

Magnetic fields of M dwarfs in the SPIRou context

Julien Morin Laboratoire Univers et Particules de Montpellier

1st SPIRou science meeting – Paris, France 23rd September 2014

1 Why do we care about stellar magnetic fields?

- 2 Detection and characterization of stellar magnetic fields
- 3 A brief overview of M dwarfs' magnetism
- 4 M dwarf studies with SPIRou
- 5 Summary

Julien Morin

SPIRou: Magnetic fields of M dwarfs

23/09/2014 2 / 20

 $\exists \rightarrow$

1 Why do we care about stellar magnetic fields?

- Stellar magnetic fields and planets
- Advances in stellar physics

2 Detection and characterization of stellar magnetic fields

- 3 A brief overview of M dwarfs' magnetism
- 4 M dwarf studies with SPIRou

5 Summary

Julien Morin

SPIRou: Magnetic fields of M dwarfs

23/09/2014 3 / 20

Why do we care about magnetic fields? (1/2)

- Magnetic activity is ubiquitous
- Magnetic fields and planets
 - Detection
 - → talks by X. Bonfils, X. Dumusque, É. Hébrard
 - Characterization: space weather
 - → talks by A. Vidotto, R. Farès, A. Strugarek

Why do we care about magnetic fields? (1/2)

- Magnetic activity is ubiquitous
- Magnetic fields and planets
 - Detection
 - → talks by X. Bonfils, X. Dumusque, É. Hébrard
 - Characterization: space weather
 - → talks by A. Vidotto, R. Farès, A. Strugarek

GJ 674 Bonfils et al. (2007)

23/09/2014 4 / 20

Why do we care about magnetic fields? (1/2)

- Magnetic activity is ubiquitous
- Magnetic fields and planets
 - Detection
 - → talks by X. Bonfils, X. Dumusque, É. Hébrard
 - Characterization: space weather
 - → talks by A. Vidotto, R. Farès, A. Strugarek

Credit: NASA / ESA

23/09/2014 4 / 20

Why do we care about magnetic fields? (2/2)

- Advances in stellar physics
 - Dynamo processes
 - → talks by L. Jouve, S. Brun
 - Rotational evolution
 - Irwin et al. (2011), Reiners & Mohanty (2013)
 - Activity
 - Berger et al. (2008), Hallinan et al. (2008)

PMS and MS fully-convective stars in the HRD Adapted from Reiners (2008) Evolutionary tracks from Siess et al. (2002)

Julien Morin

SPIRou: Magnetic fields of M dwarfs

23/09/2014 5 / 20

Why do we care about magnetic fields? (2/2)

- Advances in stellar physics
 - Dynamo processes
 - → talks by L. Jouve, S. Brun
 - Rotational evolution
 - Irwin et al. (2011), Reiners & Mohanty (2013)
 - Activity
 - Berger et al. (2008), Hallinan et al. (2008)

West et al. (2008)

Julien Morin

SPIRou: Magnetic fields of M dwarfs

23/09/2014 5 / 20

Why do we care about magnetic fields? (2/2)

- Advances in stellar physics
 - Dynamo processes
 - → talks by L. Jouve, S. Brun
 - Rotational evolution
 - Irwin et al. (2011), Reiners & Mohanty (2013)
 - Activity
 - Berger et al. (2008), Hallinan et al. (2008)

Williams, Cook & Berger (2013)

23/09/2014 5 / 20

1 Why do we care about stellar magnetic fields?

- 2 Detection and characterization of stellar magnetic fields
 - Indirect measurements: stellar activity
 - Direct measurements of photospheric magnetic fields
- 3 A brief overview of M dwarfs' magnetism
- 4 M dwarf studies with SPIRou

