Exploring the magnetic fields of M dwarfs with spectropolarimetry at CFHT

Julien Morin Institut für Astrophysik Göttingen

J. F. Donati, E. Hébrard, P. Petit	IRAP - CNRS / Université de Toulouse
X. Delfosse, T. Forveille	IPAG – CNRS / Université de Grenoble
S. Gregory, M. Jardine, A. Vidotto	University of St Andrews
G. Hallinan	Caltech
G. Hussain	ESO Garching
L. Hebb, K. Stassun	Vanderbilt University
E. Dormy, M. Schrinner	MAG – ENS Paris / IPGP
A. Reiners, D. Shulyak	IfA Göttingen
U. Christensen, T. Gastine	MPS
N. Phan-Bao	ASIAA

CFHT Users' Meeting 2013 – Campbell River – 7th May 2013

Unterstützt von / Supported by

Outline

- 1 Magnetic fields of cool stars
- 2 The first spectropolarimetric survey of M dwarfs
- 3 What's coming next?
- 4 Summary

Dynamo action in FC stars

- Solar dynamo
 - Tachocline: crucial role?
- Fully convective stars
 - Tachocline → solar dynamo
 - observable effects?

Main sequence FC stars

- Activity
- B from Zeeman broadening
- No change at the fully-convective boundary

Young FC stars

Some TTS are fully convective Same dynamo processes?

main sequence stars

Julien Morin

Exploring the magnetic fields of M dwarfs with ESPaDOnS 07/05/2013 3 / 10

Dynamo action in FC stars

- Solar dynamo
 - Tachocline: crucial role?
- Fully convective stars
 - Tachocline → solar dynamo
- observable effects?

Main sequence FC stars

- Activity
- B from Zeeman broadening
- No change at the fully-convective boundary

Young FC stars

Some TTS are fully convective

main sequence stars

Julien Morin

Exploring the magnetic fields of M dwarfs with ESPaDOnS 07/05/2013 3 / 10

. . .

Dynamo action in FC stars

- Solar dynamo
 - Tachocline: crucial role?
- Fully convective stars
 - Tachocline → solar dynamo
- observable effects?

Main sequence FC stars

- Activity
- B from Zeeman broadening
- No change at the fully-convective boundary

Young FC stars

Some TTS are fully convective
 Same dynamo processes?

Rotation-total magnetic field relation Reiners, Basri & Browning et al. (2009)

Julien Morin

Exploring the magnetic fields of M dwarfs with ESPaDOnS 07/05/2013 3 / 10

Dynamo action in FC stars

- Solar dynamo
 - Tachocline: crucial role?
- Fully convective stars
 - Tachocline → solar dynamo
- observable effects?

Main sequence FC stars

- Activity
- **B** from Zeeman broadening
- No change at the fully-convective boundary

Young FC stars

- Some TTS are fully convective
 - Same dynamo processes?
 - MaPP, MaTYSSE LPs

PMS and MS fully-convective stars in the HRD Adapted from Reiners (2008) Evolutionary tracks from Siess et al. (2002)

Julien Morin

Exploring the magnetic fields of M dwarfs with ESPaDOnS 07/0

07/05/2013

3 / 10

< ≣ |

Why and how using spectropolarimetry?

Spectroscopy vs spectropolarimetry

- Zeeman effect
- Unpolarized light
 - Total "magnetic flux"
 - **B** geometry
- Spectropolarimetry
 - Large-scale field only
 - Vector properties + resolution

Detecting polarization

- Cool active stars
 - Circular polarization
 - $\sim 0.1~\% imes \mathit{I_c}
 ightarrow {
 m S/N} \sim 1\,000{
 m s}$
- Efficient instruments
- Multi-line techniques
- ESPaDOnS: M dwarfs within reach!
- Survey of M dwarf

Julien Morin

Exploring the magnetic fields of M dwarfs with ESPaDOnS 07/05/2013

2013 4 / 10

•

Why and how using spectropolarimetry?

Spectroscopy vs spectropolarimetry

- Zeeman effect
- Unpolarized light
 - Total "magnetic flux"
 - **B** geometry
- Spectropolarimetry
 - Large-scale field only
 - Vector properties + resolution

Detecting polarization

- Cool active stars
 - Circular polarization
 - $\sim 0.1~\% imes \mathit{I_c}
 ightarrow {
 m S/N} \sim 1\,000{
 m s}$
- Efficient instruments
- Multi-line techniques
- ESPaDOnS: M dwarfs within reach!
- Survey of M dwarf

Julien Morin

Exploring the magnetic fields of M dwarfs with ESPaDOnS 07/05/2013

13 4 / 10

<₹≣⊅

Why and how using spectropolarimetry?

