Magnetism in M dwarfs observational results and prospects

Julien Morin

Institut für Astrophysik Göttingen

Bcool meeting IRAP Toulouse 6–8th December 2011

Unterstützt von / Supported by

Outline

- **1** Studying magnetic fields of M dwarfs
- 2 Direct methods for magnetic field measurements
- 3 The first spectropolarimetric survey of M dwarfs
- 4 What's next for M dwarfs magnetism ?

Outline

1 Studying magnetic fields of M dwarfs

- Fully-convective vs solar dynamo
- What magnetic fields may help us to understand ?

2 Direct methods for magnetic field measurements

- 3 The first spectropolarimetric survey of M dwarfs
- 4 What's next for M dwarfs magnetism ?

Julien Morin

Observations of magnetism in M dwarfs

Bcool IRAP 2011 3 / 22

• Ξ

What magnetic fields may help us to understand ?

Rotation

→ Jerome Bouvier's talk

- Winds on MS
- Why mid-late M dwarfs brake less ?
- Reiners & Mohanty (2011) ?
- Activity
 - FC dynamo → activity ?
 - Radio − X-ray correlation down to ~M7
 - Radio emission of VLMS and BDs
- Planets
 - SPI → Rim Fares' talk
 - Habitability
 - Prevents detection ?

Julien Morin

Observations of magnetism in M dwarfs

Bcool IRAP 2011

What magnetic fields may help us to understand ?

Rotation

➔ Jerome Bouvier's talk

- Winds on MS
- Why mid-late M dwarfs brake less ?
- Reiners & Mohanty (2011) ?
- Activity
 - FC dynamo → activity ?
 - Radio − X-ray correlation down to ~M7
 - Radio emission of VLMS and BDs
- Planets
 - SPI → Rim Fares' talk
 - Habitability
 - Prevents detection ?

Julien Morin

Observations of magnetism in M dwarfs

Bcool IRAP 2011

5 / 22

< 重)

What magnetic fields may help us to understand ?

Rotation

- ➔ Jerome Bouvier's talk
 - Winds on MS
 - Why mid-late M dwarfs brake less ?
 - Reiners & Mohanty (2011) ?
- Activity
 - FC dynamo → activity ?
 - Radio X-ray correlation down to ∼M7
 - Radio emission of VLMS and BDs
- Planets
 - SPI → Rim Fares' talk
 - Habitability
 - Prevents detection ?

Julien Morin

Observations of magnetism in M dwarfs

GJ 674 Bonfils et al. (2007)

Bcool IRAP 2011 5 / 22

• E

Outline

1 Studying magnetic fields of M dwarfs

2 Direct methods for magnetic field measurementsDisk-integrated stellar measurements

3 The first spectropolarimetric survey of M dwarfs

4 What's next for M dwarfs magnetism ?

Julien Morin

Observations of magnetism in M dwarfs

Bcool IRAP 2011 6 / 22

Unpolarised spectrum

- Total magnetic flux*
- But almost no information on field geometry
- Dynamo energetics
- Polarized spectrum
 - Large-scale component
 - Contains info on B
- ➡ ZDI → topology

Julien Morin

Observations of magnetism in M dwarfs

Bcool IRAP 2011

< E

Unpolarised spectrum

- Total magnetic flux*
- But almost no information on field geometry
- Dynamo energetics
- Polarized spectrum
 - Large-scale component
 - Contains info on B
- ➡ ZDI → topology

Julien Morin

Observations of magnetism in M dwarfs

Bcool IRAP 2011

▲ Ξ

Unpolarised spectrum

- Total magnetic flux*
- But almost no information on field geometry
- Dynamo energetics
- Polarized spectrum
 - Large-scale component
 - Contains info on **B**
- ➡ ZDI → topology

Equal RV stripes

Julien Morin

Observations of magnetism in M dwarfs

Bcool IRAP 2011 7 / 22

4 3

Unpolarised spectrum

- Total magnetic flux*
- But almost no information on field geometry
- Dynamo energetics
- Polarized spectrum
 - Large-scale component
 - Contains info on B
- ➡ ZDI → topology

Julien Morin

Observations of magnetism in M dwarfs

Unpolarised spectrum

- Total magnetic flux*
- But almost no information on field geometry
- Dynamo energetics
- Polarized spectrum
 - Large-scale component
 - Contains info on B
- ➡ ZDI → topology

Julien Morin

Observations of magnetism in M dwarfs

Unpolarised spectrum

- Total magnetic flux*
- But almost no information on field geometry
- Dynamo energetics
- Polarized spectrum
 - Large-scale component
 - Contains info on B
- ➡ ZDI → topology

Julien Morin

Observations of magnetism in M dwarfs

- • E

Outline

1 Studying magnetic fields of M dwarfs

2 Direct methods for magnetic field measurements

3 The first spectropolarimetric survey of M dwarfs

- The survey
- Results: the mass-period diagram
- Rotation-magnetic field relations
- Weak vs strong field dynamo bistability ?

