Imaging large-scale magnetic fields with spectropolarimetry: methods & results for M dwarfs

Julien Morin

Institut für Astrophysik Göttingen

International MaPP meeting 13th-16th November 2011 Toulouse

Unterstützt von / Supported b

Outline

- 1 Why studying large-scale magnetic fields of M dwarfs ?
- 2 Direct methods for magnetic field measurements
- 3 The first spectropolarimetric survey of M dwarfs
- 4 From M dwarfs to T Tauri stars

∃ ⊳

Outline

Why studying large-scale magnetic fields of M dwarfs ?
 Magnetic fields play a key role
 Fully-convective vs solar dynamo

2 Direct methods for magnetic field measurements

3 The first spectropolarimetric survey of M dwarfs

4 From M dwarfs to T Tauri stars

Julien Morin

Imaging large-scale magnetic fields of M dwarfs MaPP Nov 2011 3 / 19

Magnetic fields play a key role

- Star–disc interaction
 - Magnetospheric accretion
 - Braking torque
 - Winds/outflows
- Large-scale field is relevant

Credit: NASA / JPL-Caltech / R. Hurt

Julien Morin

Imaging large-scale magnetic fields of M dwarfs MaPP Nov 2011 4

Solar-type dynamo		Fully-convective dynamo	
• $\alpha \Omega$: cyclonic concvection + $d\Omega$		Differential rotation ? α^2 ?	
Crucial role of the tachocline ?		Importance of aspect ratio ?	
Julien Morin	Imaging large-scale magnetic field	ds of M dwarfs MaPP Nov 2011 5 / 19	1

Outline

1 Why studying large-scale magnetic fields of M dwarfs ?

2 Direct methods for magnetic field measurements

- Zeeman Effect
- Disk-integrated stellar measurements
- Zeeman-Doppler Imaging

3 The first spectropolarimetric survey of M dwarfs

4 From M dwarfs to T Tauri stars

Julien Morin

Imaging large-scale magnetic fields of M dwarfs M

MaPP Nov 2011 6 / 19

- Component separation σ_b, π, σ_r
- Zeeman splitting
 - $\Delta\lambda_B = 4.67 imes 10^{-12} \lambda_0^2 g_{eff} B$
- Polarization
 - B modulus
 - Vector properties
 - Direction : linear/circulan Polarity : sign

Zeeman components for sodium D lines

green: pi components, red & blue: sigma components

Credit: J. Landstreet

-

Imaging large-scale magnetic fields of M dwarfs MaPP Nov 2011 7 / 19

- Component separation σ_b, π, σ_r
- Zeeman splitting
 - $\Delta\lambda_B = 4.67 imes 10^{-12} \lambda_0^2 g_{eff} B$
- Polarization
 - B modulus
 - Vector properties
 - Direction : linear/circularity Polarity : sign

MaPP Nov 2011

- Component separation σ_b, π, σ_r
- Zeeman splitting
 - $\Delta\lambda_B = 4.67 imes 10^{-12} \, \lambda_0^2 g_{eff} B$
- Polarization
 - B modulus
 - Vector properties
 - Direction : linear/circular
 - Polarity : sign

Zeeman polarization in spectral lines

Adapted from Landi & Landolfi (2004)

Julien Morin

Imaging large-scale magnetic fields of M dwarfs MaPP Nov 2011 7

- Component separation σ_b, π, σ_r
- Zeeman splitting
 - $\Delta\lambda_B = 4.67 imes 10^{-12} \, \lambda_0^2 g_{eff} B$
- Polarization
 - B modulus
 - Vector properties
 - Direction : linear/circular
 - Polarity : sign

Julien Morin

Imaging large-scale magnetic fields of M dwarfs

MaPP Nov 2011

Unpolarised spectrum

- Total magnetic flux*
- But almost no information on field geometry
- Dynamo energetics
- Polarized spectrum
 - Large-scale component
 - Contains info on ${\boldsymbol B}$
- Tomography \Rightarrow topology

Julien Morin

Imaging large-scale magnetic fields of M dwarfs

MaPP Nov 2011

Unpolarised spectrum

- Total magnetic flux*
- But almost no information on field geometry
- Dynamo energetics
- Polarized spectrum
 - Large-scale component
 - Contains info on B
- Tomography \Rightarrow topology

Julien Morin

Imaging large-scale magnetic fields of M dwarfs

MaPP Nov 2011

Unpolarised spectrum

- Total magnetic flux*
- But almost no information on field geometry
- Dynamo energetics
- Polarized spectrum
 - Large-scale component
 - Contains info on B
- Tomography \Rightarrow topology

Julien Morin

Imaging large-scale magnetic fields of M dwarfs MaPP N

MaPP Nov 2011

Unpolarised spectrum

- Total magnetic flux*
- But almost no information on field geometry
- Dynamo energetics
- Polarized spectrum
 - Large-scale component
 - Contains info on B
- Tomography \Rightarrow topology

Julien Morin

Imaging large-scale magnetic fields of M dwarfs

▲ 문)