Spectroscopy vs spectropolarimetry

- Zeeman effect
- Unpolarized light
 - Total "magnetic flux"
 - **B** geometry
- Spectropolarimetry
 - Large-scale field only
 - Vector properties + resolution

Detecting polarization

- Cool active stars
 - Circular polarization
 - \sim 0.1 % \times /_c \rightarrow S/N \sim 1000s
- Efficient instruments
- Multi-line techniques
- ESPaDOnS: M dwarfs within reach!
- Survey of M dwarfs

1st spectropolarimetric observations of the magnetic field of a fully convective star Donati et al. (2006), Morin et al. (2008a)

Julien Morin

Exploring the magnetic fields of M dwarfs with ESPaDOnS

07/05/2013

4 / 10

< ≣

Spectropolarimetric survey: fully convective stars

Fully convective boundary

- lacksquare Sharp transition $\sim 0.5~{
 m M}_{\odot}$
 - Magnetic topology
 - Differential rotation
- Partial agreement with DNS Browning (2008)
- Morin et al. (2008a,b)
 Donati et al. (2008)
 Phan-Bao et al. (2009)
- Similar transition among TTS
 MaPP Large Program
 Gregory et al. (2012)

Julien Morin

Exploring the magnetic fields of M dwarfs with ESPaDOnS 07/05/2013 5 / 10

Spectropolarimetric survey: fully convective stars

Coronal extrapolations by M. Jardine from surface magnetic fields reconstructed by Donati et al. (2008), Morin et al. (2008a)

Fully convective boundary

- lacksquare Sharp transition $\sim 0.5~{
 m M}_{\odot}$
 - Magnetic topology
 - Differential rotation
- Partial agreement with DNS Browning (2008)
- Morin et al. (2008a,b)
 Donati et al. (2008)
 Phan-Bao et al. (2009)

Similar transition among TTS
 MaPP Large Program
 Gregory et al. (2012)

Julien Morin

Exploring the magnetic fields of M dwarfs with ESPaDOnS

07/05/2013

5 / 10

(신문)

Spectropolarimetric survey: fully convective stars

Coronal extrapolations by M. Jardine from surface magnetic fields reconstructed by Donati et al. (2008), Morin et al. (2008a)

Fully convective boundary

- lacksquare Sharp transition $\sim 0.5~{
 m M}_{\odot}$
 - Magnetic topology
 - Differential rotation
- Partial agreement with DNS Browning (2008)
- Morin et al. (2008a,b)
 Donati et al. (2008)
 Phan-Bao et al. (2009)
- Similar transition among TTS
 - MaPP Large Program
 - Gregory et al. (2012)

Julien Morin

Exploring the magnetic fields of M dwarfs with ESPaDOnS

07/05/2013

5 / 10

Spectropolarimetric survey: very low mass stars

VLM rapidly rotating stars

- $\blacksquare~2$ groups of stars $\lesssim 0.2~{\rm M}_{\odot}$
 - Similar stellar params
 - Radically \neq magnetisms
- Morin et al. (2010)

Explanation

- Variability / cycles?
 - No switch in 3 yr
- Effect of age?
- Dynamo bistability?

Exploring the magnetic fields of M dwarfs with ESPaDOnS 07/05/2013 6 / 10

Spectropolarimetric survey: very low mass stars

VLM rapidly rotating stars

- $\blacksquare~2$ groups of stars $\lesssim 0.2~{\rm M}_{\odot}$
 - Similar stellar params
 - Radically \neq magnetisms
- Morin et al. (2010)

Explanation

- Variability / cycles?
 - No switch in 3 yr
- Effect of age?
- Dynamo bistability?

Dynamo bistability for very low mass stars?

(a) Spectropolarimetric observations

Dynamo bistability?

- Observations $2 \neq$ types magnetism
- Dependence on initial conditions
 - Two types of fields generated
- Morin, Dormy et al. (2011)

Parallel with numerical simulations

- Gastine, Morin et al. (2013)
- Predictions for M dwarfs
- Extent bistable domain
- Differential rotation

Julien Morin

Exploring the magnetic fields of M dwarfs with ESPaDOnS

07/05/2013

7 / 10

Dynamo bistability for very low mass stars?

(a) Spectropolarimetric observations

Dynamo bistability?

