 10−5. Unless the initial conditions at 𝜂 = 0 were
set extremely precisely (fine-tuned) to ensure this coincidence at 𝜂𝑑𝑒𝑐, this is not possible.
One might be worried that this argument depends on the Copernican principle, since we talk about
events located inside our past lightcone at last scattering, so events that we do not observe. We can
turn things around and examine what happens on the last scattering surface only. Consider now an
event located at 𝜂 = 0. The intersection of the inside of its future lightcone with the hypersurface
at last scattering will be a ball of proper diameter:

𝐷𝑖 =
1

1 + 𝑧𝑑𝑒𝑐
𝑑𝑖 ' 2 × 4 × 10−5𝐻−1

0 . (6.127)

If it intersects the last scattering surface, it does so on a patch with typical size 𝐷𝑖 . On the other
hand, the distance form 0 to the last scattering surface is given by:

𝐷 =
1

1 + 𝑧𝑑𝑒𝑐
𝑑𝑡𝑜𝑡 ,𝑑𝑒𝑐 ' 2 × 10−3𝐻−1

0 . (6.128)

This means that the angular size, as seen from 0, of a patch of the last scattering surface that has
been influenced by an event at the Big-Bang is given by:

Δ𝜃 ' 𝐷𝑖
𝐷

' 2 × 10−2 ∼ 1𝑜 . (6.129)

The number of such disconnected patches on the CMB sky is roughly given by the ratio of the solid
angles:

𝑁 ′ ' Δ𝜃2

4𝜋
' 104 . (6.130)

All these patches have not had time to thermalise by causal contact and yet, they exhibits remarkably
similar properties on the sky observed by 0. How is this possible?
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6.5.2 The flatness problem

In a hot Big-Bang scenario, still neglecting the effects ofΛ for simplicity, we can write the evolution
of the curvature parameter as:

Ω𝐾 (𝑧) =
Ω𝐾,0

Ω𝑚,0(1 + 𝑧) +Ω𝑟 ,0(1 + 𝑧)2 . (6.131)

The problem is that this function is decreasing: since we observe a small curvature parameter today,
typically

��Ω𝐾,0�� < 10−2, the effect of curvature needs to have been even smaller in the past. In the
early Universe, close to the Big-Bang:

Ω𝐾 (𝑧) ∼
Ω𝐾,0
Ω𝑟 ,0

(1 + 𝑧)−2 when 𝑧 → +∞ . (6.132)

Thus, using Ω𝑟 ,0 ∼ 10−5: ��Ω𝐾,𝑖 �� < 103 (1 + 𝑧𝑖)−2 . (6.133)

At BBN, this bound is of order 10−7 and it reaches 10−61 at the Planck time. Therefore, the Universe
needs to start in an extremely flat configuration in order to get a very flat Universe today. Of course,
this is only a problem if one considers that this is an unnatural initial state; in absence of a measure
giving us the likelihood of a given curvature, this is impossible to assess. Therefore, this problem
with the hot Big-Bang is of a different nature than the causality problem. Whereas the latter is
really linked to a physical difficulty, the former is only a problem as far as ”taste” for ”natural”
initial conditions is concerned.

6.5.3 The relic problem

As we have seen, as the Universe cools down, some phase transitions occur when fundamental
symmetries are broken. If Grand Unified scenarii are correct, when the Grand Unification theory
breaks down, at the very early stages of the Radiation Dominated epoch, some topological defects
such as monopoles are created. These carry a very large amount of energy density that, if present,
would completely dominate the expansion of the Universe and change the expansion history that
we know. So, why are these topological defects not around and dominating the expansion of the
Universe?
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6.5.4 Origin of structure

Finally, as we mentioned before, we need to find a way to generate density fluctuations in the early
Universe that are large enough to give rise to the structures we observe via gravitational infall. More-
over, because of the behaviour of the Hubble radius, we know that, in a Universe with only a matter
dominated and a radiation dominated eras, all physical scales on which we observe fluctuations
in the matter distribution today will eventually exit the Hubble radius if we trace them backward
in time far enough. This means that these fluctuations cannot have been generated causally in the
Hot Big-Bang model (because the Hubble radius fixes approximately the scale below which causal
processes are efficient in the Universe; see below). How is this possible?

6.5.5 The idea of inflation

Let us get back to the comoving distance between a point at an initial time 𝑡𝑖 for the expansion of
the Universe and a point at time = 𝑡 further in the future:

𝜒(𝑡) =
ˆ 𝑡

𝑡𝑖

d𝑡′

𝑎 (𝑡′) =
ˆ ln 𝑎

ln 𝑎𝑖
H−1 (𝑎′) d ln 𝑎′ , (6.134)

where we have written 𝑎𝑖 = 𝑎(𝑡𝑖). Note that here, since we want to replace the Big-Bang by some-
thing else, we do not yet assume that 𝑎𝑖 = 0. For a perfect fluid with 𝑤 = 𝑐𝑠𝑡, the comoving Hubble
scale H−1 = (𝑎𝐻)−1 behaves as:

H−1 = (𝑎𝐻)−1 ∝ 𝑎 (1+3𝑤)/2 . (6.135)

Thus, for standard matter, with 1 + 3𝑤 > 0, this scale increases with the expansion of the Universe.
But thismeans that the integral in Eq. (6.134) is dominated by its upper limit and receives a vanishing
contribution from the early times. Indeed, performing the integral (and using the fact that we are
tracing lightrays, so that 𝑑𝜒 = −𝑑𝜂), we get:

𝜒(𝑎) = 𝜂 − 𝜂𝑖 ∝ 𝑎 (1+3𝑤)/2 − 𝑎 (1+3𝑤)/2
𝑖 , (6.136)

with 𝜂𝑖 ∝ 𝑎 (1+3𝑤)/2
𝑖 . Note that 𝜒(𝑎) is always finite and that 𝜂𝑖 → 0 when 𝑎𝑖 → 0, i.e. in case of a

Big-Bang singularity. But what happens if, at early times, i.e. before the radiation dominated era,
there is an era with 1 + 3𝑤 < 0? In that case, we have that:

d
d𝑡
H−1 ∝ 1 + 3𝑤

2
𝑎 (3𝑤−1)/2H < 0 . (6.137)
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Therefore, the comoving Hubble scale H−1 now decreases as 𝑎 increases. But this means that, in
that case, the integral in Eq. (6.134) is dominated by its lower bound, and that the Big-bang sigularity
gets pushed to negative values of the conformal time:

𝜂𝑖 ∝
2

1 + 3𝑤
𝑎 (1+3𝑤)/2
𝑖 → −∞ when 𝑎𝑖 → 0 . (6.138)

In principle, by choosing this early phase to be arbitrarily long, one can push the Big-Bang singular-
ity arbitrarily far into the past, thus asymptotically ridding the cosmological model of the Big-Bang
singularity. This means one has ”much more conformal time available” between the singularity
and decoupling, allowing for regions to interact causally. The comoving distance between the Big-
Bang and decoupling can now be made arbitrarily large. This early phase during which H−1 is a
decreasing function of time is known as inflation, since:

d
d𝑡
H−1 = − ¥𝑎

¤𝑎2 < 0 ⇒ ¥𝑎 > 0 , (6.139)

meaning that the expansion is actually accelerating. The behaviour of causally connected regions in
a Universe with an early inflationary phase is presented in Fig. 6.11, to be contrasted with what we
saw in a standard Big-Bang model. Fig. 6.12 also presents the behaviour of the comoving Hubble
scale and of physical scales in such a Universe. Note that during inflation, scales that were initially
sub-Hubble are expelled for the comoving Hubble scale and only re-enter later, during the standard
hot-Big-Bang phase, either when radiation or matter dominate the expansion. That will explain
why structures that are sub-Hubble today but were super-Hubble in the past actually formed causally:
they were actually sub-Hubble in an even more distant past, during inflation. Howmuch inflation do
we need to solve the causality problem? At the very least, we need the observable Universe today to
fit into the comoving Hubble radius at the beginning of inflation. This will ensure that all the points
in our Hubble volume today will have been in causal contact at some point during inflation, before
separating out later. Note that this is much more conservative than using the comoving distance to
decoupling (which is what we really need to ensure causality), because we have 𝜒 (𝑧𝑑𝑒𝑐) > 𝐻−1

0 so
if our condition is satisfied, so is the condition on the comoving size of the last scattering surface.
Calculations are simpler this way. Our condition corresponds to (keeping 𝑎0 = 1 for symmetry in
the expressions):

(𝑎0𝐻0)−1 < (𝑎𝐼𝐻𝐼 )−1 . (6.140)
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Figure 6.11: How the causality problem is resolved by an early phase of inflation. In the red region,
two antipodal points on the last scattering surface which would have been totally causally discon-
nect in the standard Big-Bang scenario, can now have interacted in their past, thus thermalising by
physical process and sharing a nearly equal temperature, as observed. The choice of 𝜂𝑖 must be
made such that at least antipodal points have interacted; this ensures that other points on the last
scattering surface will also have had time to interact.
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Now, neglecting the matter dominated and Λ dominated phases (which lower the comoving Hubble
radius compared to keeping only radiation, so our bound is stronger here), we get:

𝑎0𝐻0

𝑎𝐸𝐻𝐸
' 𝑎0

𝑎𝐸

(
𝑎𝐸
𝑎0

)2
=
𝑎𝐸
𝑎0

=
𝑇0

𝑇𝐸
. (6.141)

Assuming that the end of inflation is around the Grand Unified Theory scale (which ensures that the
monopoles get diluted by inflation and thus also solves the relic problem), so that 𝑇𝐸 ∼ 1015 − 1016

GeV, we find that:
(𝑎𝐼𝐻𝐼 )−1 > 1028 (𝑎𝐸𝐻𝐸)−1 , (6.142)

thus, the comoving Hubble radius must shrink by 28 orders of magnitude during inflation. For an
almost constant Hubble rate, this implies that the number of e-folds must be:

𝑁 ≡ ln
(
𝑎𝐸
𝑎𝐼

)
> 64 . (6.143)

Note that in terms of physical distance, this corresponds to a physical Hubble radius 𝐻−1 increasing
dramatically. Such a huge amount of inflation, in addition to solving the causality problem and the
monopole problem (because the volume increases so much that the density of monopoles, if they
exist, decreases dramatically), also addresses the flatness problem. This is because during inflation,
the parameterΩ𝐾 (𝑎) actually decreases dramatically. Hence any curvature present at the beginning
of inflation would have been wiped out by a factor 10−56:

Ω𝐾 (𝑎𝐸)
Ω𝐾 (𝑎𝐼 )

=

(
𝑎𝐼𝐻𝐼
𝑎𝐸𝐻𝐸

)2
<

(
10−28

)2
= 10−56 . (6.144)

The physical volume of the Universe increases so much during inflation that the curvature becomes
very small.

6.6 A concordance model

The FLRW Universe with Λ ≠ 0, some Cold Dark Matter, and flat spatial sections (𝐾 = 0) is
called the concordance model of cosmology. In addition to the parameters of the standard model
of particle physics (that are considered determined and fixed in the concordance model), it contains
a certain number of free parameters that need to be determined by observations or principles. The
6 cosmological parameters that are left free and to be determined in the concordance model are
usually:
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Figure 6.12: Upper part: Behaviour of comoving scales in an inflationary Universe. Inflation starts
at 𝑎𝐼 and ends at 𝑎𝐸 , after which the standard hot Big-Bang expansion starts: rafiation dominated
era followed by a matter dominated era (the effects of the cosmological constants are ignored for
illustrative purposes here). Comoving scales 𝜆 < 𝑎𝐼𝐻𝐼 start sub-Hubble and are expelled from
the Hubble sphere during inflation. They only re-enter the Hubble radius during the Hot Big-Bang
phase. Lower part: Qualitative behaviour of a section of the comoving Hubble sphere. The tran-
sition between inflation and the radiation dominated phase is called reheating and is yet poorly
understood.
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1. the physical baryon density: Ω𝑏,0ℎ2, where ℎ = 𝐻0/(100 km/s/Mpc);

2. the physical CDM density: Ω𝑐,0ℎ2 =
(
Ω𝑚,0 −Ω𝑏,0

)
ℎ2;

3. the age of the Universe: 𝑡0;

4. the optical depth of reionisation 𝜏;

5. the scalar spectral index 𝑛𝑠 (a parameter of inflation; see below);

6. the amplitude of initial curvature perturbations Δ2
𝜁 (a parameter of inflation; see below).

The cosmological parameters that are fixed by default in the concordance model are:

1. the curvature parameter: 𝐾 = 0;

2. the tensor to scalar ratio: 𝑟 = 0 (a parameter of inflation; see below);

3. the running of the spectral index: 𝑑𝑛𝑠
𝑑 ln 𝑘 = 0;

4. the sum of the masses of neutrinos:
∑
𝑚𝜈 = 0.06 eV/c2;

5. the effective number of relativistic degrees of freedom: 𝑁𝑒 𝑓 𝑓 = 3.046.

