Evidence for dynamo bistability among very low mass stars

Julien Morin

Dublin Institute for Advanced Studies

J. F. Donati, P. Petit X. Delfosse, T. Forveille E. Dormy, M. Schrinner M. M. Jardine LATT – CNRS / Université de Toulouse LAOG – CNRS / Université de Grenoble MAG – ENS Paris / IPGP University of St Andrews

23 June 2011

$lpha\Omega$ Dynamo

- Differential rotation
- Cyclonic convection
- → Tachocline: crucial role ?

Partly convective

- Rotation-activity, cycles
- Internal structure
- ➡ Solar-type dynamo

$M_{\star} < 0.35 { m ~M}_{\odot}$

- Tachocline
 ro solar dynamo
- Activity / magnetic field
- Simple topology

Schou et al. (1998) ; from SOHO-MDI data

$\alpha \Omega$ Dynamo

- Differential rotation
- Cyclonic convection
- → Tachocline: crucial role ?

Partly convective

- Rotation-activity, cycles
- Internal structure
- 🗢 Solar-type dynamo

$M_{\star} < 0.35 { m ~M}_{\odot}$

- Tachocline
 ro solar dynamo
- Activity / magnetic field
- Simple topology

Reiners (2007), from Siess et al. (2002) models

$lpha \Omega$ Dynamo

- Differential rotation
- Cyclonic convection
- → Tachocline: crucial role ?

Partly convective

- Rotation-activity, cycles
- Internal structure
- 🗢 Solar-type dynamo

$M_{\star} < 0.35 { m ~M}_{\odot}$

- Tachocline → no solar dynamo
- Activity / magnetic field
- Simple topology

Reiners (2007), from Siess et al. (2002) models

$\alpha \Omega$ Dynamo

- Differential rotation
- Cyclonic convection
- → Tachocline: crucial role ?

Partly convective

- Rotation-activity, cycles
- Internal structure
- 🗢 Solar-type dynamo

$M_{\star} < 0.35 { m ~M}_{\odot}$

- Tachocline → no solar dynamo
- Activity / magnetic field
- Simple topology

Small-scale dynamo

- Durney et al. (1993)
- Mean-field α^2 and $\alpha^2\Omega$ models
 - Chabrier & Küker (2006)
- Global 3D DNS
 - Dobler et al. (2006) Browning (2008)

Link with geodynamo

- Influence of aspect ratio
 - 🕨 Goudard & Dormy (2008)
- Scaling law B(E_{conv})
 - Christensen, Holzwarth & Reiners (2009)

Dobler et al. (2006)

Small-scale dynamo

- Durney et al. (1993)
- Mean-field α^2 and $\alpha^2\Omega$ models
 - Chabrier & Küker (2006)
- Global 3D DNS
 - Dobler et al. (2006) Browning (2008)

Link with geodynamo

- Influence of aspect ratio
 - Goudard & Dormy (2008)
- Scaling law B(E_{conv})
 - Christensen, Holzwarth & Reiners (2009)

Goudard & Dormy (2008)

Christensen et al. (2009)

Christensen et al. (2009)

102

(mT)

101

100

Zeeman effect

- Line splitting/broadening
 - $\blacktriangleright \Delta \lambda_B = 4.67 \times 10^{-12} \, \lambda_0^2 g_{eff} B$
- Polarization

Unpolarised spectroscopy

Total field Bt

Geometry

Spectropolarimetry

Field orientation + polarity
 Large-scale component only

Spectral dispersion λ

Zeeman effect

- Line splitting/broadening
 - $\blacktriangleright \Delta \lambda_B = 4.67 \times 10^{-12} \, \lambda_0^2 g_{eff} B$
- Polarization

Unpolarised spectroscopy

- Total field Bf
- Geometry

Spectropolarimetry

Field orientation + polarity
 Large-scale component only

Zeeman effect

- Line splitting/broadening
 - $\blacktriangleright \Delta \lambda_B = 4.67 \times 10^{-12} \, \lambda_0^2 g_{eff} B$
- Polarization

Unpolarised spectroscopy

- Total field Bf
- Geometry

Spectropolarimetry

- Field orientation + polarity
- Large-scale component only
 Zeeman-Doppler Imaging

Zeeman effect

- Line splitting/broadening
 - $\blacktriangleright \Delta \lambda_B = 4.67 \times 10^{-12} \, \lambda_0^2 g_{eff} B$
- Polarization

Unpolarised spectroscopy

- Total field Bf
- Geometry

Spectropolarimetry

- Field orientation + polarity
- Large-scale component only
 Zeeman-Doppler Imaging