Unpolarised spectrum

- Total magnetic flux*
- But almost no information on field geometry
- Dynamo energetics
- Polarized spectrum
 - Large-scale component
 - Contains info on B
- Tomography \Rightarrow topology

Julien Morin

Imaging large-scale magnetic fields of M dwarfs

< 문)

Unpolarised spectrum

- Total magnetic flux*
- But almost no information on field geometry
- Dynamo energetics
- Polarized spectrum
 - Large-scale component
 - Contains info on B
- Tomography \Rightarrow topology

Julien Morin

Imaging large-scale magnetic fields of M dwarfs

< 문)

- Zeeman effect
- Polarized signatures
- Geometry/Large-scale component
- ZDI: principle (Semel 1989)
 - Doppler effect
 - Rotational modulation
 - Magnetogram vector B
- Description of B (Donati 2006)
 - SH + Poloidal/Toroidal
 - Physical **B**
 - Global topologies
- Comparison w/ theory
- Occupy Cycles

Magnetospheric model

Julien Morin

- Zeeman effect
- Polarized signatures
- Geometry/Large-scale component
- ZDI: principle (Semel 1989)
 - Doppler effect
 - Rotational modulation
 - Magnetogram vector B
- Description of B (Donati 2006)
 - SH + Poloidal/Toroidal
 - Physical B
 - Global topologies

Equal RV stripes

Over Cycles

Magnetospheric models

Julien Morin

Imaging large-scale magnetic fields of M dwarfs

MaPP Nov 2011

- Zeeman effect
- Polarized signatures
- Geometry/Large-scale component
- ZDI: principle (Semel 1989)
 - Doppler effect
 - Rotational modulation
 - Magnetogram vector B
- Description of B (Donati 2006)
 - SH + Poloidal/Toroidal
 - Physical **B**
 - Global topologies
- Comparison w/ theory
- Occupy Cycles

Magnetospheric model

Julien Morin

- Zeeman effect
- Polarized signatures
- Geometry/Large-scale component
- ZDI: principle (Semel 1989)
 - Doppler effect
 - Rotational modulation
 - Magnetogram vector B
- Description of B (Donati 2006)
 - SH + Poloidal/Toroidal
 - Physical **B**
 - Global topologies
- Comparison w/ theory
- Occupy Cycles

Magnetospheric model

Julien Morin

- Zeeman effect
- Polarized signatures
- Geometry/Large-scale component
- ZDI: principle (Semel 1989)
 - Doppler effect
 - Rotational modulation
 - Magnetogram vector B
- Description of B (Donati 2006)
 - SH + Poloidal/Toroidal
 - Physical B
 - Global topologies
- Comparison w/ theory
- Cycles
- Magnetospheric models

Julien Morin

MaPP Nov 2011 9

Outline

1 Why studying large-scale magnetic fields of M dwarfs ?

2 Direct methods for magnetic field measurements

3 The first spectropolarimetric survey of M dwarfs

- The survey
- The fully convective transition
- The very low mass regime
- Rotation-magnetic field relations

4 From M dwarfs to T Tauri stars

Julien Morin

Imaging large-scale magnetic fields of M dwarfs MaPP Nov 2011 10 / 19

The survey

Multi-line + New generation instruments ESPaDOnS and NARVAL

Systematic study of H-R diagram

- Explore dynamo response to
 - Mass
 - Depth of convective zone
 - Rotation period

- Measurements
 - Stokes V time-series
 - B: pol., tor., axi.
 - Differential rotation
 - Long-term evolution
- M dwarfs
 - 23 stars
 - $0.08 < M_{\star} < 0.75 \ {
 m M}_{\odot}$
 - $0.33 < P_{\rm rot} < 18.6 {
 m d}$
 - Active

Julien Morin

Imaging large-scale magnetic fields of M dwarfs

MaPP Nov 2011

Examples of ZDI reconstructions

Julien Morin

Imaging large-scale magnetic fields of M dwarfs

Julien Morin

Imaging large-scale magnetic fields of M dwarfs MaPP Nov 2011

Julien Morin

Imaging large-scale magnetic fields of M dwarfs MaPP Nov 2011 13 / 19

Mass-period diagram: $M_{\star} > 0.5~{ m M}_{\odot}$

Magnetic field

- Toroidal component
 - Significant or even predominant
- Poloidal component
 - Non-axisymmetric

Differential rotation

- $d\Omega\gtrsim d\Omega_{\odot}$
- Short-lived magnetic features

Donati et al.(2008)

Julien Morin

Imaging large-scale magnetic fields of M dwarfs MaPP Nov 2011 14 / 19

Mass-period diagram: $0.2 < M_{\star} < 0.5~{ m M}_{\odot}$

Magnetic field Poloidal Axisymmetric Stronger \sim Dipole Differential rotation • $d\Omega \simeq \frac{d\Omega_{\odot}}{10}$ Stable magnetic features