All other parameters can be determined by calculations. Today, due to the not so small number
of these parameters, and to intrinsic degeneracies between them in observables, the most precise
determination of these parameters, or any different combination of those and extra parameters that
one may want to leave free, comes from combining constraints that can be inferred from different
observations, e.g., CMB anisotropies, supernovæ 1a, Baryon Acoustic Oscillations, Weak lensing
shear surveys, BBN, galaxy number counts etc. This is why the model is called concordant: it pro-
vides the minimal, ”simplest” model that can account for most (if not all) of the current observations
available on our Universe. Over the last decade, as observations became more and more precise,
some tensions started to appear in this concordance model. Careful scrutiny and more and more
precise observations have not led to any resolution of these tensions but it remains unclear whether
or not such issues can be attributed to new physics, beyond the minimal ΛCDM model, to system-
atic biases due to our inability to accurately model non-linear physics on multiple scales to fit the
model to observations, or to observational errors. As a matter of fact, there is not a single model
that can currently account for all these tensions at once at still pass with success all the other tests
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that ΛCDM passed. Therefore, for pedagogical purposes, we can concentrate on this model. Devia-
tions from it are small and, although they might prove very important from a conceptual level, they
will most likely not alter the big picture significantly. The interested students will find an extensive
review of these recent issues in [2].
We will use the following nominal values for background cosmological parameters, unless other-
wise stated:

Nominal background parameters

Ω𝐾,0 = 0 (6.145)

Ω𝑚,0 = 0.32 (6.146)

Ω𝑏,0 = 0.05 (6.147)

ΩΛ,0 = 0.68 (6.148)

Ω𝑟 ,0 = 10−4 (6.149)

𝐻0 = 67 km/s/Mpc. (6.150)
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This appendix sums up some preliminary notions that must already be known by students in one
context or another. We are merely presenting them to refresh their memories and lay down some
notations. It can be omitted by readers with a physicist’s mind.
Proofs are omitted and students wishing to access some of them are encouraged to use mathematics
textbooks.

A.1 Maps
Map

Consider two (abstract) sets 𝑋 and 𝑌 . A map (or mapping) 𝑓 between 𝑋 and 𝑌 is a rule that
assigns an element 𝑦 ∈ 𝑌 to each element 𝑥 ∈ 𝑋 . This is denoted:

𝑓 : 𝑋 → 𝑌 . (A.1)

The action of the map 𝑓 on elements of 𝑋 is summarised as:

𝑓 : 𝑥 ↦→ 𝑦 . (A.2)

Note that the same 𝑦 ∈ 𝑌 may correspond to more that one element of 𝑋 via the map 𝑓 . A subset
of 𝑋 whose elements are mapped to 𝑦 ∈ 𝑌 is called the inverse image of 𝑦 by 𝑓 , and is denoted
𝑓 −1(𝑦) = {𝑥 ∈ 𝑋, 𝑓 (𝑥) = 𝑦}. The set 𝑋 is called the domain of the map 𝑓 , while 𝑌 is called the
range of 𝑓 . The image of the map is the set:

𝑓 (𝑋) = {𝑦 ∈ 𝑌, ∃𝑥 ∈ 𝑋, 𝑦 = 𝑓 (𝑥)} ⊆ 𝑌 . (A.3)

It is important to realise that the domain and the range are an integral part of the definition of a map.
Consider, for example 𝑓 : 𝑥 ↦→ exp(𝑥). If 𝑋 = 𝑌 = R, then −1 has no inverse image, whereas, if
𝑋 = 𝑌 = C, we have, 𝑓 −1(−1) = {(2𝑘 + 1)𝜋i, 𝑘 ∈ Z}.

Type of maps

Consider a map 𝑓 : 𝑋 → 𝑌 .

• 𝑓 is called injective iff ∀(𝑥, 𝑥′) ∈ 𝑋2, 𝑥 ≠ 𝑥′ ⇒ 𝑓 (𝑥) ≠ 𝑓 (𝑥′).

• 𝑓 is called surjective iff ∀𝑦 ∈ 𝑌, ∃𝑥 ∈ 𝑋, 𝑓 (𝑥) = 𝑦.
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• 𝑓 is called bijective iff it is both injective and surjective. This translates into: ∀𝑦 ∈
𝑌, ∃!𝑥 ∈ 𝑋, 𝑓 (𝑥) = 𝑦.

Given amap 𝑓 : 𝑋 → 𝑌 , and 𝐴 ⊂ 𝑋 , we can define the restriction of 𝑓 to 𝐴, denoted 𝑓 |𝐴 : 𝐴 → 𝑌 ,
by 𝑓 |𝐴(𝑎) = 𝑓 (𝑎) for any 𝑎 ∈ 𝐴 ⊂ 𝑋 .
Given three sets 𝑋 , 𝑌 and 𝑍 , and two maps 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍 , we can define the
composition of 𝑓 and 𝑔, denoted 𝑔 ◦ 𝑓 : 𝑋 → 𝑍 or 𝑔 𝑓 : 𝑋 → 𝑍 , by:

∀𝑥 ∈ 𝑋, (𝑔 ◦ 𝑓 ) (𝑥) = 𝑔 ( 𝑓 (𝑥)) . (A.4)

Now, let us consider two sets 𝑋 and 𝑌 , and suppose that some algebraic structures (i.e. operations,
e.g. additions, products etc.) are given on 𝑋 and 𝑌 . A mapping 𝑓 : 𝑋 → 𝑌 that preserves these
algebraic structures is called an homomorphism. For example, suppose that both 𝑋 and 𝑌 are en-
dowed with a product. Then, if, ∀(𝑥, 𝑥′) ∈ 𝑋2, 𝑓 (𝑥𝑥′) = 𝑓 (𝑥) 𝑓 (𝑥′), 𝑓 is an homomorphism.
An important class of homomorphisms is the one of group homomorphisms: suppose that 𝑋 and 𝑌
are two groups with operations ∗ and + respectively (be careful, these are not necessarily a multipli-
cation and an addition), then, if 𝑓 : 𝑋 → 𝑌 is an homomorphism ( 𝑓 (𝑎 ∗ 𝑏) = 𝑓 (𝑎) + 𝑓 (𝑏)),
it is called a group homomorphism; in essence, it preserves the group structure. An easy ex-
ample of group homomorphism is given by the exponential map exp : R → R, for which:
∀(𝑎, 𝑏) ∈ (R, +), exp(𝑎 + 𝑏) = exp(𝑎). exp(𝑏); therefore, it is a group homomorphism between
the group of real number with addition and the group of positive real numbers with multiplication.

If an homomorphism 𝑓 : 𝑋 → 𝑌 is bijective, it is called an isomorphism, and 𝑋 and𝑌 are said
to be isomorphic. This is denoted 𝑋 � 𝑌 .

A.2 Vector spaces and linear algebra

A.2.1 Vector spaces
Vector space

A vector space 𝑉 over the field of numbers 𝐾 (R or C for example) is a set of elements 𝑣,
called vectors of 𝑉 , with two operations:

• an addition, denoted +, which, to any pair (𝑣, 𝑤) ∈ 𝑉2 associates a third element 𝑢 ∈ 𝑉
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written 𝑢 = 𝑣 + 𝑤,

• and a scalar multiplication, which, to any elements 𝑣 ∈ 𝑉 and 𝑎 ∈ 𝐾 , assigns an
element 𝑤 ∈ 𝑉 such that: 𝑤 = 𝑎𝑣.

Moreover, the addition is supposed to have a neutral element 0 ∈ 𝑉 such that the following
axioms are satisfied:

• ∀(𝑣, 𝑤) ∈ 𝑉2, 𝑣 + 𝑤 = 𝑤 + 𝑣 (Commutativity of +);

• ∀(𝑢, 𝑣, 𝑤) ∈ 𝑉3, (𝑢 + 𝑣) + 𝑤 = 𝑢 + (𝑣 + 𝑤) (Associativity of +);

• ∀𝑣 ∈ 𝑉, 𝑣 + 0 = 𝑣 (0 is the neutral element for the addition);

• ∀𝑣 ∈ 𝑉, ∃! − 𝑣, 𝑣 + (−𝑣) = 0 (Existence of an inverse for the addition);

• ∀𝑎 ∈ 𝐾, ∀(𝑣, 𝑤) ∈ 𝑉2, 𝑎(𝑣 + 𝑤) = 𝑎𝑣 + 𝑎𝑤 (Distributivity of the multiplication with
respect to the addition);

• ∀(𝑎, 𝑏) ∈ 𝐾2, ∀𝑣 ∈ 𝑉, (𝑎 + 𝑏)𝑣 = 𝑎𝑣 + 𝑏𝑣 (Distributivity of the scalar multiplication
with respect to the field addition);

• ∀𝑣 ∈ 𝑉, 1𝑣 = 𝑣 (1 is the neutral element for the scalar multiplication).

Such a vector space will be denoted (𝑉, 𝐾, +, .). Usually, the numbers 𝑎 ∈ 𝐾 are called
scalars.

As far as this course is concerned, we will limit our study to vector spaces of finite dimensions.
The typical example of a vector space is R𝑛 =

{
𝑣 = (𝑥1, 𝑥2, ..., 𝑥𝑛), ∀𝑝 ∈ {1, 2, ..., 𝑛}, 𝑥𝑝 ∈ R

}
,

considered as the set of ordered lists of 𝑛 elements of R, together with the field R and the addition
and scalar multiplication given by:

• ∀𝑣 = (𝑎1, 𝑎2, ..., 𝑎𝑛) ∈ R𝑛, ∀𝑤 = (𝑏1, 𝑏2, ..., 𝑏𝑛) ∈ R𝑛, 𝑣+𝑤 = (𝑎1+𝑏1, 𝑎2+𝑏2, ..., 𝑎𝑛+𝑏𝑛);

• ∀𝑣 = (𝑎1, 𝑎2, ..., 𝑎𝑛) ∈ R𝑛, ∀𝑐 ∈ R, 𝑐𝑣 = (𝑐𝑎1, 𝑐𝑎2, ..., 𝑐𝑎𝑛).

In particular, in the case 𝑛 = 2, (R2,R, +, .) defined as above can be simply identified with the
Cartesian plane, and the vectors of R2 are the usual vectors of plane geometry. In the same way, R3

can be viewed as the vector space of vectors in three dimensions.
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It is obvious that the same properties apply toC𝑛. In particular,R andC are vector spaces, hence, the
field 𝐾 on which our vector spaces are defined can always be seen as a vector space. An important
concept in the study of vector spaces is the existence of linear relations between vectors.

Linear combinations

Let 𝑉 be a vector space on the field 𝐾 . Let 𝑟 ∈ N∗. Let ∀𝑖 ∈ {1, 2, ..., 𝑟}, 𝑣𝑖 ∈ 𝑉 and
∀𝑖 ∈ {1, 2, ..., 𝑟}, 𝑎𝑖 ∈ 𝐾 . The vector of 𝑉 defined by 𝑤 =

∑𝑟
𝑖=1 𝑎𝑖𝑣𝑖 is said to be a linear

combination of the vectors 𝑣1, 𝑣2, ..., 𝑣𝑟 .
The set (𝑣1, 𝑣2, ..., 𝑣𝑟 ) is said to be linearly independent if and only if:

𝑟∑
𝑖=1

𝑎𝑖𝑣𝑖 = 0 ⇒ ∀𝑖 ∈ {1, 2, ..., 𝑟}, 𝑎𝑖 = 0. (A.5)

If this is not the case, the set (𝑣1, 𝑣2, ..., 𝑣𝑟 ) is said to be linearly dependent.

For example, consider the vector space R2 over the field R. Consider the vectors (0, 1), (1, 0)
and (0, 2). The neutral element for the addition in R2 is 0 = (0, 0). We clearly have ∀(𝑎, 𝑏) ∈
R2, 𝑎(0, 1) + 𝑏(1, 0) = (𝑏, 𝑎). Hence, ∀(𝑎, 𝑏) ∈ R2, 𝑎(0, 1) + 𝑏(1, 0) = 0 ⇒ (𝑎 = 0 and 𝑏 = 0).
So, the set 𝑆 = {(0, 1), (1, 0)} is linearly independent. In the same way, the set {(1, 0), (0, 2)}
is also linearly independent. On the contrary {(0, 1), (0, 2)} is not linearly independent, since
−2(0, 1) + (0, 2) = 0.

As a simple consequence, we see that two vectors are linearly dependent iff one is a multiple of
the other. The maximum number of linearly independent vectors in a vector space 𝑉 is called the
dimension of 𝑉 over the field 𝐾 , and is often denoted dim𝐾 (𝑉), or dim𝑉 if there is no ambiguity on
the field 𝐾 . We can recall the definition of a basis of 𝑉 .

