
The use of Python to simulate the behaviour of
the Mid Infrared Instrument on JWST

J. Morin1 and the MIRI European Consortium Software Team
R. Azzollini2, S. Beard3, J. Blommaert4, P. Bouchet5, J. Bouwman6, B. Brandl7, C. Cavarroc8, S. Chaintreuil9, R. Gastaud5, A. Glasse3,

A. Glauser3, R. Huygen4, F. Lahuis10, O. Littlejohns11, C. Nehme5, J. Pye11, T. Ray1, A. Scaife1, J. Schreiber6, B. Vandenbussche4

1DIAS (Ireland), 2CSIC (Spain), 3UKATC (UK), 4KUL (Belgium), 5CEA (France), 6MPIA (Germany), 7Univ. Leiden (Netherlands), 8IAS
(France), 9LESIA (France), 10SRON (Netherlands), 11Univ. Leicester (UK)

Abstract

Python has been elected as the main language for software aimed at reduction
and analysis of data generated by the James Webb Space Telescope. We
present the development environment set up for the Mid-Infrared Instrument
and its use to implement data simulators.

JWST/MIRI instrument concept

Artist view of JWST (Credit: NASA) MIRI OBA and key subsystems (Copyright: University
of Leicester, UK)

The James Webb Space Telescope (JWST) is 6.5 meter space telescope optimized
for infrared wavelengths due to be launched at the end of the decade. The Mid-
Infrared Instrument (MIRI) is one of the 4 instruments designed for JWST [1].
MIRI is a very versatile instrument operating in the 5-28 µm wavelength
range and divided in two optical channels. The first channel provides direct imag-
ing, coronagraphic imaging at selected wavelengths and long-slit low-resolution
spectroscopy (LRS, R= λ

δλ
∼100). The second one can record a data cube of

medium resolution spectra (MRS, R∼3,000) through an integral field unit.

JWST/MIRI Software development environment

Development of data reduction and analysis software as well as simulators for
JWST/MIRI is a joint effort between STScI and MIRI European Consortium, now
based on Python. The availability of a number of high-quality libraries and tools
and of solutions to interface with compiled code make Python an excellent
alternative to data-oriented proprietary scripting languages such as IDL.

Development environment

Libraries

• Numpy
• SciPy
• matplotlib

• stsci_python
• astrolib

Scripts and templates

• Install w/ package selection
and dependency checks

• Documentation build
• Templates for code,
documentation and tests

Development tools

• sphinx
• unittest

• setuptools
• pylint

Code repository
architecture

• Identical for all packages
• Separates code from docs,
tests, scripts, data

• Provides namespaces
• and a common tools package

Due to the distributed nature of our code development, the will to explore alter-
native processing methods, and the foreseen evolution of instrument knowledge, a
flexible development strategy is required. Our development environment [2]
– schematically described above – largely relying on standard Python tools reveals
helpful to achieve such flexibility.

References

[1] “The JWST MIRI instrument concept”, G.S. Wright et al. 2004, Proc. SPIE, 5487, 653
[2] “MIRI Software Development Plan”, F. Lahuis et al., SRON, 24th September 2010
[3] “SCASim Software Design Document” S. Beard, UKATC, 12th January 2011

Acknowledgements

J. Morin gratefully acknowledges the funding support of the ESA/PRODEX program. We ac-
knowledge fruitful collaboration with our colleagues of the STScI SSB for JWST/MIRI software
development, and are thankful to all contributors of the FOSS Python ecosystem.

MIRI Software resources

• SVN repository: https://svn6.assembla.com/svn/jwst
• SCASim installation instructions: www.dias.ie/~jmorin/miri/install.html

Simulators workflow

Data simulators are useful throughout the instrument development and exploitation: from pre-launch test
support and reduction pipeline tests, to observation planning. These simulators need to be adaptable so
that information learned about the instrument during the pre-launch testing and in-orbit operation can be
fed back into the simulation. MIRI simulators are divided in three parts which operate sequentially:
1 MTSSim calculates the irradiance of the MIRI Telescope Simulator which is the input source for
the instrument test and ground calibration campaigns.

2 MOSim, MIRIMSim or Specsim simulate an astronomical target (spatial and spectral
characteristics) and the optical train to produce an illumination map of the detector.

3 SCASim simulates the behaviour of the detector (or SCA – Sensor Chip Assembly) including
generic features and some more specific to MIRI (e.g., non-destructive readouts, Poisson statistics).

MIRI simulators workflow, from [3]

SCASim workflow, from [3]
Presently only SCASim is based on our Python development environment, MIRIMSim port is ongoing work.

SCASim design and implementation

Object-oriented (OO) design is efficient for simulators, the knowledge of an instrument component or
property is encapsulated in a class from which a number of instances or subclass instances can be derived.
Separation of the actual processing code from parameters is efficiently achieved in this design.
The core of SCASim is the Detector Array (see diagram below and [3]), which represents a collection
of detector pixels, and aggregates a number of objects that manage its main properties (either static or
dynamically evolving during a simulation) such as health, quantum efficiency or dark current. The OO
design and Numpy array features are also well-suited to deal with the variety of possible I/O formats.

SCASim class diagram, adapted from [3]

Assessment of our Python experience

• Switching to Python/Numpy/SciPy is rather easy thanks to “natural” syntax.
• Python and Numpy encourage writing readable and concise code.
• Array processing performance is good, provided appropriate syntax is used.
• Dictionaries are a powerful feature for storing configuration data directly in Python files.
• SCASim works on various GNU/Linux flavours, Mac OS X, Win XP/7 and Python 2.5–2.7 with
minimal adjustments.

• The weak typing of Python is rather unusual for scientists but provides the required flexibility, in
particular when combined to other language features such as optional arguments/default values.

https://svn6.assembla.com/svn/jwst
www.dias.ie/~jmorin/miri/install.html

