Evidence for a bimodal distribution of magnetic fields in cool stars

Julien Morin

Institut für Astrophysik Göttingen

J. F. Donati, P. Petit
X. Delfosse, T. Forveille
M. Jardine
E. Dormy, M. Schrinner
A. Reiners
T. Gastine, U. Christensen

Univ. Toulouse Univ. Grenoble Univ. St Andrews ENS Paris Univ. Göttingen MPI for Solar System Research

CS 17 – Barcelona – 28th June 2012 "Angular momentum evolution of cool stars"

Unterstützt von / Supported b

Outline

- 1 Cool stars magnetism and rotation
- 2 Evidence for a bimodal distribution of **B** in cool stars
- 3 Concluding remarks: bimodal distribution of **B** and evolution of angular momentum

Outline

1 Cool stars magnetism and rotation

- The key role of magnetic fields in rotational evolution
- Dynamo action in cool stars

2 Evidence for a bimodal distribution of **B** in cool stars

The key role of magnetic fields in rotational evolution

- Magnetospheric accretion
- Braking torque
- Winds/outflows

Credit: NASA / JPL-Caltech / R. Hurt

Dynamo action in cool stars

- B(stellar params)
 - Mass, age, rotation
 - Stellar structure
 - Depth of convection zone
 - Partly- vs fully- convective
- Fully-convective stars
 - Main sequence M dwarfs
 - Young T Tauri stars
 - Tachocline → solar dynamo?

Adapted from Reiners (2007) from Siess et al. (2002) models

Outline

1 Cool stars magnetism and rotation

2 Evidence for a bimodal distribution of **B** in cool stars

- Measuring stellar magnetic fields
- B observations of M dwarfs
- Dynamo bistability: theory and simulations

7 / 11

Zeeman effect

- Line splitting/broadening
 - $\Delta\lambda_B = 4.67 \times 10^{-12} \, \lambda_0^2 g_{eff} B$
- Polarization

Unpolarised spectroscopy

- Total field Bf
- Geometry

Spectropolarimetry

- Field orientation + polarity
- Large-scale component only

Julien Morin

Zeeman effect

- Line splitting/broadening
 - $\Delta\lambda_B = 4.67 \times 10^{-12} \lambda_0^2 g_{eff} B$
- Polarization

Unpolarised spectroscopy

- Total field Bf
- Geometry

Spectropolarimetry

- Field orientation + polarity
- Large-scale component only

GJ 729, FeH Wing-Ford band Reiners & Basri (2006)

7 / 11

Zeeman effect

- Line splitting/broadening
 - $\Delta\lambda_B = 4.67 \times 10^{-12} \lambda_0^2 g_{eff} B$
- Polarization

Unpolarised spectroscopy

- Total field Bf
- Geometry

Spectropolarimetry

- Field orientation + polarity
- Large-scale component only →Zeeman-Doppler Imaging

Zeeman effect

- Line splitting/broadening
 - $\Delta\lambda_B = 4.67 \times 10^{-12} \lambda_0^2 g_{eff} B$
- Polarization

Unpolarised spectroscopy

- Total field Bf
- Geometry

Spectropolarimetry

- Field orientation + polarity
- Large-scale component only →Zeeman-Doppler Imaging

Julien Morin

Magnetic fields of M dwarfs

- Spectropolarimetry
 - Fully-convective stars
 - Stronger large-scale **B**
 - Stronger dipolar component
 - Very low mass stars
 - Similar stellar parameters
 - Two distinct magnetisms
 - strong/weak dipole
 Morin, Donati et al. (2008–2010)
- Unpolarized spectroscopy
- No difference fully-/partlyconv.
- No bimodal distrib. in spectropol. sample
- Only large-scale B affected

Magnetic fields of M dwarfs

- Spectropolarimetry
 - Fully-convective stars
 - Stronger large-scale **B**
 - Stronger dipolar component
 - Very low mass stars
 - Similar stellar parameters
 - Two distinct magnetisms
 - strong/weak dipole
 Morin, Donati et al. (2008–2010)
- Unpolarized spectroscopy
- No difference fully-/partlyconv.
- No bimodal distrib. in spectropol. sample
- ➡ Only large-scale B affected

Magnetic fields of M dwarfs

- Spectropolarimetry
 - Fully-convective stars
 - Stronger large-scale **B**
 - Stronger dipolar component
 - Very low mass stars
 - Similar stellar parameters
 - Two distinct magnetisms
 - strong/weak dipole
 Morin, Donati et al.
 (2008–2010)
- Unpolarized spectroscopy
 - No difference fully-/partlyconv.
 - No bimodal distrib. in spectropol. sample
- ➡ Only large-scale B affected

Dynamo bistability: theory and simulations

- Weak- and strong- field dynamos
 - 2 branches: \neq force balances
 - Morin, Dormy, Schrinner & Donati (2011)
- Effect of inertia in DNS
 - Transition to dipole at low Ro_ℓ
 - Christensen & Aubert (2006)
 - \exists dipolar and multipolar branches at low Ro_ℓ
 - Schrinner et al., Gastine et al. (2012)
 - How does Ro_{ℓ} depend on stellar params ?
 - New observational constraints
 - Spectropolarimetric observations of M dwarfs, TTS, PMS/ZAMS
 - Relationship dynamo / DR

Dynamo bistability: theory and simulations

- Weak- and strong- field dynamos
 - 2 branches: \neq force balances
 - Morin, Dormy, Schrinner & Donati (2011)
- Effect of inertia in DNS
 - Transition to dipole at low Ro_ℓ
 - Christensen & Aubert (2006)
 - \exists dipolar and multipolar branches at low Ro_ℓ
 - Schrinner et al., Gastine et al. (2012)
 - How does *Ro*_ℓ depend on stellar params ?
 - New observational constraints
 - Spectropolarimetric observations of M dwarfs, TTS, PMS/ZAMS
 - Relationship dynamo / DR

Julien Morin

1 Cool stars magnetism and rotation

2 Evidence for a bimodal distribution of **B** in cool stars

- Evidence for dynamo bistability
 - Observations
 - Numerical simulations support
- Which regime of stellar parameters?
 - VLMS fast rotators (low Ro)
 - cTTS? Donati et al. (2011), Gregory et al. (2012)
 - Relation w/ Reiners & Basri (2010)?
- Importance of small-/large-scale B for angular momentum evolution?

- Evidence for dynamo bistability
 - Observations
 - Numerical simulations support
- Which regime of stellar parameters?
 - VLMS fast rotators (low Ro)
 - cTTS? Donati et al. (2011), Gregory et al. (2012)
 - Relation w/ Reiners & Basri (2010)?
- Importance of small-/large-scale B for angular momentum evolution?

Concluding remarks: bimodal distribution of **B** and evolution of angular momentum

- Evidence for dynamo bistability
 - Observations
 - Numerical simulations support
- Which regime of stellar parameters?
 - VLMS fast rotators (low Ro)
 - cTTS? Donati et al. (2011), Gregory et al. (2012)
 - Relation w/ Reiners & Basri (2010)?
- Importance of small-/large-scale B for angular momentum evolution?

→ Talk by A. Reiners