4 What's next for M dwarfs magnetism ?

Julien Morin

Observations of magnetism in M dwarfs

Bcool IRAP 2011 8 / 22

4 Ξ

The survey

Multi-line + New generation instruments ESPaDOnS and NARVAL

Systematic study of H-R diagram including M dwarfs

- Explore dynamo response to
 - Mass
 - Depth of convective zone
 - Rotation period

- Measurements
 - Stokes V time-series
 - B: pol., tor., axi.
 - Differential rotation
 - Long-term evolution
- M dwarfs
 - 23 stars
 - $0.08 < M_{\star} < 0.75 \ {
 m M}_{\odot}$
 - $0.33 < P_{\rm rot} < 18.6 {
 m d}$
 - Active

Examples of ZDI reconstructions

Julien Morin

Observations of magnetism in M dwarfs

Bcool IRAP 2011 1

Bcool IRAP 2011 11

Bcool IRAP 2011 11

Bcool IRAP 2011 11

Mass-period diagram: $M_{\star} > 0.5~{ m M}_{\odot}$

Magnetic field

- Toroidal component
 - Significant or even predominant
- Poloidal component
 - Non-axisymmetric

Differential rotation

- $d\Omega\gtrsim d\Omega_{\odot}$
- Short-lived magnetic features

Donati et al.(2008)

cool IRAP 2011 12 / 22

Mass-period diagram: $0.2 < M_{\star} < 0.5~{ m M}_{\odot}$

Magnetic field Poloidal Axisymmetric Stronger \sim Dipole Differential rotation • $d\Omega \simeq \frac{d\Omega_{\odot}}{10}$ Stable magnetic features

Morin et al.(2008a,b) Phan-Bao et al.(2009) Bcool IRAP 2011 13 / 22

Julien Morin

Observations of magnetism in M dwarfs

Mass-period diagram: $0.2 < M_{\star} < 0.5~{ m M}_{\odot}$

Magnetic field Poloidal Axisymmetric Stronger \sim Dipole Differential rotation • $d\Omega \simeq \frac{d\Omega_{\odot}}{10}$ Stable magnetic features → Sharp transition → Full-convection boundary Browning (2008) Morin et al.(2008a,b) Phan-Bao

et al.(2009)

13 / 22

Julien Morin

Observations of magnetism in M dwarfs

Bcool IRAP 2011

Mass-period diagram: $M_{\star} < 0.2 \, \mathrm{M}_{\odot}$

Two distinct groups of stars Similar stellar parameters

- Field similar to stars
 - $0.2 < M_{\star} < 0.5 \ {
 m M}_{\odot}$
- \sim strong dipole
- Weak field
- Non-axisymmetric

Morin et al.(2010)

Mass-period diagram: $M_{\star} < 0.2 \ { m M}_{\odot}$

Two distinct groups of stars Similar stellar parameters

- Field similar to stars
 - $0.2 < M_{\star} < 0.5 {
 m ~M}_{\odot}$
- lacksquare \sim strong dipole
- Weak field
- Non-axisymmetric

→ Two possible dynamo modes ?
→ Switch between two states ?
→ Influence of age ?

Morin et al.(2010)

Rotation-magnetic field relation

Large-scale magnetic flux

- \blacksquare Boundary at 0.4 ${\rm M}_{\odot}$
 - $M_{\star} > 0.4~{
 m M}_{\odot}$: $B_{
 m sat} \simeq 180~{
 m G}$
 - $M_{\star} < 0.4~{
 m M}_{\odot}$: $B_{
 m sat} \simeq 600~{
 m G}$

Ratio of total and large-scale magnetic fluxes

- Unpolarized / molecular lines FeH
- $M_{\star} > 0.4 \,\,\mathrm{M_{\odot}}$: $\simeq 6\%$

$$0.2 < M_{\star} < 0.4 \; {
m M}_{\odot}$$
 : $\simeq 14\%$

Bcool IRAP 2011 1

Rotation-magnetic field relation

Large-scale magnetic flux

- \blacksquare Boundary at 0.4 ${\rm M}_{\odot}$
 - $M_{\star} > 0.4~{
 m M}_{\odot}$: $B_{
 m sat} \simeq 180~{
 m G}$
 - $M_{\star} < 0.4~{
 m M}_{\odot}$: $B_{
 m sat} \simeq 600~{
 m G}$