5 Summary

Julien Morin

SPIRou: Magnetic fields of M dwarfs

23/09/2014 6 / 20

Indirect measurements: stellar activity

- Interaction $ec{B} \leftrightarrow$ atmosphere
 - Spots, plages
 - Vis. photometry/spectroscopy
 - Chromosphere, TR, corona
 - Radio → X-rays
- Usual proxies for stellar \vec{B}
 - Call H&K, H α emission
 - Coronal X-ray emission

SOHO, EUV

23/09/2014 7 / 20

Direct measurements of \vec{B} : unpolarised light

- Direct \$\vec{B}_{photosph}\$ measurements
 Zeeman effect
- Measure "magnetic flux": $\left< \| ec{B} \| \right>$
 - Atomic lines
 - Molecular lines
- Weakly sensitive to B orientation
 - Almost no information
 - Equally sensitive to any geometry
- Low to moderate v sin i

Julien Morin

23/09/2014 8 / 20

< 문)

Direct measurements of \vec{B} : spectropolarimetry

- Sensitive to vector properties
- Partial cancellation
 - Blind to small-scale field
- Differential measurement / weakly affected by modelling error
- Requires high S/N ($\sim 10^4$)
- Multi-line techniques (LSD) Donati et al. (1997)
- Interpretation/modelling Zeeman-Doppler Imaging Semel (1989) Donati & Brown (1997)

Julien Morin

23/09/2014

1 Why do we care about stellar magnetic fields?

2 Detection and characterization of stellar magnetic fields

3 A brief overview of M dwarfs' magnetism

- Activity of M dwarfs
- Magnetic fields of M dwarfs in unpolarised light
- The first spectropolarimetric survey

4 M dwarf studies with SPIRou

5 Summary

Julien Morin

Activity of M dwarfs

- Rotation–activity relation
- Early-mid M dwarfs: similar G-K
 - High Ro: anti-correlated
 - Low Ro: plateau
 - No break at FCL
- Late M dwarfs
 - ∃ low activity at low Ro
 - No L_{rad}/L_{bol} saturation
- Activity cycles
 - Evidence for long-term variability
 - Hints of cycles

Activity of M dwarfs

Rotation-activity relation

- Early-mid M dwarfs: similar G-K
 - High Ro: anti-correlated
 - Low Ro: plateau
 - No break at FCL
- Late M dwarfs
 - ∃ low activity at low Ro
 - No L_{rad}/L_{bol} saturation
- Activity cycles
 - Evidence for long-term variability
 - Hints of cycles

< ≣ I

Magnetic fields of M dwarfs in unpolarised light

- Rotation–Bf relation
 - Early-mid M dwarfs: similar G-K
 - High Ro: anti-correlated
 - Low Ro: plateau
 - No break at FCL
 - Late M dwarfs
 - ∃ low Bf at low Ro

23/09/2014 12 / 20

Spectropolarimetric survey: fully convective stars

Fully convective boundary

- \blacksquare Sharp transition $\sim 0.5~{
 m M}_{\odot}$
 - Magnetic topology
 - Differential rotation
- Partial agreement with DNS Browning (2008)
- Morin et al. (2008a,b)
 Donati et al. (2008)
 Phan-Bao et al. (2009)
- Similar transition among TTS
 MaPP Large Program
 Gregory et al. (2012)

23/09/2014 13 / 20

Spectropolarimetric survey: fully convective stars

Coronal extrapolations by M. Jardine from surface magnetic fields reconstructed by Donati et al. (2008), Morin et al. (2008a)

Julien Morin

SPIRou: Magnetic fields of M dwarfs

Fully convective boundary

- \blacksquare Sharp transition $\sim 0.5~{\rm M}_{\odot}$
 - Magnetic topology
 - Differential rotation
- Partial agreement with DNS Browning (2008)
- Morin et al. (2008a,b) Donati et al. (2008) Phan-Bao et al. (2009)

Similar transition among TTS
 MaPP Large Program
 Gregory et al. (2012)

23/09/2014 13 / 20

Spectropolarimetric survey: fully convective stars

Coronal extrapolations by M. Jardine from surface magnetic fields reconstructed by Donati et al. (2008), Morin et al. (2008a)