Basis

Let 𝑉 be a vector space on the field 𝐾 . A subset 𝑆 ⊆ 𝑉 is basis of 𝑉 iff:

• 𝑆 is linearly independent;

• Every element of 𝑉 is a linear combination of elements of 𝑆.

Moreover, for any 𝑣 ∈ 𝑉 , the linear combination expressing 𝑣 in terms of the elements of 𝑆
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is unique, up to the ordering of the terms. The unique scalars occurring as coefficients in the
linear combination are called the components of 𝑣 with respect to the basis 𝑆.

As a by-product, we can then state that a subset 𝑆 ⊆ 𝑉 is a basis of 𝑉 iff every element of 𝑉 can
be written uniquely as a linear combination of elements of 𝑆. Moreover, any two bases of a vector
space 𝑉 have the same number of elements, equal to the dimension of 𝑉 .

As an example, in R3, the set {(1, 0, 0), (0, 1, 0), (0, 0, 1)} is obviously a basis. It is usually
called a Cartesian basis, since one can construct from it a set of Cartesian coordinates (𝑥, 𝑦, 𝑧),
such that any vector 𝑣 in R3 can be written uniquely as 𝑣 = 𝑥(1, 0, 0) + 𝑦(0, 1, 0) + 𝑧(0, 0, 1). Of
course, there exist other standard basis of R3. For example, {(1, 0, 0), (0, 1, 1), (0, 0, 1)} also forms
a basis. The dimension of R3 is thus 3, as expected.
Another example is the field 𝐾 on which the vector space is defined. In our case 𝐾 is R or C. Both
are vector spaces of dimension 1 on themselves (C is a vector field of dimension 2 on R).

We call𝑊 ⊆ 𝑉 a subspace of the vector space 𝑉 iff𝑊 is itself a vector space with its structure
inherited from the one of 𝑉 . For example R2 is a subspace of R3. We have the obvious result that
dim𝑊 ≤ dim 𝑉 if𝑊 is a subspace of 𝑉 .

A.2.2 Linear maps; Matrices

Linear map

Let 𝑉 and 𝑊 be two vector spaces over the field 𝐾 , and let 𝑓 : 𝑉 → 𝑊 be a map. 𝑓 is a
linear map (or linear mapping) of 𝑉 into𝑊 iff

∀(𝑣1, 𝑣2) ∈ 𝑉2, ∀(𝑎, 𝑏) ∈ 𝐾2, 𝑓 (𝑎𝑣1 + 𝑏𝑣2) = 𝑎 𝑓 (𝑣1) + 𝑏 𝑓 (𝑣2) . (A.6)

A linear map is said to be an isomorphism if it is 1-1 onto (injective and surjective). Two vector
spaces 𝑉 and𝑊 that are linked by an isomorphism are said to be isomorphic, and we write 𝑉 ' 𝑊 .
Linear functions are supposed to be well-known. For completeness, the reader may refer to standard
textbooks of linear algebra such as Fundamentals of Linear Algebra, K. Nomizu, Mc Graw-Hill
eds.
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Ex: An important property of linear maps

Prove that if 𝑓 is a linear mapping of 𝑉 into𝑊 , we have:

𝑓 (0𝑉 ) = 0𝑊 . (A.7)

Here, we will just cite some results that will be important in the text:

Vector space of linear maps

Let 𝑉 and 𝑊 be two vector spaces. The set of all linear functions of 𝑉 into 𝑊 , denoted
𝐿 (𝑉,𝑊) forms a vector space, if we define the sum and the scalar products as follow:

∀𝑣 ∈ 𝑉, ∀( 𝑓 , 𝑔) ∈ 𝐿 (𝑉,𝑊), ( 𝑓 + 𝑔)(𝑣) = 𝑓 (𝑣) + 𝑔(𝑣) (A.8)

∀𝑣 ∈ 𝑉, ∀𝑎 ∈ 𝐾, (𝑎 𝑓 )(𝑣) = 𝑎 𝑓 (𝑣) . (A.9)

Now, we would like to see how to express linear functions when basis have been chosen in𝑉 and
𝑊 . Let us suppose that dim𝑉 = 𝑛 and dim𝑊 = 𝑚, and let us call (𝑒𝑖)𝑖∈{1,2,...,𝑛} and (𝑤𝑖)𝑖∈{1,2,...,𝑚}

the chosen basis in 𝑉 and𝑊 , respectively. At this point, it will be convenient to introduce a summa-
tion convention called Einstein summation convention, in order to avoid the constant occurrence of
summation symbols. A vector 𝑣 ∈ 𝑉 can be decomposed on the basis (𝑒𝑖)𝑖∈{1,2,...,𝑛} as:

𝑣 =
𝑛∑
𝑖=1

𝑣𝑖𝑒𝑖 , (A.10)

where the 𝑣𝑖’s are the component of the vector in the given basis. We will define the summation
convention to be:

∀𝑣 ∈ 𝑉, 𝑣 = 𝑣𝑖𝑒𝑖 , (A.11)

where a repeated index up and down means that a summation has to be performed over all the
possible values of the index:

𝑣𝑖𝑒𝑖 =
𝑛∑
𝑖=1

𝑣𝑖𝑒𝑖 . (A.12)

The same applies of course in𝑊 . The effect of a linear function on the basis of 𝑉 can then be
summarized as follows:

∀𝑖 ∈ {1, 2, ..., 𝑛}, 𝑓 (𝑒𝑖) = 𝐹 𝑗 𝑖𝑤 𝑗 , (A.13)
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where the 𝐹 𝑗 𝑖 are 𝑚 × 𝑛 coefficients. Indeed, for any 𝑖 ∈ {1, 2, .., 𝑛}, 𝑓 (𝑒𝑖) is an element of 𝑊 ,
and, as such, can be decomposed on the basis (𝑤𝑖)𝑖∈{1,2,...,𝑚} of𝑊 . Now, consider a vector 𝑣 ∈ 𝑉 .
Then, we can write:

𝑓 (𝑣) = 𝑓
(
𝑣𝑖𝑒𝑖

)
= 𝑣𝑖 𝑓 (𝑒𝑖) = 𝑣𝑖𝐹 𝑗 𝑖𝑤 𝑗 =

𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝐹 𝑗 𝑖𝑤 𝑗𝑣
𝑖 . (A.14)

The scalars 𝐹 𝑗 𝑖 are then the components of the matrix associated with 𝑓 in the basis (𝑒𝑖)𝑖∈{1,2,...,𝑛}
and

(
𝑤 𝑗

)
𝑗∈{1,2,...,𝑚} . Hence, in the same way as we think of the components of a vector in a given

basis as the coordinates of this vector, we can say that the entries of a matrix are the coordinates of
the associated linear function in the two basis chosen for the two vector spaces linked by the linear
function. The upper index counts the rows, and the lower index counts the columns.

Consider for example the vector space R3 with the basis 𝒆 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, For
any 𝑣 ∈ R3, we write 𝑣 = 𝑣𝑖𝑒𝑖 . Consider the map:

𝑓 :

{
R3 → R3

𝑣 ↦→
(
2𝑣1 + 𝑣2) 𝑒1 +

(
𝑣3 − 𝑣2) 𝑒2 +

(
3𝑣1 − 𝑣3) 𝑒3

(A.15)

This function is trivially linear. Now, one has:

𝑓 (𝑒1) = 2𝑒1 + 3𝑒3 (A.16)

𝑓 (𝑒2) = 𝑒1 − 𝑒2 (A.17)

𝑓 (𝑒3) = 𝑒2 − 𝑒3 . (A.18)

Hence, because ∀𝑖 ∈ {1, 2, 3}, 𝑓 (𝑒𝑖) = 𝐹 𝑗 𝑖𝑒 𝑗 , in the basis e (on both sides), the matrix associated
to 𝑓 in this basis is:

𝐹 =
©­­­«

2 1 0
0 −1 1
3 0 −1

ª®®®¬ . (A.19)

Hence, one can see that, to determine a linear function, one needs 𝑛 ×𝑚 scalars. This suggests that
the vector space 𝐿 (𝑉,𝑊) has dimension 𝑛×𝑚. This is indeed true, as summarized in the following
proposition.
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Space of linear maps: basis

• dim𝐿 (𝑉,𝑊) = dim𝑉 × dim𝑊 ;

• Let (𝑒𝑖)𝑖∈{1,2,...,𝑛} be a basis of 𝑉 and
(
𝑤 𝑗

)
𝑗∈{1,2,...,𝑚} be a basis of𝑊 . Then, a basis

of 𝐿 (𝑉,𝑊) is given by the linear functions 𝐸 𝑗 𝑖 such that: 𝐸 𝑖 𝑗 (𝑒𝑘) = 𝛿𝑖𝑘𝑤 𝑗 , where 𝛿𝑖𝑘
is the Kronecker symbol, equal to 1 if 𝑖 = 𝑘 and to 0 otherwise.

• If
(
𝐹 𝑗 𝑖

)
𝑖∈{1,2,...,𝑛}; 𝑗∈{1,2,...,𝑚} is the matrix associated to 𝑓 ∈ 𝐿 (𝑉,𝑊) in the basis e

and w, then, the expression for 𝑓 in terms of the basis {𝐸 𝑖 𝑗} of 𝐿 (𝑉,𝑊) is:

𝑓 = 𝐹 𝑗 𝑖𝐸
𝑖
𝑗 . (A.20)

Here is an important result about linear functions. Let 𝑉 and 𝑊 be two vector spaces on a field
𝐾 .

Rank-nullity theorem

Let 𝑓 ∈ 𝐿 (𝑉,𝑊). Then:
dim 𝑉 = dim Im 𝑓 + dim Ker 𝑓 , (A.21)

where Im 𝑓 = {𝑤 ∈ 𝑊, ∃𝑣 ∈ 𝑉, 𝑤 = 𝑓 (𝑣)} is the image of 𝑓 , and Ker 𝑓 = {𝑣 ∈ 𝑉, 𝑓 (𝑣) = 0}.

A.2.3 Inner product

On a vector space 𝑉 over the field 𝐾 (R or C), one can define a new operation known as an inner
product.

Inner product

Let𝑉 be a vector space over 𝐾 (R or C). An inner product on𝑉 is a function 〈., .〉 : 𝑉 ×𝑉 →
𝐾 such that:

(i) Conjugate symmetry: ∀(𝑥, 𝑦) ∈ 𝑉2, 〈𝑥, 𝑦〉 = 〈𝑦, 𝑥〉;

(ii) Linearity: ∀(𝑥, 𝑦, 𝑧) ∈ 𝑉3, ∀𝑎 ∈ 𝐾, 〈𝑎𝑥 + 𝑦, 𝑧〉 = 𝑎〈𝑥, 𝑧〉 + 〈𝑦, 𝑧〉;

(iii) Non degenerate: ∀𝑥 ∈ 𝑉, 〈𝑥, 𝑦〉 = 0 ⇒ 𝑦 = 0.
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Note that in the case 𝐾 = R, the conjugate symmetry becomes a simple symmetry, and the in-
ner product is then a bilinear form (cf section on tensor algebra). Also, in that case, if we have
∀𝑥 ∈ 𝑉, 𝑥 ≠ 0, 〈𝑥, 𝑥〉 > 0 (resp. ∀𝑥 ∈ 𝑉, 𝑥 ≠ 0, 〈𝑥, 𝑥〉 < 0), the inner product is said to be positive
(resp. negative) definite.

A very important type of inner product for us is the standard inner product onR𝑛, usually dubbed
the dot product, or Euclidean inner product. If 𝑥 = (𝑥1, ..., 𝑥𝑛) and 𝑦 = (𝑦1, ..., 𝑦𝑛) are two arbitrary
vectors of R𝑛, the dot product is defined by:

𝑥 · 𝑦 =
𝑛∑
𝑗=1
𝑥𝑖𝑦 𝑗 . (A.22)

Check that it verifies all the conditions to be an inner product. Check that this is a positive definite
inner product. This dot product in turn is used to define a norm for the vectors of R𝑛, called the
Euclidean norm:

∀𝑥 ∈ R𝑛, ‖𝑥‖𝐸 =
√
𝑥 · 𝑥 . (A.23)

This norm tells us how ’long’ is a given vector¹.
Inner products are a particular case of bilinear functions that we will study in more details in

what follows. It allows one to define the notion of orthogonality.

