# Does inertia determine the magnetic topology of low-mass stars ?

Julien Morin

Institut für Astrophysik Göttingen

T. Gastine Max Planck Institut für Sonnensystemforschung A. Reiners Institut für Astrophysik Göttingen U. Christensen Max Planck Institut für Sonnensystemforschung

> Journées de la SF2A 2012 Nice – 08 June 2012



Unterstützt von / Supported by



# Outline

- 1 Low mass stars magnetism
- 2 Magnetic fields measurements in LMS
- 3 Dynamo bistability

# Outline

### 1 Low mass stars magnetism

### 2 Magnetic fields measurements in LMS

3 Dynamo bistability

#### $\alpha\Omega$ Dynamo

- Differential rotation
- Cyclonic convection
- ➔ Tachocline: crucial role ?

#### Partly convective

- Rotation-activity, cycles
- Internal structure
- Solar-type dynamo

### $M_{\star} < 0.35~{\rm M}_{\odot}$

- Tachocline → no solar dynamo
- Activity / magnetic field
- Simple topology



### Schou et al. (1998) from SOHO–MDI data

J. Morin, T. Gastine, et al. Does inertia determine the magnetic topology of LMS ?

SF2A 2012 4 / 16

16

#### $\alpha\Omega$ Dynamo

- Differential rotation
- Cyclonic convection
- → Tachocline: crucial role ?

#### Partly convective

- Rotation-activity, cycles
- Internal structure
- Solar-type dynamo

### $M_{\star} < 0.35~{\rm M}_{\odot}$

- Tachocline → no solar dynamo
- Activity / magnetic field
- Simple topology



Adapted from Reiners (2007) from Siess et al. (2002) models

J. Morin, T. Gastine, et al. Does inertia determine the magnetic topology of LMS ? SF2A 2012 4 / 16

#### $\alpha\Omega$ Dynamo

- Differential rotation
- Cyclonic convection
- → Tachocline: crucial role ?

#### Partly convective

- Rotation-activity, cycles
- Internal structure
- Solar-type dynamo

### $M_{\star} < 0.35~{\rm M}_{\odot}$

- Tachocline → no solar dynamo
- Activity / magnetic field
- Simple topology



Adapted from Reiners (2007) from Siess et al. (2002) models

4 / 16

J. Morin, T. Gastine, et al. Does inertia determine the magnetic topology of LMS ? SF2A 2012

### $lpha\Omega$ Dynamo

- Differential rotation
- Cyclonic convection
- ➔ Tachocline: crucial role ?

#### Partly convective

- Rotation-activity, cycles
- Internal structure
- Solar-type dynamo

### $M_{\star} < 0.35~{\rm M}_{\odot}$

- Tachocline → no solar dynamo
- Activity / magnetic field
- Simple topology



### Donati et al. (2006)

J. Morin, T. Gastine, et al. Does inertia determine the magnetic topology of LMS ?

SF2A 2012 4 / 16

5

### Dynamo processes in fully convective stars

- Small-scale dynamo
  - Durney et al. (1993)
- Mean-field  $\alpha^2$  and  $\alpha^2 \Omega$  models
  - Chabrier & Küker (2006)
- Global 3D DNS
  - Dobler et al. (2006) Browning (2008)

#### Link with geodynamo

 Scaling law B(E<sub>conv</sub>)
 Christensen, Holzwarth & Reiners (2009)



Dobler et al.(2006)

### Dynamo processes in fully convective stars

- Small-scale dynamo
  - Durney et al. (1993)
- Mean-field  $\alpha^2$  and  $\alpha^2 \Omega$  models
  - Chabrier & Küker (2006)
- Global 3D DNS
  - Dobler et al. (2006) Browning (2008)

#### Link with geodynamo

 Scaling law B(E<sub>conv</sub>)
 Christensen, Holzwarth & Reiners (2009)



Christensen et al.(2009)

### Dynamo processes in fully convective stars

- Small-scale dynamo
  - Durney et al. (1993)
- Mean-field  $\alpha^2$  and  $\alpha^2 \Omega$  models
  - Chabrier & Küker (2006)
- Global 3D DNS
  - Dobler et al. (2006) Browning (2008)

#### Link with geodynamo

 Scaling law B(E<sub>conv</sub>)
 Christensen, Holzwarth & Reiners (2009)



Christensen et al.(2009)

# Outline

1 Low mass stars magnetism

### 2 Magnetic fields measurements in LMS

3 Dynamo bistability

J. Morin, T. Gastine, et al. Does inertia determine the magnetic topology of LMS ? SF2A 2012 6 / 16

#### Zeeman effect

- Line splitting/broadening
  - $\Delta\lambda_B = 4.67 \times 10^{-12} \lambda_0^2 g_{eff} B$
- Polarization

#### Unpolarised spectroscopy

Total field Bf

Geometry

#### Spectropolarimetry

- Field orientation + polarity
- Large-scale component only



### GJ 729, FeH Wing-Ford band Reiners & Basri (2006)

#### Zeeman effect

- Line splitting/broadening
  - $\Delta\lambda_B = 4.67 \times 10^{-12} \, \lambda_0^2 g_{eff} B$
- Polarization

#### Unpolarised spectroscopy

- Total field Bf
- Geometry

#### Spectropolarimetry

- Field orientation + polarity
- Large-scale component only

### Zeeman effect

- Line splitting/broadening
  - $\Delta\lambda_B = 4.67 \times 10^{-12} \, \lambda_0^2 g_{eff} B$
- Polarization

#### Unpolarised spectroscopy

- Total field Bf
- Geometry

#### Spectropolarimetry

- Field orientation + polarity
- Large-scale component only →Zeeman-Doppler Imaging