Julien Morin

SPIRou: Magnetic fields of M dwarfs

Fully convective boundary

- \blacksquare Sharp transition $\sim 0.5~{\rm M}_{\odot}$
 - Magnetic topology
 - Differential rotation
- Partial agreement with DNS Browning (2008)
- Morin et al. (2008a,b)
 Donati et al. (2008)
 Phan-Bao et al. (2009)
- Similar transition among TTS
 - MaPP Large Program
 - Gregory et al. (2012)

23/09/2014 13 / 20

Spectropolarimetric survey: very low mass stars

VLM rapidly rotating stars

- = 2 groups of stars $\lesssim 0.2~{
 m M}_{\odot}$
 - Similar stellar params
 - Radically \neq magnetisms
- Morin et al. (2010)

Explanation

- Variability / cycles?
 - No switch in 3 yr
- Effect of age?
- Dynamo bistability?

Ongoing studies

- Further explore bistability
 - M dwarf binaries

23/09/2014 14 / 20

Spectropolarimetric survey: very low mass stars

VLM rapidly rotating stars

- = 2 groups of stars $\lesssim 0.2~{
 m M}_{\odot}$
 - Similar stellar params
 - Radically \neq magnetisms
- Morin et al. (2010)

Explanation

- Variability / cycles?
 - No switch in 3 yr
- Effect of age?
- Dynamo bistability?

Ongoing studies

- Further explore bistability
- M dwarf binaries

23/09/2014 14 / 20

Spectropolarimetric survey: very low mass stars

VLM rapidly rotating stars

- = 2 groups of stars $\lesssim 0.2~{
 m M}_{\odot}$
 - Similar stellar params
 - Radically \neq magnetisms
- Morin et al. (2010)

Explanation

- Variability / cycles?
 - No switch in 3 yr
- Effect of age?
- Dynamo bistability?

Ongoing studies

- Further explore bistability
- M dwarf binaries

23/09/2014 14 / 20

1 Why do we care about stellar magnetic fields?

2 Detection and characterization of stellar magnetic fields

3 A brief overview of M dwarfs' magnetism

4 M dwarf studies with SPIRou

- Activity level classes
- M dwarfs' magnetism studies within SLS
- M dwarfs' magnetism studies outside SLS

5 Summary

Julien Morin

Activity level classes

- Input catalog ESPaDOnS observations
- → L. Malo's talk
- Very active stars
 - Not suitable for planet searches
- Inactive stars
 - Magnetism characterization not possible/needed
- Moderately active stars
 - Planet serach
 - Coupled with activity/magnetism study

Julien Morin

23/09/2014 16 / 20

M dwarfs' magnetism studies within SLS

- Moderately active stars
- charact. of \vec{B} /activity required
 - Planet detection
 - Planet characterization
- Studies of M dwarf magnetism
- Come for free!
 - Extend spectropolarimetric survey to intermediate activity
 - Rotation-activity-magnetic field relations at intermediate rotation
 - Magnetic cycles on M dwarfs?

Julien Morin

23/09/2014 17 / 20

M dwarfs' magnetism studies outside SLS

- Very active stars
- Late SpT (Ultracool dwarfs)
- Complement SLS
- → volume-limited sample
- Improve statistics on M0-M6
 - Bistability?
 - Connection w/ TTS?
- M7-M9
 - relation w/ other obs?

1 Why do we care about stellar magnetic fields?

- 2 Detection and characterization of stellar magnetic fields
- 3 A brief overview of M dwarfs' magnetism
- 4 M dwarf studies with SPIRou

5 Summary

Summary

- Magnetic fields
 - Crucial for stellar physics and for planetary systems
- Spectropolarimetry
 - ESPaDOnS legacy
 - SPIRou : ideal for M dwarfs magnetism
- SLS
 - Huge potential for stellar science
 - Extend to very active / late SpT
- → Build unique magnetic survey

