MAGNETIC TOPOLOGIES OF M DWARFS

Julien Morin

LATT - CNRS / Université de Toulouse

J. F. Donati, B. Dintrans, P. Petit X. Delfosse, T. Forveille M. M. Jardine LATT – CNRS / Université de Toulouse LAOG – CNRS / Université de Grenoble University of St Andrews

Toulouse - 16/17 April 2009

Large-scale topologies Spectropolarimetry & ZDI Early and mid M dwarfs Late M dwarfs

Magnetic Fields of M dwarfs

Dynamo in cool stars

- MHD generated field
- Convection + differential rotation
- Tachocline : Crucial role

Low-mass stars

- ${\rm M}_{\star} <$ 0.35 ${\rm M}_{\odot}$ \Rightarrow Fully-convective
- Very active : Radio, H α , X-ray
- Direct detection of magnetic fields
- \rightarrow No solar-type dynamo

Large-scale topologies Spectropolarimetry & ZDI Early and mid M dwarfs Late M dwarfs

Magnetic Fields of M dwarfs

Dynamo in cool stars

- MHD generated field
- Convection + differential rotation
- Tachocline : Crucial role

Low-mass stars

- $M_{\star} < 0.35 M_{\odot} \Rightarrow$ Fully-convective
- Very active : Radio, H α , X-ray
- Direct detection of magnetic fields
- ightarrow No solar-type dynamo

Large-scale topologies Spectropolarimetry & ZDI Early and mid M dwarfs Late M dwarfs

Magnetic Fields of M dwarfs

Dynamo in cool stars

- MHD generated field
- Convection + differential rotation
- Tachocline : Crucial role

Low-mass stars

- $\rm M_{\star} < 0.35~M_{\odot} \Rightarrow$ Fully-convective
- Very active : Radio, H α , X-ray
- Direct detection of magnetic fields

ightarrow No solar-type dynamo

Large-scale topologies Spectropolarimetry & ZDI Early and mid M dwarfs Late M dwarfs

Magnetic Fields of M dwarfs

Dynamo in cool stars

- MHD generated field
- Convection + differential rotation
- Tachocline : Crucial role

Low-mass stars

- $\rm M_{\star} < 0.35~M_{\odot} \Rightarrow$ Fully-convective
- Very active : Radio, H α , X-ray
- Direct detection of magnetic fields
- ightarrow No solar-type dynamo

Different techniques

Zeeman effect

Atom in a magnetic field

 \longrightarrow spectral lines broadening (I)

 \rightarrow polarised signatures (Q, U, V)

Stellar spectroscopy

- Integration over stellar surface
- Rotation \Rightarrow radial velocity shift
- V : Opposite polarities cancelation
 - → large-scale magnetic field

• Tomographic imaging \Rightarrow topology

Different techniques

Zeeman effect

- Atom in a magnetic field
 - \longrightarrow spectral lines broadening (I)
 - \longrightarrow polarised signatures (Q, U, V)

Stellar spectroscopy

- Integration over stellar surface
- Rotation \Rightarrow radial velocity shift
- V : Opposite polarities cancelation
 - → large-scale magnetic field
- Tomographic imaging \Rightarrow topology

Different techniques

Zeeman effect

- Atom in a magnetic field
 - \longrightarrow spectral lines broadening (I)
 - \longrightarrow polarised signatures (Q, U, V)

Stellar spectroscopy

- Integration over stellar surface
- Rotation \Rightarrow radial velocity shift
- V : Opposite polarities cancelation
 - → large-scale magnetic field
- Tomographic imaging \Rightarrow topology

Different techniques

Zeeman effect

- Atom in a magnetic field
 - \longrightarrow spectral lines broadening (I)
 - \longrightarrow polarised signatures (Q, U, V)

Stellar spectroscopy

- Integration over stellar surface
- Rotation \Rightarrow radial velocity shift
- V : Opposite polarities cancelation
 - \longrightarrow large-scale magnetic field
- Tomographic imaging \Rightarrow topology

What can we learn?

Link with numerical simulations

- Field topology / geometry
 - poloidal / toroidal
 - spherical harmonics
 - axisymmetry
- Ability to follow cycles
 - \Rightarrow directly comparable

Related phenomena

- Oronal heating
- Magnetic braking
- Radio emission

What can we learn?

