MAGNETIC FIELD TOPOLOGIES OF M DWARFS

Julien Morin

LATT - CNRS / Université de Toulouse

J. F. Donati, P. Petit, B. Dintrans X. Delfosse, T. Forveille M. M. Jardine LATT – CNRS / Université de Toulouse LAOG – CNRS / Université de Grenoble University of St Andrews

Stellar Magnetic Fields

A key ingredient

- At every step in a star's life
- Engine of activity phenomena

Dynamo

- MHD generated field
- Convection + differential rotation
- Tachocline : Crucial role

- $\bullet~{\rm M}_{\star} < 0.35~{\rm M}_{\odot} \Rightarrow$ Fully-convective
- \longrightarrow No solar-type dynamo

Stellar Magnetic Fields

A key ingredient

- At every step in a star's life
- Engine of activity phenomena

Dynamo

- MHD generated field
- Convection + differential rotation
- Tachocline : Crucial role

- $\rm M_{\star} < 0.35~M_{\odot}$ \Rightarrow Fully-convective
- \longrightarrow No solar-type dynamo

Stellar Magnetic Fields

A key ingredient

- At every step in a star's life
- Engine of activity phenomena

Dynamo

- MHD generated field
- Convection + differential rotation
- Tachocline : Crucial role

- $\bullet~{\rm M}_{\star} < 0.35~{\rm M}_{\odot} \Rightarrow$ Fully-convective
- \longrightarrow No solar-type dyname

Stellar Magnetic Fields

A key ingredient

- At every step in a star's life
- Engine of activity phenomena

Dynamo

- MHD generated field
- Convection + differential rotation
- Tachocline : Crucial role

- $\rm M_{\star} < 0.35~M_{\odot} \Rightarrow$ Fully-convective
- ightarrow No solar-type dynamo

Stellar Magnetic Fields

A key ingredient

- At every step in a star's life
- Engine of activity phenomena

Dynamo

- MHD generated field
- Convection + differential rotation
- Tachocline : Crucial role

- $\rm M_{\star} < 0.35~M_{\odot} \Rightarrow$ Fully-convective
- $\longrightarrow \mathsf{No} \ \mathsf{solar-type} \ \mathsf{dynamo}$

M dwarfs

Observations

- Very active : Radio, H α , X-ray
- Rapidly rotating late M
- Direct detection of magnetic fields
- \longrightarrow Type of dynamo?
- \rightarrow Magnetic field properties \hat{s}

Theroretical and Numerical approaches

- Cyclonic convection + turbulence
- Small-scale dynamo
- Mean field modelling
- 3D MHD DNS
- \longrightarrow No complete agreement

M dwarfs

Observations

- Very active : Radio, H α , X-ray
- Rapidly rotating late M
- Direct detection of magnetic fields

→ Type of dynamo?
→ Magnetic field properties

Theroretical and Numerical approaches

- Cyclonic convection + turbulence
- Small-scale dynamo
- Mean field modelling
- 3D MHD DNS
- \longrightarrow No complete agreement

Delfosse et al 1998

West et al 2007

Johns-Krull & Valenti 1996

M dwarfs

Observations

- Very active : Radio, H α , X-ray
- Rapidly rotating late M
- Direct detection of magnetic fields

→ Type of dynamo?
→ Magnetic field properties

Theroretical and Numerical approaches

- Cyclonic convection + turbulence
- Small-scale dynamo
- Mean field modelling
- 3D MHD DNS
- \longrightarrow No complete agreement

V374 Peg – Donati et al 2006

M dwarfs

Observations

- Very active : Radio, H α , X-ray
- Rapidly rotating late M
- Direct detection of magnetic fields
- \rightarrow Type of dynamo?
- \longrightarrow Magnetic field properties?

Theroretical and Numerical approaches

- Cyclonic convection + turbulence
- Small-scale dynamo
- Mean field modelling
- 3D MHD DNS
- \longrightarrow No complete agreement

V374 Peg – Donati et al 2006

M dwarfs

Observations

- Very active : Radio, H α , X-ray
- Rapidly rotating late M
- Direct detection of magnetic fields
- \rightarrow Type of dynamo?
- \longrightarrow Magnetic field properties?