Ratio of total and large-scale magnetic fluxes

- Unpolarized / molecular lines FeH
- $M_{\star} > 0.4 \,\,\mathrm{M_{\odot}}$: $\simeq 6\%$

$$\blacksquare 0.2 < M_{\star} < 0.4 \; {
m M}_{\odot}$$
 : $\simeq 14\%$

More efficient at generating large-scale magnetic field

Bcool IRAP 2011 15 / 22

Rotation-magnetic field relation

Large-scale magnetic flux

- \blacksquare Boundary at 0.4 ${\rm M}_{\odot}$
 - $M_{\star} > 0.4~{
 m M}_{\odot}$: $B_{
 m sat} \simeq 180~{
 m G}$
 - $M_{\star} < 0.4~{
 m M}_{\odot}$: $B_{
 m sat} \simeq 600~{
 m G}$

Ratio of total and large-scale magnetic fluxes

- Unpolarized / molecular lines FeH
- $M_{\star} > 0.4 \,\,\mathrm{M_{\odot}}$: $\simeq 6\%$

$$0.2 < M_{\star} < 0.4 \; {
m M}_{\odot}$$
 : $\simeq 14\%$

Bcool IRAP 2011 15 / 22

Weak vs strong field dynamo bistability ?

Outline

1 Studying magnetic fields of M dwarfs

2 Direct methods for magnetic field measurements

3 The first spectropolarimetric survey of M dwarfs

4 What's next for M dwarfs magnetism ?

- What is missing in the present data ?
- A multi-technique approach
- Effect of binarity on magnetism

What is missing in the present data ?

- Disentangling Mass–P_{rot}
 - Extend to weakly-active stars
- Very low mass regime
- Long-tem evolution → cycles ?
- Relation w/ other mesurements
 - Total magnetic field Bf
 - Activity indices
- Effect of binarity ?

Julien Morin

Observations of magnetism in M dwarfs

Bcool IRAP 2011 18 / 22

What is missing in the present data ?

- Disentangling Mass–P_{rot}
 - Extend to weakly-active stars
- Very low mass regime
- Long-tem evolution → cycles ?
- Relation w/ other mesurements
 - Total magnetic field Bf
 - Activity indices
- Effect of binarity ?

Julien Morin

Observations of magnetism in M dwarfs

Bcool IRAP 2011 18 / 22

- ₹ ≣

What is missing in the present data ?

- Disentangling Mass-P_{rot}
 - Extend to weakly-active stars
- Very low mass regime
- Long-tem evolution → cycles ?
- Relation w/ other mesurements
 - Total magnetic field Bf
 - Activity indices
- Effect of binarity ?

Julien Morin

Observations of magnetism in M dwarfs

Bcool IRAP 2011 18 / 22

~ 문 문)

Bf measurements from unpolarised spectroscopy

- Spectroscopy + spectropolarimetry
 - Ratio of large-scale to total field
 - Increase at FC boundary
- Low number of objects
- Non-simultaenous measurements
 - Rotational modulation ?
 - Long-term variations ?
- Very low mass domain

Reiners, Basri & Browning (2009)

< E

Bf measurements from unpolarised spectroscopy

- Spectroscopy + spectropolarimetry
 - Ratio of large-scale to total field
 - Increase at FC boundary
- Low number of objects
- Non-simultaenous measurements
 - Rotational modulation ?
 - Long-term variations ?
- Very low mass domain

Reiners, Basri & Browning (2009)

•

Bf measurements from unpolarised spectroscopy

- Spectroscopy + spectropolarimetry
 - Ratio of large-scale to total field
 - Increase at FC boundary
- Low number of objects
- Non-simultaenous measurements
 - Rotational modulation ?
 - Long-term variations ?
- Very low mass domain

Radio observations brown and red dwarfs

Credit: Gregg Hallinan (NRAO/UC Berkeley)

Julien Morin

Observations of magnetism in M dwarfs

Bcool IRAP 2011

20 / 22

< ≣)

Radio observations brown and red dwarfs

- Polarized pulses
- ECMI emission
- 🗢 Similar giant planets, AKR
- Also observed on M dwarfs

Hallinan et al. (2009)

2

Effect of binarity on magnetism

- Close eclipsing binaries
 - Strong tidal interaction
- Effect on dynamo ?
- Related to SPI
- Stellar models: Mass-Radius relationship
 - Large discrepancy for EBs
 - Accurate for inactive objects

Ribas (2006)

Bcool IRAP 2011 21 / 22

Results and prospects on M dwarfs magnetism

- Ist spectropol. survey of M dwarfs
 - Topology change \sim FCL
 - Bistability among VLMS
- Disentangle Mass–P_{rot}
- Long-term evolution
- Mutli-technique approach
- Close binaries
- Link w/ B of TTS
- Detection of extrasolar planets

Julien Morin

Observations of magnetism in M dwarfs

Bcool IRAP 2011