Morin et al.(2008a,b) Phan-Bao et al.(2009) MaPP Nov 2011 15 / 19

Julien Morin

Imaging large-scale magnetic fields of M dwarfs

Mass-period diagram: $0.2 < M_{\star} < 0.5 M_{\odot}$

Magnetic field Poloidal Axisymmetric Stronger \sim Dipole Differential rotation • $d\Omega \simeq \frac{d\Omega_{\odot}}{10}$ Stable magnetic features → Sharp transition → Full-convection boundary Browning (2008) Morin et al.(2008a,b) Phan-Bao

et al.(2009)

15 / 19

Julien Morin

Imaging large-scale magnetic fields of M dwarfs

MaPP Nov 2011

Mass-period diagram: $M_{\star} < 0.2 \ { m M}_{\odot}$

Julien Morin

Imaging large-scale magnetic fields of M dwarfs MaPP Nov 2011 16 / 19

≺ ≣ ⊁

Mass-period diagram: $M_{\star} < 0.2 \ { m M}_{\odot}$

Morin et al.(2010)

Julien Morin

Imaging large-scale magnetic fields of M dwarfs Ma

MaPP Nov 2011 16 / 19

이 큰 가

Mass-period diagram: $M_{\star} < 0.2 \ { m M}_{\odot}$

Two distinct groups of stars Similar stellar parameters

- Field similar to stars
 - $0.2 < M_{\star} < 0.5 {
 m ~M}_{\odot}$
- lacksquare \sim strong dipole
- Weak field
- Non-axisymmetric

→ Two possible dynamo modes ?
→ Switch between two states ?
→ Influence of age ?

Morin et al.(2010)

(문)

Rotation-magnetic field relation

Large-scale magnetic flux

- \blacksquare Boundary at 0.4 ${
 m M}_{\odot}$
 - $M_{\star} > 0.4~{
 m M}_{\odot}$: $B_{
 m sat} \simeq 180~{
 m G}$
 - $M_{\star} < 0.4~{
 m M}_{\odot}$: $B_{
 m sat} \simeq 600~{
 m G}$

Ratio of total and large-scale magnetic fluxes

- Unpolarized / molecular lines FeH
- $M_{\star} > 0.4 \,\,\mathrm{M_{\odot}}$: $\simeq 6\%$

$$\bullet$$
 0.2 < M_{\star} < 0.4 ${
m M}_{\odot}$: \simeq 14%

MaPP Nov 2011 17 / 19

Rotation-magnetic field relation

Large-scale magnetic flux

- \blacksquare Boundary at 0.4 ${
 m M}_{\odot}$
 - $M_{\star} > 0.4~{
 m M}_{\odot}$: $B_{
 m sat} \simeq 180~{
 m G}$
 - $M_{\star} < 0.4~{
 m M}_{\odot}$: $B_{
 m sat} \simeq 600~{
 m G}$

Ratio of total and large-scale magnetic fluxes

- Unpolarized / molecular lines FeH
- $M_{\star} > 0.4 \,\,\mathrm{M_{\odot}}$: $\simeq 6\%$

•
$$0.2 < M_{\star} < 0.4 \,\, {
m M}_{\odot}$$
 : $\simeq 14\%$

More efficient at generating large-scale magnetic field

MaPP Nov 2011 17 / 19

Rotation-magnetic field relation

Large-scale magnetic flux

- \blacksquare Boundary at 0.4 ${
 m M}_{\odot}$
 - $M_{\star} > 0.4~{
 m M}_{\odot}$: $B_{
 m sat} \simeq 180~{
 m G}$
 - $M_{\star} < 0.4~{
 m M}_{\odot}$: $B_{
 m sat} \simeq 600~{
 m G}$

Ratio of total and large-scale magnetic fluxes

- Unpolarized / molecular lines FeH
- $M_{\star} > 0.4 \,\,\mathrm{M_{\odot}}$: $\simeq 6\%$

•
$$0.2 < M_{\star} < 0.4 \; {
m M}_{\odot}$$
 : $\simeq 14\%$

Rapidly rotating VLMS: WF/SF bistability ?

Morin, Dormy, Schrinner & Donati (2011)

MaPP Nov 2011 17 / 19

- 1 Why studying large-scale magnetic fields of M dwarfs ?
- 2 Direct methods for magnetic field measurements
- 3 The first spectropolarimetric survey of M dwarfs
- 4 From M dwarfs to T Tauri stars

From M dwarfs to T Tauri stars

M dwarfs

- Sharp transition close to FC limit
- What happens at very low masses ?

T Tauri stars

- Similar transition at FC limit ?
- Impact on stellar evolution ?

Julien Morin

Imaging large-scale magnetic fields of M dwarfs

MaPP Nov 2011

From M dwarfs to T Tauri stars

M dwarfs

- Sharp transition close to FC limit
- What happens at very low masses ?

T Tauri stars

- Similar transition at FC limit ?
- Impact on stellar evolution ?

Julien Morin

Imaging large-scale magnetic fields of M dwarfs

MaPP Nov 2011