Theroretical and Numerical approaches

- Cyclonic convection + turbulence
- Small-scale dynamo
- Mean field modelling
- 3D MHD DNS

 \rightarrow No complete agreement

V374 Peg - Donati et al 2006

Durney et al 1993 Dorch & Ludwig 2002 Küker & Rüdiger 1999 Dobler et al 2006, Browning 2008

M dwarfs

Observations

- Very active : Radio, H α , X-ray
- Rapidly rotating late M
- Direct detection of magnetic fields
- \rightarrow Type of dynamo?
- \longrightarrow Magnetic field properties?

Theroretical and Numerical approaches

- Cyclonic convection + turbulence
- Small-scale dynamo
- Mean field modelling
- 3D MHD DNS
- ightarrow No complete agreement

V374 Peg - Donati et al 2006

Dobler, Styx & Brandenburg 2006

M dwarfs

Observations

- Very active : Radio, H α , X-ray
- Rapidly rotating late M
- Direct detection of magnetic fields
- \longrightarrow Type of dynamo?
- \longrightarrow Magnetic field properties?

Theroretical and Numerical approaches

- Cyclonic convection + turbulence
- Small-scale dynamo
- Mean field modelling
- 3D MHD DNS
- \longrightarrow No complete agreement

V374 Peg - Donati et al 2006

Dobler, Styx & Brandenburg 2006

Spectropolarimetric analysis of a sample

Aims

- Providing observational constraints
 - Large-scale magnetic field : topology / intensity / time-variability
- Dependency on stellar parameters
 - Mass / rotation rate
- On both sides of the full-convection threshold

Approach

- Exploration of a small sample \sim 20 active \star M0 \rightarrow M8
- NIR photometry \Rightarrow masses Delfosse et al 2000
- Tomographic imaging
 - Large-scale magnetic topologies
 - Spherical harmonics poloidal-toroidal decomposition
 - Rotation periods / differential rotation

Spectropolarimetric analysis of a sample

Aims

- Providing observational constraints
 - Large-scale magnetic field : topology / intensity / time-variability
- Dependency on stellar parameters
 - Mass / rotation rate
- On both sides of the full-convection threshold

Approach

- Exploration of a small sample \sim 20 active \star M0 \rightarrow M8
- NIR photometry \Rightarrow masses Delfosse et al 2000
- Tomographic imaging
 - Large-scale magnetic topologies
 - Spherical harmonics poloidal-toroidal decomposition
 - Rotation periods / differential rotation

Spectropolarimetric analysis of a sample

Aims

- Providing observational constraints
 - Large-scale magnetic field : topology / intensity / time-variability
- Dependency on stellar parameters
 - Mass / rotation rate
- On both sides of the full-convection threshold

Approach

- Exploration of a small sample \sim 20 active \bigstar M0 \rightarrow M8
- NIR photometry \Rightarrow masses Delfosse et al 2000
- Tomographic imaging
 - Large-scale magnetic topologies
 - \blacktriangleright Spherical harmonics \Rightarrow poloidal-toroidal decomposition
 - Rotation periods / differential rotation

Magnetic field reconstruction

→ More stars on poster 18

Mass / Rotation period plane

Mass / Rotation period plane

$\rm M_{\star} > 0.5~M_{\odot}$

$\rm M_{\star} < 0.5~M_{\odot}$

First Results

Regions

- 2 regions
- Very different properties
- No dependance on rotation rate?

Work in progress

- Completing the survey
 - Saturated
 - partly-convective \star
 - Non-saturated fully-convective ★
 - Cooler stars

Evidence for a different dynamo regime

Rossby number

•
$$P_{\rm rot} \rightarrow Ro = \frac{P_{\rm rot}}{\tau_c}$$

 Compare activity in stars of different masses

- Discontinuity
- \bullet Generation of large-scale field more efficient below $0.4 M_{\odot}$
- → Different spatial scales Same magnetic energy

Evidence for a different dynamo regime

Rossby number

•
$$P_{\rm rot} \rightarrow Ro = \frac{P_{\rm rot}}{\tau_c}$$

 Compare activity in stars of different masses Noyes et al 1984

Kiraga & Stepien 2007

- Discontinuity
- \bullet Generation of large-scale field more efficient below $0.4 M_{\odot}$
- → Different spatial scales Same magnetic energy

