--------------------
- On the maximum helium content of multiple populations in the globular cluster NGC6752 arxiv link

Auteur(s): Martins F., Chantereau William, Charbonnel Corinne

(Document sans référence bibliographique) 2021-04-28
Texte intégral en Openaccess : arXiv


Ref Arxiv: 2104.13988
Ref. & Cit.: NASA ADS
Résumé:

Multiple populations in globular clusters are usually explained by the formation of stars out of material with a chemical composition that is polluted to different degrees by the ejecta of short-lived, massive stars of various type. Among other things, these polluters differ by the amount of helium they spread in the surrounding medium. In this study we investigate whether the present-day photometric method used to infer the helium content of multiple populations indeed gives the true value or underestimates it by missing very He-rich, but rare stars. We focus on the specific case of NGC6752. We compute atmosphere models and synthetic spectra along isochrones produced for this cluster for a very broad range of He abundances covering the predictions of different pollution scenarios, including the extreme case of the fast-rotating massive star (FRMS) scenario. We calculate synthetic photometry in HST filters best suited to study the helium content. We subsequently build synthetic clusters with various distributions of stars. We finally determine the maximum helium mass fraction of these synthetic clusters using a method similar to that applied to observational data. We build toy models of clusters with various distributions of multiple populations and ensure that we are able to recover the input maximum Y. We then build synthetic clusters with the populations predicted by the FRMS scenario and find that while we slightly underestimate the maximum Y value, we are still able to detect stars much more He-rich than the current observed maximum Y. It is easier to determine the maximum Y on main sequence stars than on red giant branch stars, but qualitatively the results are unaffected by the sample choice. We show that in NGC6752 it is unlikely that stars more He-rich than the current observational limit of about 0.3 are present.



Commentaires: 17 pages, 21 figures + appendix. Accepted in Astronomy & Astrophysics