Measuring magnetic fields: M dwarfs results (1/2)

Fully convective transition

- Partly convective stars
 - Toroidal, non-axisymmetric
 - Variable
- Fully convective stars
 - Almost dipolar, stronger
 - Steady

Morin et al. (2008a, b) Donati et al. (2008)

Phan-Bao et al.(2009)

VLMS

- Similar stellar parameters
- Two distinct magnetisms
 - strong dipole
 - 🕨 weak non-axisymmetric

Measuring magnetic fields: M dwarfs results (1/2)

Fully convective transition

- Partly convective stars
 - Toroidal, non-axisymmetric

Variable

- Fully convective stars
 - Almost dipolar, stronger

Steady

Morin et al.(2008a,b) Donati et al.(2008)

Phan-Bao et al.(2009)

VLMS

- Similar stellar parameters
- Two distinct magnetisms
 - strong dipole
 - 🕨 weak non-axisymmetric

Measuring magnetic fields: M dwarfs results (1/2)

Fully convective transition

- Partly convective stars
 - Toroidal, non-axisymmetric
 - Variable
- Fully convective stars
 - Almost dipolar, stronger
 - Steady

Morin et al.(2008a,b) Donati et al.(2008)

Phan-Bao et al.(2009)

VLMS

- Similar stellar parameters
- Two distinct magnetisms
 - strong dipole
 - 🕨 weak non-axisymmetric

Measuring magnetic fields: M dwarfs results (1/2)

Fully convective transition

- Partly convective stars
 - Toroidal, non-axisymmetric
 - Variable
- Fully convective stars
 - Almost dipolar, stronger
 - Steady

Morin et al. (2008a, b) Donati et al. (2008)

Phan-Bao et al.(2009)

VLMS

- Similar stellar parameters
- Two distinct magnetisms
 - strong dipole
 - weak non-axisymmetric

Morin et al. (2010)

Measuring magnetic fields: M dwarfs results (2/2)

Bimodal domain

- "Saturated" dynamo
- $M_{\star} < 0.15 \ {
 m M}_{\odot}$
- \blacksquare $P_{
 m rot}$ < 1.5 d
 - Not well defined
 - Larger sample needed

Unpolarised spectroscopy

- *Bf* ~ 1 − 4 kG
 - Dominated by small-scale
- No correlation w/ spectropolarimetry

Measuring magnetic fields: M dwarfs results (2/2)

Weak and strong field dynamos

Linear stability analysis

- Ω or B inhibit convection
 - Higher Ra_c, smaller spatial scales
- $\Omega + \mathbf{B} \rightarrow \text{counteraction}$
 - Most efficient if Coriolis \sim Lorentz
 - Magnetostrophic regime

Dynamo-generated **B** w/ rotation

- Roberts' conjecture
 - Runaway growth of B
 - Bistable domain
- Theoretical support
 - Childress & Soward (1978)
- Numerical simulations
 - V. Morin & Dormy, in prep

Weak and strong field dynamos

Linear stability analysis

- Ω or B inhibit convection
 - Higher Ra_c, smaller spatial scales
- $\Omega + \mathbf{B} \rightarrow \text{counteraction}$
 - Most efficient if Coriolis \sim Lorentz
 - Magnetostrophic regime

Dynamo-generated **B** w/ rotation

- Roberts' conjecture
 - Runaway growth of B
 - Bistable domain
- Theoretical support

Childress & Soward (1978)

- Numerical simulations
 - V. Morin & Dormy, in prep.

Weak and strong field dynamos: fully-convective stars

Weak and strong field dynamos: fully-convective stars

Gap between branches

■ Lorentz-inertia → Lorentz-Coriolis balance

$$\blacktriangleright \ \frac{B_{sf}}{B_{wf}} = Ro^{-1/2} \sim 10$$

Dependence on rotation

- $\blacksquare B_{sf} \propto \Omega^{1/2}$
 - No evidence in our limited sample
 - L_X/B_{bol} weakly affected
 - no relation with super-saturation

Summary and Conclusions

- 2 groups of stars
 - Same stellar parameters
 - Different magnetic topologies
- No distinction in Bf measurements
- Several hypothesis
- ➔ WF/SF dynamo bistability
- Field strength: $\Lambda = \mathcal{O}(1)$
- Gap between branches: $Ro^{-1/2}$
- Hysteretic behaviour
- Present B depend on history
- Impact on stellar formation/evolution

Morin, Dormy, Schrinner & Donati arXiv:1106.4263