Evidence for a different dynamo regime

Rossby number

•
$$P_{\rm rot} \rightarrow Ro = \frac{P_{\rm rot}}{\tau_c}$$

 Compare activity in stars of different masses

- Discontinuity
- \bullet Generation of large-scale field more efficient below $0.4 M_{\odot}$
- → Different spatial scales Same magnetic energy

Evidence for a different dynamo regime

Rossby number

•
$$P_{\rm rot} \rightarrow Ro = \frac{P_{\rm rot}}{\tau_c}$$

 Compare activity in stars of different masses

- Discontinuity
- \bullet Generation of large-scale field more efficient below $0.4 M_{\odot}$
- → Different spatial scales Same magnetic energy

Conclusions

Study

- Spectropolarimetric survey
- A few active stars
- $0.1 < \mathrm{M_{\star}} < 0.8 \ \mathrm{M_{\odot}}$
- $0.4 < P_{\rm rot} < 20 \ {
 m d}$
- Tomographic imaging

First results

- Large-scale topologies of early and mid-M dwarfs
- $\bullet~\text{Transition}$ at $\sim 0.5 \mathrm{M}_\odot$
 - TopologyCaracteristic scales
- Change in dynamo processes
 - Onset of full-convection i

Perspectives

- Complete the survey
- Explore cooler stars
- Implications
 - Rotational braking
 - Coronal emission

Conclusions

Study

- Spectropolarimetric survey
- A few active stars
- $0.1 < \mathrm{M_{\star}} < 0.8 \mathrm{~M_{\odot}}$
- $0.4 < P_{\rm rot} < 20 \ {
 m d}$
- Tomographic imaging

First results

- Large-scale topologies of early and mid-M dwarfs
- $\bullet~\text{Transition}$ at $\sim 0.5 M_{\odot}$
 - TopologyCaracteristic scales
- Change in dynamo processes
 - Onset of full-convection i

Perspectives

- Complete the survey
- Explore cooler stars
- Implications
 - Rotational braking
 - Coronal emission

Conclusions

Study

- Spectropolarimetric survey
- A few active stars
- $0.1 < \mathrm{M_{\star}} < 0.8 \ \mathrm{M_{\odot}}$
- $0.4 < P_{\rm rot} < 20 \ {
 m d}$
- Tomographic imaging

Perspectives

- Complete the survey
- Explore cooler stars
- Implications
 - Rotational braking
 - Coronal emission

First results

- Large-scale topologies of early and mid-M dwarfs
- $\bullet~\text{Transition}$ at $\sim 0.5 \mathrm{M}_\odot$
 - Topology
 - Caracteristic scales
- Change in dynamo processes
 - Onset of full-convection?

Conclusions

Study

- Spectropolarimetric survey
- A few active stars
- $0.1 < \mathrm{M_{\star}} < 0.8 \ \mathrm{M_{\odot}}$
- $0.4 < P_{\rm rot} < 20 \ {
 m d}$
- Tomographic imaging

Perspectives

- Complete the survey
- Explore cooler stars
- Implications
 - Rotational braking
 - Coronal emission

First results

- Large-scale topologies of early and mid-M dwarfs
- $\bullet~\text{Transition}$ at $\sim 0.5 \mathrm{M}_\odot$
 - Topology
 - Caracteristic scales
- Change in dynamo processes
 - Onset of full-convection?

Conclusions

Study

- Spectropolarimetric survey
- A few active stars
- 0.1 $< {\rm M_{\star}} <$ 0.8 ${\rm M_{\odot}}$
- $0.4 < P_{\rm rot} < 20 \ {
 m d}$
- Tomographic imaging

Perspectives

- Complete the survey
- Explore cooler stars
- Implications
 - Rotational braking
 - Coronal emission

First results

- Large-scale topologies of early and mid-M dwarfs
- $\bullet~\text{Transition}$ at $\sim 0.5 \mathrm{M}_\odot$
 - Topology
 - Caracteristic scales
- Change in dynamo processes
 - Onset of full-convection?