- Observations $2 \neq$ types magnetism
- Dependence on initial conditions
 - Two types of fields generated
- Morin, Dormy et al. (2011)

Parallel with numerical simulations

- Gastine, Morin et al. (2013)
- Predictions for M dwarfs
 - Extent bistable domain
 - Differential rotation

Julien Morin

Exploring the magnetic fields of M dwarfs with ESPaDOnS

07/05/2013

7 / 10

Horizon 2016: more science with ESPaDOnS

Very low mass stars

- Disentangle between hypothesis
- Snapshot survey 2013AB
 - Bistability? → Test predictions
 - Effect of age? → Improve statistics
- Monitoring (to be proposed...)
 - Variability
 - Polarity reversal
 - Switch dipolar ↔ multipolar

Binary systems

- BinaMIcS Large Program
 - Impact binary interactions → B?
 - How do close active stars interact?

Observations ongoing for semester 13A and proposed for 13B

Julien Morin

Exploring the magnetic fields of M dwarfs with ESPaDOnS 07/05/2013

3 8/10

< = 1

Horizon 2016: more science with ESPaDOnS

Very low mass stars

- Disentangle between hypothesis
- Snapshot survey 2013AB
 - Bistability? → Test predictions
 - Effect of age? → Improve statistics
- Monitoring (to be proposed...)
 - Variability
 - Polarity reversal
 - Switch dipolar ↔ multipolar

Binary systems

- BinaMIcS Large Program
 - Impact binary interactions → B?
 - How do close active stars interact?

Coronal extrapolation for a binary system Credit: S. Gregory, BinaMIcS collaboration

Julien Morin

Exploring the magnetic fields of M dwarfs with ESPaDOnS 07/05/2013 8 / 10

Next generation spectropolarimeter: SPIRou

SPIRou: a unique instrument

- YJHK-bands in single exposure
- Resolution/Throughput/Polarimetry

Major advances to come

- Systematic study of M dwarfs
 - Volume-limited sample
 - Down to low-activity regime
 - Extended to brown dwarfs domain

Stellar magnetism / exoplanets synergy

- Similar monitoring needs
 Comes for free!
- Science synergy
 - Filtering activity jitter
 - Effects of B_⋆ → habitability?

Wavelength (nm)

SPIRou wavelength coverage vs SED of M dwarfs

Julien Morin

Exploring the magnetic fields of M dwarfs with ESPaDOnS 07/05/2013 9 / 10

Next generation spectropolarimeter: SPIRou

SPIRou: a unique instrument

- YJHK-bands in single exposure
- Resolution/Throughput/Polarimetry

Major advances to come

- Systematic study of M dwarfs
 - Volume-limited sample
 - Down to low-activity regime
 - Extended to brown dwarfs domain

Stellar magnetism / exoplanets synergy

- Similar monitoring needs
 Comes for free!
- Science synergy
 - Filtering activity jitter
 - Effects of B_⋆ → habitability?

McLean et al. (2012)

Julien Morin

Exploring the magnetic fields of M dwarfs with ESPaDOnS 07/05/2013 9 / 10

Next generation spectropolarimeter: SPIRou

SPIRou: a unique instrument

YJHK-bands in single exposureResolution/Throughput/Polarimetry

Major advances to come

- Systematic study of M dwarfs
 - Volume-limited sample
 - Down to low-activity regime
 - Extended to brown dwarfs domain

Stellar magnetism / exoplanets synergy

- Similar monitoring needs
- → Comes for free!
- Science synergy
 - Filtering activity jitter
 - Effects of B_{*} → habitability?

RV jitter compared w/ longitudinal field SPIRou science case

Exploring the magnetic fields of M dwarfs with ESPaDOnS 07/05/2013 9 / 10

Summary

Magnetism of M dwarfs

- Prime interest stellar dynamos
 - Non-solar dynamo
 - Fast rotation

The major role of ESPaDOnS

- Achievements
 - Fully-convective transition
 - Dynamo bistability?
- Ongoing projects
 - Confirm theoretical predictions
 - Close binary systems

SPIRou

- Ideal for M dwarfs magnetism
 - Next big step forward
 - Synergy w/ planet search

Julien Morin

Exploring the magnetic fields of M dwarfs with ESPaDOnS 07/05/2013 10 / 10

4

Summary

Magnetism of M dwarfs

- Prime interest stellar dynamos
 - Non-solar dynamo
 - Fast rotation

The major role of ESPaDOnS

- Achievements
 - Fully-convective transition
 - Dynamo bistability?
- Ongoing projects
 - Confirm theoretical predictions
 - Close binary systems

SPIRou

- Ideal for M dwarfs magnetism
 - Next big step forward
 - Synergy w/ planet search

Julien Morin

Exploring the magnetic fields of M dwarfs with ESPaDOnS 07/05/2013 10 / 10