Orthogonality

Let𝑉 be a vector space of dimension 𝑛 equipped with an inner product 𝒈 = 〈., .〉. Two vectors
𝑢 ∈ 𝑉 and 𝑣 ∈ 𝑉 are g-orthogonal, or simply orthogonal if there is no possible confusion on
the inner product, iff:

〈𝑢, 𝑣〉 = 0 . (A.24)

A basis of 𝑉 , say {𝑣1, ..., 𝑣𝑛} is g-orthogonal, or orthogonal if there is no possible confusion
on the inner product considered, iff:

∀(𝑖, 𝑗) ∈ {1, ..., 𝑛}2, 𝑖 ≠ 𝑗 ⇒
〈
𝑣𝑖 , 𝑣 𝑗

〉
= 0 . (A.25)

¹Note that in these notes, we do not make the difference between the Euclidean space 𝐸𝑛 which is the space in which
one can do geometry with lines, planes, circles, triangles etc., andR𝑛 equipped with the dot product. These two structures
are actually different but in one-to-one correspondence. We chose to identify them for simplicity, because it avoids the
introduction of cumbersome (but important) subtleties and serves our purposes perfectly.
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For example, consider the vector space R3. Then, {(1, 0, 0), (0, 1, 0), (0, 0, 1)} is orthogonal. More
generally, in the vector space R𝑛, let 𝑒𝑖 be a vector whose components are all zero, except the 𝑖th
one, which is 1. Then, {𝑒1, ..., 𝑒𝑛} is an orthonormal basis of R𝑛, called the canonical basis of
R𝑛.

Orthogonal complement

If𝑊 is a subspace of 𝑉 , i.e. 𝑊 vector space and𝑊 ⊂ 𝑉 , then the orthogonal complement of
𝑊 in 𝑉 is defined as:

𝑊⊥ = {𝑣 ∈ 𝑉, ∀𝑤 ∈ 𝑊, 〈𝑣, 𝑤〉 = 0} . (A.26)

From now on, unless otherwise stated, inner products will be defined on real vector spaces and will
therefore be at values in R.

Quadratic form

The quadratic form associated with an inner product 𝒈 on𝑉 is the function: 𝒒 : 𝑉 → R such
that:

∀𝑣 ∈ 𝑉, 𝒒(𝑣) = 𝒈(𝑣, 𝑣) . (A.27)

For an inner product 𝒈 on a vector space 𝑉 , and its associated quadratic form, we have:

∀(𝑢, 𝑣) ∈ 𝑉2, 𝒈(𝑢, 𝑣) = 1
2
[𝒒(𝑢 + 𝑣) − 𝒒(𝑢) − 𝒒(𝑣)] . (A.28)

Moreover, two distinct inner products on 𝑉 cannot give the same quadratic form. This shows that
one can equivalently define the structure on the vector space via the inner product or the quadratic
form.

Unit vectors

A vector 𝑣 ∈ 𝑉 for which |𝑞(𝑣) | = 1 is called a unit vector. A basis of 𝑉 that is orthogonal
and made of unit vectors is called orthonormal.

Using unit vectors, we can then create orthonormal bases.

Existence and structure of orthonormal bases

Let 𝑉 be a vector space of finite dimension 𝑛 ∈ N on which an inner product 𝒈 : 𝑉 ×𝑉 → R
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is defined. Then, there exists at least an orthonormal basis of 𝑉 , {𝑒𝑖}𝑖∈{1,...,𝑛} . Moreover, the
number of basis vectors 𝑒𝑖 for which 𝒒 (𝑒𝑖) = −1 is the same for any such basis.

The number 𝑟 of basis vectors 𝑒𝑖’s for which 𝑞 (𝑒𝑖) = −1 is called the index of the inner product
𝑔.

A.2.4 An important set of linear functions: Orthogonal transformations

Here, we restrict our attention to the vector space R𝑛 with the usual addition of vectors and the usual
scalar multiplication, and with the dot product and its associated norm ‖.‖𝐸 .

Orthogonal transformations

We call orthogonal transformations the maps 𝜙 : R𝑛 → R𝑛 such that:

∀(𝑥, 𝑦) ∈ R𝑛, 𝜙(𝑥) · 𝜙(𝑦) = 𝑥 · 𝑦 . (A.29)

For example, the antipodal transformation A : R𝑛 → R𝑛 such that: ∀𝑥 ∈ R𝑛, A(𝑥) = −𝑥 is
orthogonal since:

A(𝑥) · A(𝑦) = (−𝑥) · (−𝑦) = 𝑥 · 𝑦 . (A.30)

Can you justify the name ’antipodal’ by considering the effect of this transformation in R2 and R3?

Orthogonal transformation and orthogonal bases

Let {𝑒1, ..., 𝑒𝑛} be the canonical basis of R𝑛.
A function 𝜙 : R𝑛 → R𝑛 is an orthogonal transformation iff 𝜙 is linear and {𝜙(𝑒1), ..., 𝜙(𝑒𝑛)}
is an orthonormal basis of R𝑛.

Now that we know that orthogonal transformations are linear, we associate matrices to them.

Orthogonal matrices

A real 𝑛×𝑛matrix𝑂 is orthogonal iff it is associated to an orthogonal transformation 𝜙 defined
by: ∀𝑥 ∈ R𝑛, 𝜙(𝑥) = 𝑂𝑥. Therefore, an orthogonal matrix 𝑂 is such that: ∀𝑥 ∈ R𝑛, 𝑂𝑥 = 𝑥.
The set of orthogonal matrices is denoted 𝑂 (𝑛).

We have the following result:
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Properties of orthogonal matrices

Let 𝑂 be a real 𝑛 × 𝑛 matrix. Then, the following propositions are equivalent:

(i) 𝑂 is orthogonal;

(i) The columns of 𝑂 form an orthonormal basis of R𝑛;

(iii) 𝑂𝑡𝑂 = 𝑂𝑂𝑡 = 𝐼, where 𝑡 stands for transposition, and 𝐼 is the identity matrix;

(iv) The rows of 𝑂 form an orthonormal basis of R𝑛.

Orthogonal transformations are the rotations of R𝑛. Try and justify that in the cases 𝑛 = 2 and
𝑛 = 3.

A.3 Multilinear algebra and tensors

Here, we introduce multilinear functions and tensors.

A.3.1 Dual space

Among the linear functions, some are of particular interest in this course: those with values in the
vector space 𝐾 .

Dual space

Let𝑉 be a vector space on the field 𝐾 . Then, the vector space 𝐿 (𝑉, 𝐾) is called the dual space
of 𝑉 . It is usually denoted 𝑉∗. Elements of 𝑉∗ are called one-forms or covectors on 𝑉 .

We then have the following property, as long as we restrict ourselves to finite dimensional vector
spaces:

dim𝑉∗ = dim𝑉 . (A.31)

Consider now that dim𝑉 = 𝑛, and pick up a basis {𝑒𝑖}𝑖∈{1,2,...,𝑛} of 𝑉 . A natural basis for 𝐾
is the neutral element for the field multiplication, 1. Then, we have seen that 𝐿 (𝑉, 𝐾) = 𝑉∗ has a
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basis {𝜔𝑖}𝑖∈{1,2,...,𝑛} , such that:

𝜔𝑖𝑒 𝑗 = 𝛿
𝑖
𝑗 . (A.32)

The linear maps 𝜔𝑖 : 𝑉 → 𝐾 defined above are called the dual basis to the basis {𝑒𝑖}.
Let 𝑤 ∈ 𝑉∗. Then, by definition, 𝑤 is a linear scalar-valued function on 𝑉 . That means that we
have:

∀𝑣 ∈ 𝑉, 𝑤(𝑣) = 𝑤𝑖𝜔𝑖 (𝑣) = 𝑤𝑖𝜔𝑖
(
𝑣 𝑗𝑒

𝑗 ) = 𝑤𝑖𝑣 𝑗𝛿𝑖 𝑗 = 𝑤𝑖𝑣𝑖 . (A.33)

Elements of the dual basis are the simplest linear functions on a vector space once a basis of this
space has been chosen. Indeed, the function 𝜔 𝑗 associates to the vector 𝑣 ∈ 𝑉 its 𝑗 th coordinate, 𝑣 𝑗

in the basis {𝑒𝑖}.

A.3.2 Multilinear functions

So far, apart from the inner product, we have studied linear functions. The notions we have seen
can actually be extended to a larger class of functions, called multilinear functions. Consider a set
of 𝑁 vector spaces {𝑉𝑖}𝑖∈{1,2,...,𝑁 } on the field 𝐾 , and a vector space𝑊 on the field 𝐾 .

Multilinear map

A map 𝑓 : 𝑉1 ×𝑉2 × ... ×𝑉𝑁 → 𝑊 is a N-linear function iff:

∀𝑖 ∈ {1, 2, .., 𝑁}, ∀(𝑎, 𝑏) ∈ 𝐾2,

∀(𝑣1, ..., 𝑣𝑖−1, 𝑣𝑖+1, ..., 𝑣𝑁 ) ∈ 𝑉1 × ... ×𝑉𝑖−1 ×𝑉𝑖+1 × ... ×𝑉𝑁 ,

∀(𝑣1
𝑖 , 𝑣

2
𝑖 ) ∈ 𝑉2

𝑖 , 𝑓 (𝑣1, ..., 𝑣𝑖−1, 𝑎𝑣
1
𝑖 + 𝑏𝑣2

𝑖 , 𝑣𝑖+1, ..., 𝑣𝑁 ) =

𝑎 𝑓 (𝑣1, ..., 𝑣𝑖−1, 𝑣
1
𝑖 , 𝑣𝑖+1, ..., 𝑣𝑁 ) + 𝑏 𝑓 (𝑣1, ..., 𝑣𝑖−1, 𝑣

2
𝑖 , 𝑣𝑖+1, ..., 𝑣𝑁 ). (A.34)

This means that 𝑓 is linear in any one of its 𝑁 variables.
If 𝑁 = 2, the function is said to be bilinear.

The set of all the multilinear functions mapping the set 𝑉1 ×𝑉2 × ...×𝑉𝑁 into𝑊 forms a vector
space denoted 𝐿 (𝑉1, ..., 𝑉𝑁 ;𝑊).
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A.3.3 Tensor algebra

Now that we know what multilinear functions are, we are going to concentrate on a particular sub-
class of multilinear functions that will be of relevance in that course: tensors.
Consider, as before, a vector space 𝑉 of dimension 𝑛 ∈ N∗ on a field 𝐾 .

Tensors

We call tensor of type (𝑟, 𝑠) ∈ N2 over𝑉 , a multilinear function𝑇 : 𝑉∗×...×𝑉∗×𝑉×...×𝑉 →
𝐾 where 𝑉∗ is repeated 𝑟 times and 𝑉 𝑠 times. 𝑟 is called the contravariant degree of 𝑇 and
𝑠 its covariant degree.

In other words, a tensor of type (𝑟, 𝑠) is a scalar-valued multilinear function that has 𝑟 variables
in the dual of 𝑉 and 𝑠 variables in 𝑉 . For example, a tensor 𝑇 : 𝑉∗ × 𝑉 → 𝐾 of type (1, 1) takes
a linear scalar-valued function on 𝑉 and a vector of 𝑉 as variables, and returns a scalar. The set of
all tensors over 𝑉 of type (𝑟, 𝑠) is a vector space, called the tensor space over 𝑉 of type (𝑟, 𝑠). It is
noted 𝑇𝑟𝑠 (𝑉) or 𝑉 ⊗ ... ⊗ 𝑉 ⊗ 𝑉∗ ⊗ ... ⊗ 𝑉∗, where 𝑉∗ is repeated 𝑟 times and 𝑉 𝑠 times. A tensor
of type (0, 0) is, by definition a scalar, so that we can write: 𝑇0

0 (𝑉) = 𝐾 . A tensor of type (1, 0) is
called a contravariant vector, and a tensor of type (0, 1) a covariant vector. A contravariant vector
is just an element of 𝑉 , i.e. a usual vector of 𝑉 . A covariant vector is a scalar-valued linear function
on 𝑉 , that means, it takes a vector of 𝑉 , and returns a scalar: it is an element of 𝑉∗, i.e. a one-form.
It is called a vector because it is seen as an element of 𝑉∗ considered as a vector space.

By extension, a tensor of type (𝑟, 0) is called a contravariant tensor, and one of type (0, 𝑠) a
covariant tensor.
The structure of vector space on 𝑇 𝑠𝑟 gives us an addition between tensors of the same type, as well
as a multiplication of tensors by scalars. On top of this structure, we will now define the tensor
product, that allows one to combine tensors of different types.