Link with numerical simulations

- Field topology / geometry
 - poloidal / toroidal
 - spherical harmonics
 - axisymmetry
- Ability to follow cycles
 - \Rightarrow directly comparable

Related phenomena

- Coronal heating
- Magnetic braking
- Radio emission

What can we learn?

Link with numerical simulations

- Field topology / geometry
 - poloidal / toroidal
 - spherical harmonics
 - axisymmetry
- Ability to follow cycles
 - \Rightarrow directly comparable

Related phenomena

- Coronal heating
- Magnetic braking
- Radio emission

Spectropolarimetric observations

Observations

- ESPaDOnS@CFHT & NARVAL@TBL spectropolarimeters
- High resolution (65k)
- High throughput (up to 20%)
- Complete optical spectrum

Processing

- Data reduction : Libre-ESpRIT
- Least-Squares Deconvolution

Spectropolarimetric observations

Observations

- ESPaDOnS@CFHT & NARVAL@TBL spectropolarimeters
- High resolution (65k)
- High throughput (up to 20%)
- Complete optical spectrum

Processing

- Data reduction : Libre-ESpRIT
- Least-Squares Deconvolution

Spectropolarimetric observations

Observations

- ESPaDOnS@CFHT & NARVAL@TBL spectropolarimeters
- High resolution (65k)
- High throughput (up to 20%)
- Complete optical spectrum

Processing

- Data reduction : Libre-ESpRIT
- Least-Squares Deconvolution

Zeeman Doppler Imaging

Principles

- Doppler effect
- Rotational modulation
- Field orientation

Required parameters

- vsini
- inclination
- or rotation period

Zeeman Doppler Imaging

Principles

- Doppler effect
- Rotational modulation
- Field orientation

Required parameters

- vsini
- inclination
- or rotation period

Zeeman Doppler Imaging

Julien Morin

Velocity $(km.s^{-1})$

EV Lac

Zeeman Doppler Imaging

Julien Morin M

Mass / Rotation period plane

Julien Morin Magnetic topologies of M dwarfs

Mass / Rotation period plane

$\rm M_{\star} > 0.5 \ M_{\odot}$

$\rm M_{\star} < 0.5~M_{\odot}$

Properties

- Poloidal
- Axisymmetric
- ullet \sim dipolar
- Stronger

Differential rotation $d\Omega \sim \frac{d\Omega_{\odot}}{\Omega_{\odot}}$

First Results

Magnetic topologies of M dwarfs

Evidence for a different dynamo regime

Rossby number

•
$$P_{\text{rot}} \rightarrow Ro = \frac{P_{\text{rot}}}{\tau_c}$$

• Compare activity in stars

different masses

- Discontinuity
- \bullet Generation of large-scale field more efficient below $0.4 M_{\odot}$
- → Different spatial scales Same magnetic energy

Evidence for a different dynamo regime

Rossby number

•
$$P_{\rm rot} \rightarrow Ro = \frac{P_{\rm rot}}{\tau_c}$$

• Compare activity in stars of different masses

Noyes et al 1984

Kiraga & Stepien 2007

- Oiscontinuity
- \bullet Generation of large-scale field more efficient below $0.4 M_{\odot}$
- → Different spatial scales Same magnetic energy

Evidence for a different dynamo regime

Rossby number

•
$$P_{\rm rot} \rightarrow Ro = \frac{P_{\rm rot}}{\tau_c}$$

• Compare activity in stars of different masses

- Discontinuity
- \bullet Generation of large-scale field more efficient below $0.4 M_{\odot}$
- → Different spatial scales Same magnetic energy

Evidence for a different dynamo regime

Rossby number

•
$$P_{\rm rot} \rightarrow Ro = \frac{P_{\rm rot}}{\tau_c}$$

• Compare activity in stars of different masses

- Discontinuity
- $\bullet\,$ Generation of large-scale field more efficient below $0.4 M_{\odot}$
- → Different spatial scales Same magnetic energy

New sample

GI 51 • $M_{\star} = 0.20 M_{\odot}$ • $v \sin i = 12 \text{ km s}^{-1}$ • $P_{\rm rot} = 1.02 \, \rm d$ • '06 '07 '08 GJ 1111 • $M_{\star} = 0.10 M_{\odot}$ • $v \sin i = 13 \text{ km s}^{-1}$ • $P_{\rm rot} = 0.46 \, {\rm d}$ • '07 '08 '09