J. Morin, T. Gastine, et al. Does inertia determine the magnetic topology of LMS ?

SF2A 2012 7 / 16

### Zeeman effect

- Line splitting/broadening
  - $\Delta\lambda_B = 4.67 \times 10^{-12} \,\lambda_0^2 g_{eff} B$
- Polarization

#### Unpolarised spectroscopy

- Total field Bf
- Geometry

#### Spectropolarimetry

- Field orientation + polarity
- Large-scale component only →Zeeman-Doppler Imaging



J. Morin, T. Gastine, et al. Does inertia determine the magnetic topology of LMS ?

SF2A 2012 7 / 16



- Fully-convective transition
  - $0 < Bf < 4 \ \mathrm{kG}$
  - On both sides
  - Agreement w/ activity measurements
  - Dispersion due to rotation



J. Morin, T. Gastine, et al. Does inertia determine the magnetic topology of LMS ?



#### Spectropolarimetry

- Fully-convective transition
  - Partly convective stars
    - Toroidal, non-axisymmetric
    - Variable
  - Fully convective stars
    - Almost dipolar, stronger
  - Steady
- Very low mass stars
  - Similar stellar parameters
  - Two distinct magnetisms
    - strong dipole
    - weak non-axisymmetric

Morin, Donati et al. (2008–2010)

SF2A 2012 9



#### Spectropolarimetry

- Fully-convective transition
  - Partly convective stars
    - Toroidal, non-axisymmetric
    - Variable
  - Fully convective stars
    - Almost dipolar, stronger
    - Steady
- Very low mass stars
  - Similar stellar parameters
  - Two distinct magnetisms
    - strong dipole
    - weak non-axisymmetric

Morin, Donati et al. (2008–2010)

SF2A 2012 9



#### Spectropolarimetry

- Fully-convective transition
  - Partly convective stars
    - Toroidal, non-axisymmetric
    - Variable
  - Fully convective stars
    - Almost dipolar, stronger
    - Steady
- Very low mass stars
  - Similar stellar parameters
  - Two distinct magnetisms
    - strong dipole
    - weak non-axisymmetric

Morin, Donati et al. (2008–2010)

SF2A 2012 9



#### Spectropolarimetry

- Fully-convective transition
  - Partly convective stars
    - Toroidal, non-axisymmetric
    - Variable
  - Fully convective stars
    - Almost dipolar, stronger
    - Steady
- Very low mass stars
  - Similar stellar parameters
  - Two distinct magnetisms
    - strong dipole
    - weak non-axisymmetric

Morin, Donati et al. (2008–2010)

012 9 /

# Outline

1 Low mass stars magnetism

2 Magnetic fields measurements in LMS

### 3 Dynamo bistability

- Weak and strong field dynamos
- The role of inertia

# Weak and strong field dynamos



### The role of inertia in Boussinesq simulations

#### Christensen & Aubert (2006)

- Boussinesq simulations
- Inertia-Coriolis balance:  $Ro_{\ell} = Ro \frac{\overline{\ell}_u}{\pi}$
- Low Ro → dipolar
- Schrinner et al. (2012)
  - Stress-free boundary conditions
    - Simitev & Busse (2009)
  - Bistability at low Ro
    - dip vs multipolar depending on IC



Christensen & Aubert (2006)

### The role of inertia in anelastic simulations

#### Gastine et al., submitted

- Still recovers in anelastic:
  - Transition to dipole at low  $Ro_\ell$
  - Dipole/multipole bistability



# Anelastic simulations vs observations (1/2)

- Compare simulations w/ spectropolarimetric measurements
  - large-scale component of  ${\bf B}$
  - "scale separation" assumption
- similar transition to bistable regime
- Caveats and questions
  - $Ro_{\ell} \leftrightarrow empirical Ro ?$
  - Can we find multipolar fields
    - $M_{\star} > 0.15 {
      m ~M}_{\odot}$  ?
    - Ro > 0.02 ?
  - Outliers



J. Morin, T. Gastine, et al. Does inertia determine the magnetic topology of LMS ?

SF2A 2012 14 / 16

-≣>

# Anelastic simulations vs observations (1/2)

- Compare simulations w/ spectropolarimetric measurements
  - large-scale component of  ${\bf B}$
  - "scale separation" assumption
- similar transition to bistable regime
- Caveats and questions
  - $Ro_{\ell} \leftrightarrow$  empirical Ro ?
  - Can we find multipolar fields
    - $M_{\star} > 0.15 {
      m ~M}_{\odot}$  ?
    - Ro > 0.02 ?
  - Outliers

Larger survey of active M dwarfs



J. Morin, T. Gastine, et al. Does inertia determine the magnetic topology of LMS ?

SF2A 2012 14 / 16

.

### Anelastic simulations vs observations (2/2)



### Anelastic simulations vs observations (2/2)



### Anelastic simulations vs observations (2/2)



### Differential rotation measurement in both subsamples

J. Morin, T. Gastine, et al. Does inertia determine the magnetic topology of LMS ? SF2A 2012 15 / 16

## Summary and conclusions

- M dwarfs: prime interest for dynamos
  - non-solar dynamo
  - fast-rotation
- Observations
  - Unpolarized spectroscopy
  - Spectropolarimetry
    - Bistable domain VLMS/fast rotation
- Theory/Simulations
  - Continuum planets/BDs/stars
  - Inertia → drives LS topology
  - Bistable domain

### → More to come !



# Summary and conclusions

- M dwarfs: prime interest for dynamos
  - non-solar dynamo
  - fast-rotation
- Observations
  - Unpolarized spectroscopy
  - Spectropolarimetry
    - Bistable domain VLMS/fast rotation
- Theory/Simulations
  - Continuum planets/BDs/stars
  - Inertia → drives LS topology
  - Bistable domain
- → More to come !



SF2A 2012 16 / 16

•