Tensor product

Let 𝐴 ∈ 𝑇𝑟𝑠 and 𝐵 ∈ 𝑇 𝑡𝑢. The tensor product of 𝐴 and 𝐵 is a tensor, denoted 𝐴 ⊗ 𝐵, of type
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(𝑟 + 𝑡, 𝑠 + 𝑢) defined by:

∀(𝑤1, .., 𝑤𝑟+𝑡 , 𝑣1, ..., 𝑣𝑠+𝑢) ∈ (𝑉∗)𝑟+𝑡 ×𝑉 𝑠+𝑢,

𝐴 ⊗ 𝐵(𝑤1, ..., 𝑤𝑟+𝑡 , 𝑣1, ..., 𝑣𝑠+𝑢) = 𝐴(𝑤1, ..., 𝑤𝑟 , 𝑣1, ..., 𝑣𝑠)𝐵(𝑤𝑟+1, ..., 𝑤𝑟+𝑡 , 𝑣𝑠+1, ..., 𝑣𝑠+𝑢) .
(A.35)

One can easily check that the tensor product is associative, and that it is also distributive with respect
to the addition of tensors:

• ∀(𝐴, 𝐵, 𝐶) ∈ 𝑇𝑟𝑠 × 𝑇 𝑡𝑢 × 𝑇 𝑣𝑤 , (𝐴 ⊗ 𝐵) ⊗ 𝐶 = 𝑎 ⊗ (𝐵 ⊗ 𝐶);

• ∀(𝐴, 𝐵, 𝐶) ∈ 𝑇𝑟𝑠 × 𝑇 𝑡𝑢 × 𝑇 𝑣𝑤 , 𝐴 ⊗ (𝐵 + 𝐶) = 𝐴 ⊗ 𝐵 + 𝐴 ⊗ 𝐶;

• ∀(𝐴, 𝐵, 𝐶) ∈ 𝑇𝑟𝑠 × 𝑇 𝑡𝑢 × 𝑇 𝑣𝑤 , (𝐴 + 𝐵) ⊗ 𝐶 = 𝐴 ⊗ 𝐶 + 𝐵 ⊗ 𝐶.

CAUTION: Usually, the tensor product is not commutative: 𝐴 ⊗ 𝐵 ≠ 𝐵 ⊗ 𝐴.

We see that, thanks to the tensor product one can define a bilinear functions from two linear func-
tions. Indeed, consider 𝑓 ∈ 𝑉∗ and 𝑔 ∈ 𝑉∗. Then, 𝑓 ⊗ 𝑔 is an elements of 𝐿 (𝑉∗, 𝑉∗, 𝐾) = 𝑇0

2 (𝑉),
that means, it is a bilinear function on the space of linear functions on 𝑉 , that takes two vectors of
𝑉∗ and returns a scalar.

Another important notion is the one of scalar product:
Scalar product

We call scalar product of a vector space 𝑉 , and we note (., .) the bilinear function:

(., .) : 𝑉 ×𝑉∗ → 𝐾 , (A.36)

defined by:
∀(𝑣, 𝑤) ∈ 𝑉 ×𝑉∗, (𝑣, 𝑤) = 𝑤(𝑣) . (A.37)

By definition, (., .) ∈ 𝑇1
1 (𝑉).

Now, for 𝑣 ∈ 𝑉 , consider the linear function (𝑣, .) : 𝑉∗ → 𝐾 . It is an element of 𝑇1
0 (𝑉) ' 𝑉∗∗,

i.e. a covariant vector. We see that the name vector is then justified: vectors of 𝑉 can be seen as act-
ing on𝑉∗, through the scalar product; in essence, there is a one-to-one relation between vectors of𝑉
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and a subset of elements of𝑉∗∗. One can also see that a scalar product can be generated via an inner
product by using a linear map 𝐿 from𝑉 into𝑉∗, then the bilinear function (𝑣, 𝑤) ∈ 𝑉×𝑉∗ ↦→ 〈., 𝐿.〉
is a scalar product.

Up to now, we have introduced tensors and characterized a few of them, namely tensors of type
(1, 0), (0, 1), (2, 0) and (1, 1). Tensors of type (0, 1) are linear functions on 𝑉 . We have seen that
they admit a decomposition into scalar components once a basis in chosen in 𝑉 , and the dual basis
constructed in 𝑉∗. The same thing happens to general tensors. Let 𝑒𝑖 be a basis of 𝑉 and 𝜔𝑖 the
dual basis in 𝑉∗. then we have:

Bases of tensors

Let 𝑇 ∈ 𝑇𝑟𝑠 (𝑉). Then 𝑇 is uniquely determined by its values on 𝑒𝑖 and 𝜔𝑖 . Precisely, we have:

•
{
𝑒𝑖1 ⊗ 𝑒𝑖2 ⊗ ... × 𝑒𝑖𝑠 ⊗ 𝑤 𝑗1 ⊗ 𝑤 𝑗2 ⊗ ... ⊗ 𝑤 𝑗𝑟

}
𝑖𝑘∈{1,...,𝑁 }, 𝑗𝑙∈{1,...,𝑁 } is a basis of𝑇

𝑟
𝑠 (𝑉);

• 𝑇 = 𝑇 𝑗1... 𝑗𝑟 𝑖1...𝑖𝑠𝑒𝑖1 ⊗ 𝑒𝑖2 ⊗ ... × 𝑒𝑖𝑠 ⊗ 𝑤 𝑗1 ⊗ 𝑤 𝑗2 ⊗ ... ⊗ 𝑤 𝑗𝑟 , where:

𝑇 𝑗1... 𝑗𝑟 𝑖1...𝑖𝑠 = 𝑇 (𝑤 𝑗1 , ..., 𝑤 𝑗𝑟 , 𝑒𝑖1 , ..., 𝑒𝑖𝑠 ). (A.38)

As an obvious corollary, we have:

dim𝑇𝑟𝑠 (𝑉) = (dim𝑉)𝑟+𝑠 . (A.39)

Finally, we can give a new, simple interpretation of a tensor in 𝑇1
1 (𝑉):

Matrices as tensors

Let 𝑇 ∈ 𝑇1
1 (𝑉), with 𝑇 = 𝑇 𝑖𝑗𝑒𝑖 ⊗ 𝜔 𝑗 . Then, the 𝑇 𝑖𝑗 are:

• the components of 𝑇 ∈ 𝑇1
1 (𝑉) with respect to the basis 𝑒𝑖 ⊗ 𝜔 𝑗 ;

• for a fixed 𝑣 ∈ 𝑉 , the matrix entries of the matrix of the linear function:

𝑇1 :
𝑉∗ → 𝑉∗

𝑓 ↦→ 𝑇 ( 𝑓 , 𝑣)
, (A.40)

with respect to the dual basis 𝜔𝑖; in that case 𝑖 is the row index, and 𝑗 the column index;
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• for a fixed 𝑓 ∈ 𝑉∗, the matrix entries of the matrix of the linear function:

𝑇2 :
𝑉 → 𝑉

𝑣 ↦→ 𝑇 ( 𝑓 , 𝑣)
, (A.41)

with respect to the basis 𝑒𝑖; in that case 𝑖 is the row index, and 𝑗 the column index.

As an illustration, we can look at the representation, on a basis, of an inner product 𝑔 : 𝑉 ×𝑉 →
𝐾 . 𝑔 is a tensor of type (0, 2). We have, using the previous bases for 𝑉 and its dual:

∀(𝑣, 𝑤) ∈ 𝑉2, 𝑣 = 𝑣𝑖𝑒𝑖 , 𝑤 = 𝑤𝑖𝑒𝑖 , 𝑔(𝑣, 𝑤) =
𝑛∑

𝑖, 𝑗=1
𝑣𝑖𝑤 𝑗𝑔

(
𝑒𝑖 , 𝑒 𝑗

)
. (A.42)

A.4 Topological spaces

Topological spaces are the ’simplest’ spaces, in that they are the ones with the most minimal struc-
ture: metric spaces are a subset of manifolds and manifolds a subset of topological spaces.

A.4.1 Topological spaces: definitions
Topological space

Let 𝑋 be a set and C = {𝑈𝑖 , 𝑖 ∈ 𝐼} denote a collection of subsets of 𝑋: ∀𝑖 ∈ 𝐼, 𝑈𝑖 ⊆ 𝑋 ,
where 𝐼 is a set of indices. Then, (𝑋, C) is a topological space iff C satisfies the following
conditions:

(i) ∅ ∈ C;

(ii) 𝑋 ∈ C;

(iii) If 𝐽 is any subcollection of indices in 𝐼 (it may be infinite), then: ∪ 𝑗∈𝐽𝑈 𝑗 ∈ C;

(iv) If 𝐾 is any finite subcollection of indices in 𝐼, then: ∩𝑘∈𝐾𝑈𝑘 ∈ C.

Often, 𝑋 alone is called a topological space, when there is no ambiguity; the subsets 𝑈𝑖 ∈ C
are called the open sets, and C is said to give a topology to 𝑋 .

A good way to turn a space into a topological one is to give it a metric.
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Metric

Let 𝑋 be a set. A metric 𝑑 : 𝑋 × 𝑋 → R is a function that satisfies:

(i) ∀(𝑥, 𝑦) ∈ 𝑋 × 𝑋, 𝑑 (𝑥, 𝑦) = 𝑑 (𝑦, 𝑥);

(ii) ∀(𝑥, 𝑦) ∈ 𝑋 × 𝑋, 𝑑 (𝑥, 𝑦) ≥ 0, and equality holds iff 𝑥 = 𝑦;

(iii) ∀(𝑥, 𝑦, 𝑧) ∈ 𝑋 × 𝑋 × 𝑋, 𝑑 (𝑥, 𝑧) ≤ 𝑑 (𝑥, 𝑦) + 𝑑 (𝑦, 𝑧) (triangle inequality).

If 𝑋 is given a metric 𝑑, it becomes a topological space whose open sets are the ’open discs of radius
𝜖’:

𝑈𝜖 (𝑥) = {𝑦 ∈ 𝑋, 𝑑 (𝑥, 𝑦) < 𝜖} , (A.43)

together with all their possible unions. The topology C thus defined is called the metric topology
determined by 𝑑, and (𝑋, C) is called a metric space.
Given a topological space (𝑋, C) and 𝐴 ⊂ 𝑋 . Then C induces the relative topology in 𝐴: C𝐴 =

{𝑈𝑖 ∩ 𝐴, 𝑈𝑖 ∈ C}.

A.4.2 Continuous maps
Continuity

Let 𝑋 and 𝑌 be topological spaces. A map 𝑓 : 𝑋 → 𝑌 is continuous if the inverse image of
an open set in 𝑌 is an open set in 𝑋 .

This definition is in agreement with our intuitive idea of continuity. Indeed, consider the map
𝑓 : R → R defined by: 𝑓 (𝑥) = −𝑥 + 1 if 𝑥 ≤ 0, and 𝑓 (𝑥) = −𝑥 + 1/2 if 𝑥 > 0. Using the usual
topology of R (the one from open intervals), then ]𝑎, 𝑏[ is open for any 𝑎 and 𝑏 > 𝑎 by definition.
We know that in calculus, we would say that 𝑓 is discontinuous at 0. Now, consider ]3/2, 2[, which
is open. We have 𝑓 −1(]3/2, 2[) =] −1,−1/2[ which is open. But if we take the open set ]3/4, 5/4[,
we have 𝑓 −1(]3/4, 1/4[) =] − 1/4, 0], which is not open, so 𝑓 is not continuous.
By taking 𝑓 (𝑥) = 𝑥2, which is a continuous map for the standard topology of R, show that the
converse of the previous definition is not true, that is that ’f is continuous if it maps an open set into
an open set’ is not true. (Hint: Consider the image of ] − 𝜖, 𝜖 [).
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A.5 Neighbourhoods and Hausdorff spaces
Neighbourhood

Let 𝑋 be a topological space with a topology C. 𝑁 ⊂ 𝑋 is called a neighbourhood of 𝑥 ∈ 𝑋
iff 𝑥 ∈ 𝑁 , and 𝑁 contains at least an open set𝑈𝑖 such that 𝑥 ∈ 𝑈𝑖 .

Note that 𝑁 does not have to be open. If it is, it is called an open neighbourhood.
A simple example of neighbourhood is provided by 𝑋 = R with the usual topology. Then [−1, 1]
is a neighbourhood of any point 𝑥 ∈] − 1, 1[.

A topological space (𝑋, C) is called a Hausdorff space if, for an arbitrary pair of distinct points 𝑥
and 𝑥′ in 𝑋 , we can find neighbourhoods𝑈𝑥 and𝑈𝑥′ of 𝑥 and 𝑥′ respectively, such that𝑈𝑥∩𝑈𝑥′ = ∅.
In physics, (almost) all spaces that appear are Hausdorff spaces, so in the remainder of these notes,
we will always assume that topological spaces are Hausdorff spaces.

Homeomorphism

Let 𝑋1 and 𝑋2 be topological spaces and 𝑓 : 𝑋1 → 𝑋2 be a continuous map such that
𝑓 −1 : 𝑋2 → 𝑋1 exists and is also continuous. Then, 𝑓 is called an homeomorphism and 𝑋1

and 𝑋2 are said to be homeomorphic.