GJ 1245b

- $M_{\star} = 0.12 M_{\odot}$
- $v \sin i = 7 \, \text{km} \, \text{s}^{-1}$

$$\bullet~P_{\rm rot}=0.70~{\rm d}$$

• '06 '07 '08

GI 412b

 $\bullet~{\rm M}_{\star}=0.10~{\rm M}_{\odot}$

•
$$v \sin i = 5 \text{ km s}^{-1}$$

•
$$P_{\rm rot} = 0.78~{
m d}$$

• '06 '07 '08 '09

gl 51

gl 51

0.00

Results

Strong field
Tilted dipole
Long-lived
GI 412b

Julien Morin

Magnetic topologies of M dwarfs

0.00

gl 51

Julien Morin

Magnetic topologies of M dwarfs

gj 1111

gj 1111

Julien Morin

Magnetic topologies of M dwarfs

gj 1111

Julien Morin

Magnetic topologies of M dwarfs

Late M dwarfs : a new puzzle

Puzzle

- ${\rm M}_{\star} < 0.20 {\rm M}_{\odot}$
- 2 different type of fields observed
- very similar stellar parameters
 - \longrightarrow evolution between 2 states?
 - $\longrightarrow \text{ stellar structure } ?$

Conclusions

Large-scale topology

- Spectropolarimetry
- Tomographic imaging techniques
- Importance

Study

- Spectropolarimetric survey
- A few active stars
- $\bullet~0.1 < {\rm M_{\star}} < 0.8~{\rm M_{\odot}}$
- $0.4 < P_{\rm rot} < 20 \ {\rm d}$
- Tomographic imaging

First results

- $\bullet\,$ Transition at $\sim 0.5 {\rm M}_{\odot}$
 - Topology
 - Caracteristic scales
- Change in dynamo processes

- Late M dwarfs
- New behaviour
- Change in stellar structure?

Conclusions

Large-scale topology

- Spectropolarimetry
- Tomographic imaging techniques
- Importance

Study

- Spectropolarimetric survey
- A few active stars
- $0.1 < \mathrm{M_{\star}} < 0.8 \mathrm{~M_{\odot}}$
- $0.4 < P_{\rm rot} < 20 \ {
 m d}$
- Tomographic imaging

First results

- $\bullet~Transition$ at $\sim 0.5 {\rm M}_{\odot}$
 - Topology
 - Caracteristic scales
- Change in dynamo processes

- Late M dwarfs
- New behaviour
- Change in stellar structure?

Conclusions

Large-scale topology

- Spectropolarimetry
- Tomographic imaging techniques
- Importance

Study

- Spectropolarimetric survey
- A few active stars
- $0.1 < \mathrm{M_{\star}} < 0.8 \mathrm{~M_{\odot}}$
- $0.4 < P_{\rm rot} < 20 \ {
 m d}$
- Tomographic imaging

First results

- $\bullet\,$ Transition at $\sim 0.5 {\rm M}_{\odot}$
 - Topology
 - Caracteristic scales
- Change in dynamo processes

- Late M dwarfs
- New behaviour
- Change in stellar structure?

Conclusions

Large-scale topology

- Spectropolarimetry
- Tomographic imaging techniques
- Importance

Study

- Spectropolarimetric survey
- A few active stars
- $0.1 < \mathrm{M_{\star}} < 0.8 \mathrm{~M_{\odot}}$
- $0.4 < P_{\rm rot} < 20 \ {
 m d}$
- Tomographic imaging

First results

- $\bullet\,$ Transition at $\sim 0.5 M_{\odot}$
 - Topology
 - Caracteristic scales
- Change in dynamo processes
 - Onset of full-convection?

Julien Morin

A new puzzle

- Late M dwarfs
- New behaviour
- Change in stellar structure?

Magnetic topologies of M dwarfs

Conclusions

Large-scale topology

- Spectropolarimetry
- Tomographic imaging techniques
- Importance

Study

- Spectropolarimetric survey
- A few active stars
- $0.1 < \mathrm{M_{\star}} < 0.8 \mathrm{~M_{\odot}}$
- $0.4 < P_{\rm rot} < 20 \ {
 m d}$
- Tomographic imaging

First results

- $\bullet~Transition$ at $\sim 0.5 M_{\odot}$
 - Topology
 - Caracteristic scales
- Change in dynamo processes
 - Onset of full-convection?

Julien Morin

- Late M dwarfs
- New behaviour
- Change in stellar structure?