Homeomorphic spaces can thus be deformed into each other continuously, so that, topologically,
they are virtually equivalent and can be treated as the same space.
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B.1 Maps and induced maps

Let (𝑀, 𝑔) be spacetime manifold manifold. Let 𝑓 : 𝑀 → 𝑀 be a smooth map of 𝑀 onto itself.
We recall that given a map 𝑓 such that for 𝑝 ∈ 𝑀 , its image is 𝑓 (𝑝) ∈ 𝑀 , we can define its action
on tangent vectors by introducing the induced map 𝑓∗ : 𝑇𝑝𝑀 → 𝑇 𝑓 (𝑝)𝑀 called the pushforward of
𝑓 . To any vector 𝑿 tangent to 𝑀 at 𝑝, it associates a tangent vector at 𝑓 (𝑝), denoted 𝒇∗𝑿 so that,
given a function 𝑔 : 𝑀 → R:

Pushforward of a map 𝑓

𝒇∗𝑿 (𝑔) = 𝑿 (𝑔 ◦ 𝑓 ) . (B.1)

In other words, it defines the directional derivative of any function 𝑔 at 𝑓 (𝑝) in terms of the one in-
duced by 𝑿 on the function 𝑔◦ 𝑓 at 𝑝. If we call 𝑥 =

(
𝑥0, 𝑥1, 𝑥2, 𝑥3) = 𝜑(𝑝) and 𝑦 = (

𝑦0, 𝑦1, 𝑦2, 𝑦3) =
𝜓( 𝑓 (𝑝)) local charts around 𝑝 and 𝑓 (𝑝) respectively, so that 𝑦𝜇 = 𝜓

(
𝑓 (𝜑−1(𝑥))

)
, abusing nota-

tions to identify the action of the function on 𝑀 and its action ”down on the charts”, i.e. writing
𝑔(𝑦) = 𝑔( 𝑓 (𝑥)) for the proper 𝑔

(
𝜓−1(𝑦)

)
= 𝑔

(
𝑓
(
𝜑−1(𝑥)

) )
, Eq. (B.1) becomes:

( 𝑓∗𝑋)𝜇
𝜕𝑔 (𝑦)
𝜕𝑦𝜇

=𝑋𝜈
𝜕𝑔 ( 𝑓 (𝑥))
𝜕𝑥𝜈

(B.2)

=𝑋𝜈
𝜕𝑦𝜇

𝜕𝑥𝜈
𝜕𝑔

𝜕𝑦𝜇
, (B.3)

so that we can write:
( 𝑓∗𝑋)𝜇 =

𝜕𝑦𝜇

𝜕𝑥𝜈
𝑋𝜈 . (B.4)

A similar induced map, known as the pullback of 𝑓 and denoted 𝑓 ∗𝑇∗
𝑓 (𝑝)𝑀 → 𝑇∗

𝑝𝑀 can be defined
on one-forms (covectors), in order to obtain one-forms at 𝑝 given one-forms at 𝑓 (𝑝) (hence the
name pullback). Given any tangent vector 𝑋 at 𝑝 and any one-form at 𝑓 (𝑝), we define the pullback
of 𝝎 as:

Pullback of a map 𝑓

𝒇 ∗𝝎(𝑿) = 𝝎 ( 𝒇∗𝑿) . (B.5)

In terms of components, we get:
( 𝑓 ∗𝜔)𝜇 =

𝜕𝑦𝜈

𝜕𝑥𝜇
𝜔𝜈 . (B.6)
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Note that it is not the same as a local change of coordinate (well, changes of coordinates can be
formulated in terms of pullbacks but let us not get unnecessarily complicated here)!
This can be straightforwardly generalised to tensors, in particular, for the metric tensor 𝒈, we can
define another metric tensor at 𝑝 given the metric at 𝑓 (𝑝) via:

∀(𝑿,𝒀) ∈ 𝑇𝑝𝑀 × 𝑇𝑝𝑀, 𝒇 ∗𝒈 | 𝑝 (𝑿,𝒀) = 𝒈 | 𝑓 (𝑝) ( 𝒇∗𝑿, 𝒇∗𝒀) . (B.7)

B.2 Isometries
Isometry

𝑓 is called an isometry iff it is a bijective map of M onto itself (aka a diffeomorphims) that
preserves the metric:

∀𝑝 ∈ 𝑀, 𝒇 ∗𝒈 | 𝑝 = 𝒈 | 𝑝 . (B.8)

In other words, the metric properties (angle between vectors, length of vectors) are invariant
under the transformation 𝑓 : if we calculate the angle between two vectors at 𝑝, then transport these
vectors to 𝑓 (𝑝) using a pushforward, the angle between the transported vectors remain the same as
it was.
If we introduce local coordinates around 𝑝 and 𝑓 (𝑝), such as 𝑥 =

(
𝑥0, 𝑥1, 𝑥2, 𝑥3) = 𝜑(𝑝) and

𝑦 =
(
𝑦0, 𝑦1, 𝑦2, 𝑦3) = 𝜓( 𝑓 (𝑝)), so that 𝑦 = (𝜓 ◦ 𝑓 ◦ 𝜑−1)(𝑥), the definition of an isometry reduces

to:

∀(𝜇, 𝜈) ∈ {0, ..., 3}2,
𝜕𝑦𝛼

𝜕𝑥𝜇
𝜕𝑦𝛽

𝜕𝑥𝜈
𝑔𝛼𝛽 ( 𝑓 (𝑝)) = 𝑔𝜇𝜈 (𝑝) . (B.9)

It is easy to see from this definition that the set of isometries of a manifold 𝑀 forms a group under
the composition of maps. Because isometries preserve the local ’length’ of a vector in 𝑇𝑝𝑀 , they
can be interpreted as the rigid motions of the manifold. Of course, they apply to Riemannian as
well as Lorentzian manifolds. For example, on the manifold R𝑛 with the standard scalar product as
metric, the isometry group is the Euclidean group:

E𝑛 = { 𝑓 : 𝑥 ↦→ 𝐴𝑥 + 𝑇, 𝐴 ∈ 𝑆𝑂 (𝑛), 𝑇 ∈ R𝑛} , (B.10)

consisting of all the rotations and translations (and their linear combinations).
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B.3 Killing vector fields

When a (pseudo-)Riemannian manifold possesses some isometries, one can introduce a new kind of
vector fields that generate these isometries in the sense that they represent the infinitesimal version
of them: moving a small amount in the direction of the vector field, the metric structure remains
unchanged .
Let (𝑀, 𝑔) be a spacetime manifold and 𝑋 ∈ X(𝑀). Let 𝜖 ∈ R be an infinitesimal parameter. Let
𝑝 ∈ 𝑀 and (𝑈, 𝜑) a local chart around 𝑝 such that, in this chart 𝑥 = 𝜑(𝑝) and 𝑋 = 𝑋𝜇 𝜕

𝜕𝜇 . Let
us define the diffeomorphism 𝑓 : 𝑀 → 𝑀 such that¹ 𝜑( 𝑓 (𝑝))𝜇 = 𝑥𝜇 + 𝜖𝑋𝜇 (𝑝). This is just an
infinitesimal displacement from 𝑝 in the direction of 𝑋 . If 𝑓 is an isometry, then, by definition of
the pushforward:

𝑔𝜇𝜈 (𝑥) =
𝜕 (𝑥𝛼 + 𝜖𝑋𝛼 (𝑝))

𝜕𝑥𝜇
𝜕 (𝑥𝛽 + 𝜖𝑋𝛽 (𝑝))

𝜕𝑥𝜈
𝑔𝛼𝛽 (𝑥𝑚 + 𝜖𝑋𝑚) . (B.11)

Expanding at first order in 𝜖 and taking the limit 𝜖 → 0, this leads to the Killing equations:

𝑋 𝑘𝜕𝑘𝑔𝑖 𝑗 + 𝑔𝑘 𝑗𝜕𝑖𝑋 𝑘 + 𝑔𝑖𝑘𝜕 𝑗𝑋 𝑘 = 0, (B.12)

which is equivalent to:

∇(𝛼𝑋𝛽) = 0 . (B.13)

A vector field 𝑋 that satisfies this Killing equation is called a Killing vector field. Moving along
the curves tangent to this vector field, the geometry remains unchanged: the Killing vector field
represents the direction of symmetry of a manifold. Killing vector fields are said to be dependent
if one of them can be expressed as a linear combination of the others with constant coefficients.
Finally, let us note that from the Killing equation in the form (B.12), it is easy to show that if the
metric components do not depend explicitly on a coordinate 𝑥𝜇 when expressed in these coordinates,
then 𝜕

𝜕𝑥𝜇 is a Killing vector field.

B.4 Example of killing vectors: the sphere 𝑆2

In order to illustrate what Killing vectors are, let us look at the isometries of the standard, two-
dimensional sphere.

¹We can always choose 𝜖 small enough to ensure that 𝑓 (𝑝) ∈ 𝑈 so that we can use the same chart.
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Consider the manifold 𝑆2 =
{
(𝑥, 𝑦, 𝑧) ∈ R3, 𝑥2 + 𝑦2 + 𝑧2 = 1

}
. Let us Introduce the standard spher-

ical coordinates 𝜑(𝑝) = (𝜃, 𝜙) ∈]0, 𝜋[×]0, 2𝜋[ on 𝑈 = 𝜑−1 (]0, 𝜋[×]0, 2𝜋[) ⊂ 𝑆2, which is the
sphere to which we removed its poles and the half-meridian connecting them. The standard Eu-
clidean metric of R3:

𝑮 = d𝑥 ⊗ d𝑥 + d𝑦 ⊗ d𝑦 + d𝑧 ⊗ d𝑧 (B.14)

induces the Riemannian metric on𝑈 given by:

𝒈 = d𝜃 ⊗ d𝜃 + sin2 𝜃 d𝜙 ⊗ d𝜙 . (B.15)

Writing the Killing equation (B.13) for this metric, we get:

𝜕𝜃𝑋
𝜃 = 0 (B.16)

𝜕𝜙𝑋
𝜙 = −cos 𝜃

sin 𝜃
𝑋 𝜃 (B.17)

𝜕𝜙𝑋
𝜃 = − sin2 𝜃𝜕𝜃𝑋

𝜙 . (B.18)

Solving these equations, we see that any Killing vector field 𝑿 of 𝑆2 on𝑈, can be written:

𝑿 = 𝐴𝑳1 + 𝐵𝑳2 + 𝐶𝑳3 , (B.19)

where 𝐴, 𝐵 and 𝐶 are arbitrary real numbers and:

𝑳1 = sin 𝜙
𝜕

𝜕𝜃
+ cos 𝜃 cos 𝜙

sin 𝜃
𝜕

𝜕𝜙
(B.20)

𝑳2 = cos 𝜙
𝜕

𝜕𝜃
− cos 𝜃 sin 𝜙

sin 𝜃
𝜕

𝜕𝜙
(B.21)

𝑳3 =
𝜕

𝜕𝜙
(B.22)

are linearly independent vector fields on 𝑈 that are Killing vector fields. For any running point
𝑝(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) ∈ 𝑈, along the integral curves of 𝐿1, 𝐿2 and 𝐿3, we have:

𝑑𝑥

𝑑𝑡
= 0 along 𝐿1 (B.23)

𝑑𝑦

𝑑𝑡
= 0 along 𝐿2 (B.24)

𝑑𝑧

𝑑𝑡
= 0 along 𝐿3 , (B.25)

where, in each case, 𝑡 is the affine parameter along the integral curves of 𝐿1, 𝐿2 and 𝐿3 respectively.
Thus, the integral curves of 𝐿1, 𝐿2 and 𝐿3 are circles at 𝑥, 𝑦 and 𝑧 constant respectively, so that these
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vectors correspond to rotations around the 𝑥, 𝑦 and 𝑧 axes respectively. We see that the sphere has
3 = 2 × (2 + 1)/2 independent Killing vector fields so it is maximally symmetric, as we are going
to explain below.

B.5 Maximally symmetric spaces

The maximum number of symmetries on a metric manifold is related to the dimension of the mani-
fold 𝑛 by 𝑛(𝑛 + 1)/2. Manifolds which admit exactly 𝑛(𝑛 + 1)/2 independent Killing vector fields
are called maximally symmetric spaces. Let us see how it works.

B.5.1 Properties of maximally symmetric spaces

We can classify isometries 𝑓 into two classes: translations and rotations, depending on whether or
not they admit a fixed point. A point 𝑝 ∈ M is a fixed point of the isometries 𝑓 iff 𝑓 (𝑝) = 𝑝.
Isometries that do not have any fixed point are called translations, while an isometry with a fixed
point 𝑝 is called a rotation around 𝑝. The pushforward of a rotation is exactly what one would
call a rotation in the tangent space 𝑇𝑝M: it transforms vectors at 𝑝 into one another. A maximally
symmetric space is such that:

• (M, 𝒈) is homogeneous. This means that for every pair of points (𝑝, 𝑞) ∈ M, there exists a
translation 𝑓 that maps 𝑝 into 𝑞.

• (M, 𝒈) is isotropic. This means that for any point 𝑝 ∈ M, there exists a rotation that fixes 𝑝
and such that for any (𝒗, 𝒘) ∈ 𝑇𝑝M × 𝑇𝑝M, ∃𝛼 ∈ R, 𝑓∗𝒗 = 𝛼𝒘.

Becausewewill need to talk aboutmaximally symmetric spacetimes, but also three-dimensional
spaces, let us revert to generic notations and work on a manifold of dimension 𝑛 ∈ N∗ with an
arbitrary metric. Let 𝑝 ∈ M and {𝒆 (𝒊) } a local 𝑔-orthonormal basis such that, for the metric
compatible connection:

∇ 𝑗𝒆 (𝒊) = Γ𝑘𝑖 𝑗 (𝑝)𝒆 (𝒌 ) = 0 ⇒ Γ𝑘𝑖 𝑗 (𝑝) = 0 . (B.26)

A local translation at 𝑝 is associated with a Killing vector 𝝃 such that for the small displacement
𝜹𝒙 = 𝜀𝜉𝑖𝒆 (𝒊) , we satisfy the Killing equation (B.12). In the local orthonormal frame chosen here,
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for which connection coefficients vanish at 𝑝, this means that:

𝜕𝜉 𝑗

𝜕𝑥𝑖
= − 𝜕𝜉𝑖

𝜕𝑥 𝑗
. (B.27)

In a maximally symmetric space, any point 𝑝 + 𝛿𝑝 is related to 𝑝 via a translation. In particular,
this must be true for the 𝑛 small displacements along the ”axes”, with 𝜹𝒙 = 𝜀𝒆 (𝒊) which are thus
Killing vectors at 𝑝. Any translation can then be written as a linear combination of these linearly
independent displacements. Thus, we see that, in a maximally symmetric space, the set of transla-
tions at 𝑝 is generated by 𝑛 linearly independent Killing vectors.
Infinitesimal rotations at 𝑝, on the other hand, are generated by Killing vectors such that:

𝝃 (𝑝) = 0 . (B.28)

Their action on the tangent space at 𝑝 can be summarised by their action on the basis vectors. Since
any vector must be mappable into another one, we can map any basis vector into another one and
we therefore have 𝑛(𝑛 − 1)/2 rotations:

𝑓
𝑖→ 𝑗
∗ 𝒆 (𝒊) = 𝒆 ( 𝒋 ) , (B.29)

each generated by a Killing vector.
Thus, as announced, the total number of Killing vector fields of a maximally symnmetric space is:

𝑁max = 𝑛︸︷︷︸
translations

+ 𝑛(𝑛 − 1)
2︸    ︷︷    ︸

rotations

=
𝑛(𝑛 + 1)

2
. (B.30)

Let us now turn to the Riemann curvature of the metric connection:

𝑹 = 𝑅𝑖 𝑗𝑘𝑙𝒆 (𝒊) ⊗ 𝝎̂( 𝒋 ) ⊗ 𝝎̂(𝒌 ) ⊗ 𝝎̂(𝒍 ) , (B.31)

where {𝝎̂(𝒊) } is the dual basis associated with {𝒆 (𝒊) }. Using the metric, let us then define the (2, 2)
tensor:

R = 𝑅𝑖 𝑗 𝑘𝑙𝒆 (𝒊) ⊗ 𝒆 ( 𝒋 ) ⊗ 𝝎̂(𝒌 ) ⊗ 𝝎̂(𝒍 ) . (B.32)

It is clearly a symmetric linear map from the set of antisymmetric bilinear forms:

𝑊 =
{
𝒘 ∈ 𝑇0

𝑝,2(M), ∀(𝑿,𝒀) ∈ 𝑇𝑝M × 𝑇𝑝M, 𝒘(𝑿,𝒀) = −𝒘(𝒀 , 𝑿)
}
, (B.33)
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onto itself. Therefore, it is diagonalisable using an orthonormal basis of 𝑊 . Let us call 𝛀̂(𝒂) =

Ω̂(𝑎)
𝑖 𝑗

[
𝝎̂(𝒊) ⊗ 𝝎̂( 𝒋 ) − 𝝎̂( 𝒋 ) ⊗ 𝝎̂(𝒊)

]
that basis, with eigenvalues 𝜆 (𝑎) . Note that there are 𝑛(𝑛 − 1)/2

such eigenvectors and eigenvalues, the dimension of 𝑊 . Because the manifold is maximally sym-
metric, we can use an arbitrary rotation at 𝑝 to transform the local orthonormal basis of 𝑇𝑝M and
thus the dual basis in 𝑇∗

𝑝M. But such an operation will affect the antisymmetric bilinear forms 𝛀̂(𝒂)

and by appropriate choices of rotations, we must be able to map them into one another. This im-
plies that all the eigenvalues must be equal: 𝜆 (𝑎) = 𝜅 for all 𝑎. Thus as a mapping on antisymmetric
bilinear forms, in the eigenbasis:

R = 𝜅𝑰𝒅 . (B.34)

Writing this in a local coordinate basis:

𝑅𝑖 𝑗 𝑘𝑙 = 𝜅𝛿
𝑖
[𝑘𝛿

𝑗
𝑙 ] , (B.35)

so that:

𝑅𝑖 𝑗𝑘𝑙 = 𝑔 𝑗𝑚𝑅
𝑖𝑚
𝑘𝑙 = 𝜅

[
𝛿𝑖 𝑘𝑔 𝑗𝑙 − 𝛿𝑖 𝑙𝑔 𝑗𝑘

]
. (B.36)

The Ricci tensor is then:

𝑅𝑖 𝑗 = 𝜅(𝑛 − 1)𝑔𝑖 𝑗 , (B.37)

and the Ricci scalar:

𝑅 = 𝑛(𝑛 − 1)𝜅 , (B.38)

so that the arbitrary constant 𝜅 is, up to a numerical factor, the curvature of the manifold. As we
can see maximally symmetric spaces are thus constant curvature spaces.

B.5.2 Riemannian maximally symmetric spaces in 3 dimensions

In the Riemannian case and in 3 dimensions, the maximally symmetric spaces fall into 3 categories
that will be important in chapter 6, for cosmology.

1. If 𝜅 = 0, we have flat space, E3, which is homeomorphic to R3 with the standard euclidean
metric, so that, a the Cartesian chart (𝑥, 𝑦, 𝑧):

d𝑠2 = d𝑥2 + d𝑦2 + d𝑧2 . (B.39)
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2. If 𝜅 > 0, the manifold is homeomorphic to the 3-sphere, S3, defined as the subset of R4 such
that:

S3 =
{
(𝑥, 𝑦, 𝑧, 𝑤) ∈ R4, 𝑥2 + 𝑦2 + 𝑧2 + 𝑤2 = 1

}
. (B.40)

The standard mapping of S3 onto R4 is given by the spherical coordinates:



𝑥 = sin 𝜒 sin 𝜃 cos 𝜙

𝑦 = sin 𝜒 sin 𝜃 sin 𝜙

𝑧 = sin 𝜒 cos 𝜃

𝑤 = cos 𝜒 ,

(B.41)

(B.42)

(B.43)

(B.44)

with 𝜙 ∈ [0, 2𝜋), 𝜃 ∈ [0, 𝜋] and 𝜒 ∈ [0, 𝜋]. The induced metric on S3 by pullback of the
Euclidean metric of R4 is then:

d𝑠2 = d𝜒2 + sin2 𝜒
[
d𝜃2 + sin2 𝜃 d𝜙2] . (B.45)

One can readily check that the Riemann tensor of the metric connection is then of the form
(B.36) with 𝜅 = 1. To go to the maximally symmetric space of curvature 𝜅 > 0 arbitrary, one
simply works with:

S3
𝜅 =

{
(𝑥, 𝑦, 𝑧, 𝑤) ∈ R4, 𝑥2 + 𝑦2 + 𝑧2 + 𝑤2 = 𝜅−1} , (B.46)

and change 𝜒 → √
𝜅𝜒. The isometry group generated by the Killing vector fields is 𝑂 (4).

The 3-sphere is represented on Fig. B.1.

3. If 𝜅 < 0, the manifold is homeomorphic to the 3-hyperboloid with two sheets, H3. It is the
subset of R4 such that:

H3 =
{
(𝑥, 𝑦, 𝑧, 𝑤) ∈ R4, 𝑥2 + 𝑦2 + 𝑧2 − 𝑤2 = −1

}
. (B.47)

The chart (𝜒, 𝜃, 𝜙) with 𝜒 ∈ R+, 𝜃 ∈ [0, 𝜋] and 𝜙 ∈ [0, 2𝜋) defined by:



𝑥 = sinh 𝜒 sin 𝜃 cos 𝜙

𝑦 = sinh 𝜒 sin 𝜃 sin 𝜙

𝑧 = sinh 𝜒 cos 𝜃

𝑤 = cosh 𝜒 ,

(B.48)

(B.49)

(B.50)

(B.51)
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Figure B.1: The 3-sphere embedded in R4, with one dimension suppressed.

defines a mapping between H3 and R4 such that the Minkowski metric on R4 pulls back to:

d𝑠2 = d𝜒2 + sinh2 𝜒
[
d𝜃2 + sin2 𝜃 d𝜙2] . (B.52)

Note that there is no embedding of H3 into R4 equipped with the Euclidean metric. Again,
this corresponds to a Riemann tensor of the form (B.36), but with 𝜅 = −1. To get to 𝜅 < 0
arbitrary we once again perform the transformation 𝜒 → √−𝜅𝜒. The isometry group of
H3 is the orthochronous Lorentz group, that we introduced in chapter 2. One sheet of the
3-hyperboloid is represented on Fig. B.2.



333 Isometries and Killing vector fields

Figure B.2: On sheet of the 3-hyperboloid embedded in R4, with one dimension suppressed. Note
that the embedding as shown here is not isometric since, by force, the Euclidean metric is used here
in representing the ambient R4, instead of the Minkowski metric.

B.5.3 Einsteinian maximally symmetric spaces in 4 dimensions

To conclude this appendix, let us determine the 4 dimensional maximally symmetric geometries
that satisfy the Einstein field equations. We call them Einsteinian maximally symmetric spaces in 4
dimensions. Writing the Einstein field equations for the Ricci tensor (B.37) and 𝑛 = 4, we get:

(Λ − 3𝜅) 𝑔𝜇𝜈 = 8𝜋𝐺𝑇𝜇𝜈 . (B.53)
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In vacuum, we have immediately:
𝜅 =

Λ
3
. (B.54)

If we insist on having matter present, then it must be of a very special kind. For example, if we have
a perfect fluid:

𝜌 = −𝑝 =
3𝜅 − Λ
8𝜋𝐺

. (B.55)

In any case, as in the Riemannian case in 3 dimension, we find 3 different cases.

1. If 𝜅 = 0, the Riemann tensor is zero and the spacetime is flat. It is simply Minkowski space-
time.

2. If 𝜅 > 0, the scalar curvature 𝑅 = 12𝜅 > 0 and this is de Sitter spacetime. It has the topology
of R × S3. It can be isometrically embedded in R5 equipped with the Minkowski metric.
Indeed, let us chart R5 with Cartesian coordinates (𝑡, 𝑤, 𝑥, 𝑦, 𝑧) such that:

𝑮 = −d𝑡 ⊗ d𝑡 + d𝑤 ⊗ d𝑤 + d𝑥 ⊗ d𝑥 + d𝑦 ⊗ d𝑦 + d𝑧 ⊗ d𝑧 . (B.56)

Defining a chart on de Sitter spacetime (𝜏, 𝜒, 𝜃, 𝜙) with 𝜏 ∈ R, 𝜒 ∈ [0, 𝜋], 𝜃 ∈ [0, 𝜋] and
𝜙 ∈ [0, 2𝜋), such that we have the embedding map:

√
𝜅𝑡 = sinh

(√
𝜅𝜏

)
√
𝜅𝑥 = cosh

(√
𝜅𝜏

)
sin 𝜒 sin 𝜃 cos 𝜙

√
𝜅𝑦 = cosh

(√
𝜅𝜏

)
sin 𝜒 sin 𝜃 sin 𝜙

√
𝜅𝑧 = cosh

(√
𝜅𝜏

)
sin 𝜒 cos 𝜃

√
𝜅𝑤 = cosh

(√
𝜅𝜏

)
cos 𝜒 ,

(B.57)

(B.58)

(B.59)

(B.60)

(B.61)

the induced metric of de Sitter spacetime is:

𝒈 = −d𝜏 ⊗ d𝜏 +
cosh2 (√

𝜅𝜏
)

𝜅

[
d𝜒 ⊗ d𝜒 + sin2 𝜒

(
d𝜃 ⊗ d𝜃 + sin2 𝜃 d𝜙 ⊗ d𝜙

)]
. (B.62)

One can easily check that it is of constant curvature 𝜅. In (𝑇, 𝑥, 𝑦, 𝑧, 𝑤) coordinates, de Sitter
is an hyperboloid of one sheet in R5 that lies ’along’ the 𝑡 axis.

3. If 𝜅 < 0, the scalar curvature 𝑅 = 12𝜅 < 0 and this is anti-de Sitter spacetime.Topologically,
it is homeomorphic to R4. It can be embedded isometrically into R2 equipped with a pseudo-
Riemannian metric that is not Lorentzian, but is given by:

𝑮 = −d𝑡 ⊗ d𝑢 − d𝑣 ⊗ d𝑣 + d𝑥 ⊗ d𝑥 + d𝑦 ⊗ d𝑦 + d𝑧 ⊗ d𝑧 . (B.63)
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In these coordinates, anti-de Sitter spacetime is an hyperboloid of one sheet that lies in the
subspace orthogonal to both the 𝑢 and 𝑣 axes. The map is given by:



√
−𝜅𝑢 = sin

(√
𝜅𝜏

)
cosh 𝜒

√
−𝜅𝑣 = cos

(√
𝜅𝜏

)
cosh 𝜒

√
−𝜅𝑥 = sinh 𝜒 sin 𝜃 cos 𝜙

√
−𝜅𝑦 = sinh 𝜒 sin 𝜃 sin 𝜙

√
−𝜅𝑧 = sinh 𝜒 cos 𝜃 ,

(B.64)

(B.65)

(B.66)

(B.67)

(B.68)

with 𝜏 ∈ R, 𝜌 ∈ R+, 𝜃 ∈ [0, 𝜋] and 𝜙 ∈ [0, 2𝜋]. The induced metric is of constant curvature
𝜅 and reads:

𝒈 = − cosh2 𝜒 d𝜏 ⊗ d𝜏 + 1
𝜅

[
d𝜒 ⊗ d𝜒 + sinh2 𝜒

(
d𝜃 ⊗ d𝜃 + sin2 𝜃 d𝜙 ⊗ d𝜙

)]
. (B.69)

We see that the topology is that of R×H3. Note that anti-de Sitter is a static spacetime, since
it has a timelike Killing vector field, 𝜕

𝜕𝜏 .
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Wewant to find expression (5.176) for theGreen function of the d’Alembert operator inMInkowski
spacetime. We recall that it is a function 𝐺 such that:

𝜂𝜇𝜈
𝜕

𝜕𝑥𝜇𝜕𝑥𝜈
𝐺 (𝒙 − 𝒚) = 𝛿𝐷 (𝒙 − 𝒚) . (C.1)

C.1 Covariant form

The standard approach consists in using a Fourier expansion:

𝐺 (𝒙 − 𝒚) =
ˆ
𝐺̂ (𝒌)ei𝑘𝜇 (𝑥𝜇−𝑦𝜇 )d4𝑘 . (C.2)

Then:
𝜕

𝜕𝑥𝜇𝜕𝑥𝜈
𝐺 (𝒙 − 𝒚) =

ˆ
𝐺̂ (𝒌)

(
−𝑘𝜇𝑘𝜈

)
ei𝑘𝜇 (𝑥𝜇−𝑦𝜇 )d4𝑘 , (C.3)

so that Eq. (C.1) becomes:ˆ
𝐺̂ (𝒌)

(
−𝑘𝜇𝑘𝜇

)
ei𝑘𝜇 (𝑥𝜇−𝑦𝜇 )d4𝑘 =𝛿 (𝐷) (𝒙 − 𝒚) (C.4)

=
1

(2𝜋)4

ˆ
ei𝑘𝜇 (𝑥𝜇−𝑦𝜇 )d4𝑘 , (C.5)

where we used the Fourier expansion of the delta function. Since this equation must hold for any
𝒙 − 𝒚, we get:

−𝑘𝜇𝑘𝜇𝐺̂ (𝒌) − 1
(2𝜋)4 = 0 , (C.6)

in other words:
𝐺 (𝒌) = 1

(2𝜋)4
[ (
𝑘0)2 −

���®𝑘 ���2] . (C.7)

Let us denote 𝜔 = 𝑘0, 𝑘 =
���®𝑘 ���, 𝑥𝜇 = (𝑡, ®𝑥) and 𝑦𝜇 = (𝑡′, ®𝑦). Then:

𝐺 (𝒙 − 𝒚) = 1
(2𝜋)4

ˆ exp
[
−i𝜔 (𝑡 − 𝑡′) + ®𝑘 · (®𝑥 − ®𝑦)

]
𝜔2 − 𝑘2 d𝜔d3𝑘 . (C.8)

We can always introduce some spherical coordinates (𝜃, 𝜙) in Fourier space so that 𝜃 = 0 when ®𝑘
is along ®𝑥 − ®𝑦. Then, we have:

®𝑘 · (®𝑥 − ®𝑦) = 𝑘 | ®𝑥 − ®𝑦 | cos 𝜃 (C.9)

d3𝑘 = 𝑘2 sin 𝜃d𝑘d𝜃d𝜙 . (C.10)
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Finally, let 𝜇 = − cos 𝜃. Then, the Green function becomes:

𝐺 (𝒙 − 𝒚) = 1
(2𝜋)4

ˆ +∞

−∞
d𝜔
ˆ +∞

0
𝑘2d𝑘

ˆ 1

−1
d𝜇
ˆ 2𝜋

0
d𝜙

e−i𝜔 (𝑡−𝑡 ′ )ei𝑘 | ®𝑥−®𝑦 |𝜇

𝜔2 − 𝑘2 (C.11)

=
1

(2𝜋)3

ˆ +∞

0
𝑘2d𝑘

ˆ +∞

−∞

e−i𝜔 (𝑡−𝑡 ′ )

𝜔2 − 𝑘2 d𝜔︸                  ︷︷                  ︸
=𝐼 (𝑘,𝑡−𝑡 ′ )

ˆ 1

−1
d𝜇ei𝑘 | ®𝑥−®𝑦 |𝜇︸             ︷︷             ︸

= ei𝑘 | ®𝑥− ®𝑦 | −e−i𝑘 | ®𝑥− ®𝑦 |
i𝑘 | ®𝑥− ®𝑦 | =2 sin(𝑘 | ®𝑥− ®𝑦 |)

𝑘 | ®𝑥− ®𝑦 |

(C.12)

C.2 Some complex integration

Estimating 𝐼 (𝑘, 𝑡 − 𝑡′) requires a little bit of contour integration in the complex plane. First, notice
that Δ𝑡 = 𝑡 − 𝑡′ > 0 because we are only interested in the causal Green function. Thus, the integral
we want to evaluate is:

𝐼 (𝑘,Δ𝑡) =
ˆ +∞

−∞

e−i𝜔Δ𝑡

(𝜔 + 𝑘)(𝜔 − 𝑘) d𝜔 . (C.13)

The complex integrand thus reads:

𝑓 (𝑧) = e−iΔ𝑡 𝑧

(𝑧 + 𝑘)(𝑧 − 𝑘) . (C.14)

It has two simple poles located on the real axis but is holomorphic otherwise. Thus, we will need
to use an indented contour together with Cauchy’s theorem. Besides, we need to close this contour
while ensuring that for 𝑧 = 𝑅e𝑖 𝜃 , e−iΔ𝑡 𝑧 → 0 when 𝑅 → +∞. Clearly e−iΔ𝑡 𝑧 = e−i𝑅 cos 𝜃e𝑅 sin 𝜃Δ𝑡 , so
that we need to have sin 𝜃 < 0, i.e. we need to close in the lower half-plane. We choose the contour
depicted in Fig. C.1: 𝛾 = [−𝑅,−𝑘−𝜀]∪Γ(−𝑘, 𝜀)∪[−𝑘+𝜀, 𝑘−𝜀]∪Γ(𝑘, 𝜀)∪[𝑘+𝜀, 𝑅]∪(−Γ(0, 𝑅)).
There is no singularity inside the contour, so we can apply Cauchy’s theorem:

ˆ
𝛾
𝑓 (𝑧)d𝑧 = 0 . (C.15)
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Figure C.1: Contour used to calculate the integral 𝐼 (𝑘,Δ𝑡) in Eq. (C.13).

Splitting the integral by bits and taking the limits 𝜀 → 0 and 𝑅 → +∞:
ˆ
[−𝑅,−𝑘−𝜀 ]

𝑓 (𝑧)d𝑧︸                  ︷︷                  ︸
→
´ −𝑘
−∞ 𝑓 (𝑥𝜔)d𝜔

+
ˆ
Γ (−𝑘,𝜀)

𝑓 (𝑧)d𝑧︸              ︷︷              ︸
→ires{ 𝑓 (𝑧) ,−𝑘} (2𝜋−𝜋 )

+
ˆ
[−𝑘−𝜀,𝑘−𝜀 ]

𝑓 (𝑧)d𝑧︸                   ︷︷                   ︸
→
´ 𝑘
−𝑘 𝑓 (𝜔)d𝜔

+

ˆ
Γ (𝑘,𝜀)

𝑓 (𝑧)d𝑧︸            ︷︷            ︸
→ires{ 𝑓 (𝑧) ,𝑘} (2𝜋−𝜋 )

+
ˆ
[𝑘+𝜀,𝑅]

𝑓 (𝑧)d𝑧︸              ︷︷              ︸
→
´ +∞
𝑘 𝑓 (𝜔)d𝜔

+
ˆ
−Γ (0,𝑅)

𝑓 (𝑧)d𝑧︸              ︷︷              ︸
→0

= 0 (C.16)

𝐼 (𝑘,Δ𝑡) − i𝜋
ei𝑘Δ𝑡

2𝑘
+ i𝜋

e−i𝑘Δ𝑡

2𝑘
= 0 . (C.17)

Thus:

𝐼 (𝑘,Δ𝑡) = −𝜋 sin (𝑘Δ𝑡)
𝑘

𝐻 (Δ𝑡) , (C.18)

Where 𝐻 (𝑥) is the Heaviside function: 𝐻 (𝑥) = 1 if 𝑥 > 0 and 0 otherwise.
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C.3 Final form

Finally, we can put everything together:

𝐺 (𝒙 − 𝒚) = − 𝐻 (Δ𝑡)
4𝜋2 | ®𝑥 − ®𝑦 |

ˆ +∞

0
sin (𝑘Δ𝑡) sin (𝑘 | ®𝑥 − ®𝑦 |) d𝑘 (C.19)

= − 𝐻 (Δ𝑡)
4𝜋2 | ®𝑥 − ®𝑦 |

ˆ +∞

0
{cos [𝑘 (|®𝑥 − ®𝑦 | − Δ𝑡)] − cos [𝑘 ( |®𝑥 − ®𝑦 | + Δ𝑡)]} d𝑘 . (C.20)

Besides:
ˆ +∞

0
cos(𝛼𝑢)d𝑢 =

1
2

ˆ +∞

−∞
cos(𝛼𝑢)d𝑢 (C.21)

=
1
4

ˆ +∞

−∞

(
ei𝛼𝑢 + e−i𝛼𝑢

)
d𝑢 (C.22)

=
1
4

(
2𝜋𝛿𝐷 (𝛼) + 2𝜋𝛿𝐷 (𝛼)

)
(C.23)

=𝜋𝛿𝐷 (𝛼) . (C.24)

Thus:

𝐺 (𝒙 − 𝒚) = − 1
4𝜋 | ®𝑥 − ®𝑦 |

𝛿
𝐷 (|®𝑥 − ®𝑦 | − Δ𝑡) − 𝛿𝐷

©­­«| ®𝑥 − ®𝑦 | + Δ𝑡︸        ︷︷        ︸
≠0

ª®®¬
 𝐻 (Δ𝑡) (C.25)

= − 1
4𝜋 | ®𝑥 − ®𝑦 | 𝛿

𝐷 (|®𝑥 − ®𝑦 | − Δ𝑡) 𝐻 (Δ𝑡) . (C.26)

To conclude, theGreen function of the d’Alembert operator inMinkowski spacetime reads:

Green function of d’Alembert operator in Minkowski spacetime

𝐺 (𝒙 − 𝒚) = − 1
4𝜋 | ®𝑥 − ®𝑦 | 𝛿

𝐷
(
| ®𝑥 − ®𝑦 | −

(
𝑥0 − 𝑦0

))
𝐻 (𝑥0 − 𝑦0) . (C.27)
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